
Surfing Big Data Warehouses for Effective Information Gathering

Nunziato Cassavia1, Pietro Dicosta4, Elio Masciari1 and Domenico Saccà2;3

1ICAR-CNR, Rende, Italy
2DIMES UNICAL, Rende, Italy

3Centro di Competenza ICT-SUD, Rende, Italy
4NTT DATA, Rende, Italy

Keywords: Big Data, Solr, Clustering.

Abstract: Due to the emerging Big Data paradigm traditional data management techniques result inadequate in many real
life scenarios. In particular, OLAP techniques require substantial changes in order to offer useful analysis due
to huge amount of data to be analyzed and their velocity and variety. In this paper, we describe an approach for
dynamic Big Data searching that based on data collected by a suitable storage system, enriches data in order
to guide users through data exploration in an efficient and effective way.

1 INTRODUCTION

Nowadays, the availability of huge amounts of
data from heterogeneous sources, exhibiting differ-
ent schemes and formats and being generated at very
high rates, led to the definition of new paradigms for
their management – this problem is known with the
name Big Data (uno, 2008; due, 2010; tre, 2011;
Agrawal et al., 2012; Lohr, 2012; Manyika et al.,
2011; Noguchi, 2011a; Noguchi, 2011b; Labrinidis
and Jagadish, 2012). As a consequence of new per-
spective on data, many traditional approaches to data
analysis result inadequate both for their limited effec-
tiveness and for the inefficiency in the management of
the huge amount of available information. Therefore,
it is necessary to rethink both the storage and access
patterns to big data as well the design of new tools for
data presentation and analysis. In particular, OLAP
analysis tools require suitable adjustments in order to
work for big data processing effectively. Indeed, it
is crucial, during the construction and analysis of a
data warehouse, to exploit ad-hoc tools that allow an
easy and fast search of data stored in several nodes
distributed over the storage layer.

More in detail, while building a data warehouse
for Big Data, the key to a successful analysis (i.e. a
fast and effective one) is the availability of good in-
dexing mechanisms. Therefore, an additional cost in
terms of storage space consumption needed for stor-
ing the appropriate indices is to be taken into account.

It is worth noticing that the problem of fast ac-

cessing relevant pieces of information arises in sev-
eral scenarios such as world wide web search, e-
commerce systems, mobile systems and social net-
works analysis to cite a few.

Successful analyses for all the application con-
texts rely on the availability of effective and efficient
tools for browsing data so that users may eventually
extract new knowledge which s/he was not interested
initially.

In this paper, we shall describe the architecture of
a system for full-text search, capable to operate over
Big Data and offering the chance to “surf” the data in
a simplified manner, while keeping traditional opera-
tors available in an OLAP based system such as roll-
up, drill-down, slice and dice. Moreover, we over-
come limitations of traditional OLAP analysis sys-
tems, as in our system analysis dimensions are not
limited to those defined a priori by the warehouse
architect, but they are dynamically added by induc-
ing them from the data. This enrichment of the ini-
tial dataset is referred to as Data Posting and can be
achieved by suitable data mining techniques, either
in batch mode (i.e. taking into account the whole
dataset) or on-the-fly by limiting the analysis to the
result of current search executed by users.

Our System in a Nutshell. Building a system for
Big Data management is a complex activity as many
architectural choices are affected by the data at hand.
In this respect, our system is quite intriguing as we ex-
ploited several utilities in order to make the data anal-
ysis step easier also for non expert users. Moreover,

373Cassavia N., Dicosta P., Masciari E. and Saccà D..
Surfing Big Data Warehouses for Effective Information Gathering.
DOI: 10.5220/0005579403730377
In Proceedings of 4th International Conference on Data Management Technologies and Applications (KomIS-2015), pages 373-377
ISBN: 978-989-758-103-8
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



we built our prototype using quite powerful tools that
are either open source or freely available for research
purposes.

First of all, we used Hbase as the basic tool for
data management as it is highly scalable and fault-
tolerant – Hbase is an open source, non-relational,
distributed database system, modeled after Google’s
BigTable and developed as part of Apache Software
Foundation’s Apache Hadoop project. Moreover, as
it is flexible as not tied to a fixed scheme, we can
add new columns (attributes) to predefined family col-
umn tables without any interruption in service deliv-
ery. The latter feature has been crucial for data en-
richment as it could happen that mining results could
affect only a limited portion of the overall database.
Moreover, it enables fast reading of data, thus making
the querying phase quite efficient. Unfortunately, for
full-text search, response times are still too high thus
limiting the usability of the system; therefore, we im-
plemented a specialized index by using Solr, which
is an open source enterprise search platform from the
Apache Lucene project, whose major features include
full-text search, hit highlighting, faceted search, real-
time indexing, dynamic clustering, database integra-
tion, NoSQL features and rich document (e.g., Word,
PDF) handling.

The Solr’s feature of supporting faceted naviga-
tion turned out to be very useful for our purposes:
facets are generated for modeling data dimensions
that allow users to drill-down or roll-up data. Further-
more, facets allow user suggestions based on previous
search performed. We fully exploited the SolrCloud
release that enjoys enhanced highly scalable and fault
tolerant features and empowers distributed indexes
as it is based on HDFS as file system. We used
Zookeeper (another software project of the Apache
Software Foundation), for enabling distributed con-
figuration and synchronization services as well as
naming registry for large distributed systems. We pin-
point that, as Hbase uses the same services, the over-
all architecture turned out to be rather powerful and
flexible.

As we want to achieve full integration between
Hbase and SolrCloud, we need to take into account
multivalued attribute management. Indeed, Solr-
Cloud provides a support for multivalued storage,
whereas for Hbase we need to suitably pre-elaborate
them (e.g., by adding a colum suffix). As an example,
consider a hotel having several email contacts. Using
Hbase we can model this as follows:

columnFamily anagra f ic in f o[email1 :<
value1 >;email2 :< value2 >; � � �

emailn :< valuen >].
On the contrary, SolrCloud allows the definition

of a multivalued field as follows:
< f ieldname= “email”type= “string”indexed =

“true”multivalued = “true”stored = “true= >
In order to guarantee full integration of both sys-

tems we need to provide a mapping between the
two systems that can be performed by Morphline, a
new command-based framework that simplifies data
preparation for Apache Hadoop workloads. The con-
figuration file (named morphline.conf) will contain
commands like the one reported in the following:

extractHBaseCellsfmappings :
finputColumn : ”columnFamily anagra f ic in f o :
email”out putField : ”email”type : stringsource :
valueg

In order to speed-up the index construction we ex-
ploit map-reduce as it allows the batch construction of
the overall index by accessing all nodes in the cluster.

However, in some application scenarios (e.g.
monitoring systems) we need a (near) real time index-
ing that can be done by the Lily Indexer that provides
the ability to quickly and easily search for any content
stored in HBase by indexing HBase rows into Solr,
without writing a line of code. Indeed, it is fully com-
plaint with several extraction tools like Flume that is
a distributed Apache servicee for efficiently collect-
ing, aggregating and moving large amounts of stream-
ing data flows so that data are available for searching
immediately after their insertion in the data storage
layer.

2 BACKGROUND ON COMPLEX
SEARCHING

A typical example of system devoted to complex data
querying is represented by search engines. The re-
sults of a search returned by the engine cannot be con-
sidered as a custom map built by query results but,
based on them, additional knowledge about data be-
ing queried can be learnt by iterative refinement of
search dimensions and parameters as reported in Fig-
ure 1.

In this process, the type of research being per-
formed has to be taken into account. Indeed, there
is a big difference between the simple search of
well-defined terms and the dynamic learning by ex-
ploratory research. Obviously enough, in the first
case, a search engine such as Google, is able to give

Figure 1: Learining By Results.

DATA�2015�-�4th�International�Conference�on�Data�Management�Technologies�and�Applications

374



results in less than a second. As a matter of fact, due
to its quick result presentation, many users go through
Google even if they know the URLs of the resources
that are interested in.

However, in some cases users do not know exactly
how to find the desired information about an object
(e.g. a book). In this case the Amazon model depicted
in Figure 2 is more suitable. More in detail, Ama-
zon search tools, includes the product categories and
some recommender systems, making the user search
experience quite interactive and iterative. In a sense,
intermediate results guide users to a better definition
of target information.

Furthermore, search engines usually allow non-
structured queries (known as “ranked retrieval”)
whose results are sorted by some relevance rank dis-
regarding their precision. As a matter of fact, this
kind of queries is easier to pose by users compared
to boolean expressions, but they can cause the setting
of a not precise evaluation criteria for document com-
parison.

As a possible improvement, some search en-
gines like Yahoo! Directory, offer context search.
More in detail, the contents of a directory is orga-
nized hierarchically, the user is guided to a subset
of documents potentially related to information be-
ing searched avoiding the possibility to pose free
text queries. In this respect, users re-think and re-
fines their needs, thus learning the adjustments to the
search being performed by exploiting the available
choices. To better understand how directory navi-
gation works, consider how accommodation booking
portals work. They offer a hierarchical navigation
systems, i.e. from the home page, user can choose
the desired country, then s/he can specify the city and
finally the type of structure s/he is interested in. This
navigation model suffers a great limitation due to tax-
onomy specification. Indeed, taxonomy specified by
the service designer may not meet user needs.

2.1 The Real-time faceted Navigation

It is possible to overcome the limits of the types of
search tools explained above by faceted navigation
that helps users in the information “surfing” process.
Consider the faceted view of a search engine de-

Figure 2: Amazon search.

picted in Figure 3. Starting the search from the home
page, the user has the opportunity to search informa-
tion about the country and about several attributes of
the structures pertaining to the search. For exam-
ple, s/he can browse city (Cosenza;Scilla; : : : )), the
structure type (Hotel;B&B;apartment; : : : ), their rat-
ing (2;3;4; : : : ). As a feature is selected, the user can
refine the search by selecting another attribute among
those available for the current selection. During the
browsing process, it is also possible to discard fea-
tures no longer relevant to the search (i.e. s/he can
perform dimensional filtering). This iterative process
guides the user through the accommodation search by
selecting a custom path instead of a hierarchy pro-
vided by the service designer.

We stress that efficient faceted navigation (i.e.
easy to use and providing access to richer informa-
tion) relies on the availability of some features that
are common to the objects being searched. In a sense,
it is impossible to implement faceted navigation for a
site that sells products not sharing at least a category.

The faceted search pattern described above can be
enhanced by exploiting data mining approaches for
information enrichment. To this end we propose a
novel approach to Data Posting, i.e. based on raw
data and ontologies we can add new dimensions in-
duced by analyzing search queries and results. More
in detail, we store query result as a materialized data
cube to be used for further search. These data will
be used as training set for an clustering algorithm that
will group query results in a unsupervised way. The
obtained clustering will be used for extracting fea-
tures relevant to the query that have not been specified
by the user neither have been considered for build-
ing the query result. As an example consider a user
searching for a restaurant in Rome. S/he will type
the query “restaurant in Rome” (also many search en-
gines will suggest this statement). Traditional search
results then will include restaurants located in the city
along with their rank. Indeed, by exploiting our ap-
proach we are able to suggest users a further interest-
ing parameter (i.e. analysis dimension) as the rank
of apetizers, main courses and sweets thus allowing a
more focused search.

Data Posting was first introduced by (Saccà

Figure 3: Faceted navigation example.

Surfing�Big�Data�Warehouses�for�Effective�Information�Gathering

375



and Serra, 2013). The data posting setting
(S;D;T;Sst ;St) consists of a source database schema
S, a domain database scheme D , a target flat fact table
T , a set Sst of source-to-target count constraints and a
set St of target constraints. The data posting problem
associated with this setting is: given finite source in-
stances IS for S and ID for D , find a finite instance IT
for T such that hIS; ID ; IT i satisfies both Sst and St .

The main difference w.r.t. classical data exchange
is the presence of the domain database scheme that
stores “new” values (dimensions) to be added while
exchanging data. The actual values to be assigned to
dimensions are defined by means of the target con-
straints. In a motto we can say that “data posting is
enriching data while exchanging them”. Next section
is devoted to the description of our prototype for Data
Posting.

3 A SYSTEM FOR BIG DATA
SEARCH

Our system, developed as part of DICET-INMOTO
project, is tailored for providing users a flexible tool
for full-text search, that is interactive, scalable on
Tourism Big Data and dynamic. To this end we
need to exploit suitable indexing and data manage-
ment strategies. It is based on several open source
tools as Apache Hadoop, Flume, HBase, Solr, Lily
HBase Indexer and Hue supporting our Data Posting
strategy as depicted in Figure 4.

Figure 4: System Architecture.

As tourist big data arrive in a streaming way, we
need to properly collect them by Flume that is a reli-
able and distributed service to efficiently collect, ag-
gregate and forward huge amounts of data. It of-
fers a flexible architecture for data streaming provid-
ing a fault tolerant system based on a configurable
reliability mechanism. Once data are gathered by
Flume module, they are pre-elaborated “on the fly” by
Morphline and stored in a data warehouse stored on
HBase. Morphline module is devoted to data cleaning
and data mapping on the column set in the datastore.

For querying purposes we provide two indexing
strategies, static and dynamic. We provide both fea-
tures in order to deal with all the possible use cases.

More in detail, if data pertaining the query have been
stored in the data warehouse static indexing turns to
be more effective. We perform this operation by Map
Reduce Indexer that takes advantage of the clustered
structure of the datastore. On the contrary, if new data
that have to be inserted into the data warehouse, we
take advantage of near real time indexing provided by
Lily framework.

In order to allow efficient on line analysis when
performing full-text search, we exploit Apache Solr
system. It allows searching for keywords in any field
that was previously indexed and allows to display
faster the documents matching the query. Moreover,
Solr allows several useful operations as field facets,
range queries and pivot facets, that can be used for
providing user the classical OLAP operators (slice &
dice, drill-down, roll-up, pivoting) thus making Solr
an excellent real-time analysis engine for text docu-
ments.

As an example, in a website, the log files and addi-
tional information on user behavior can be indexed by
Solr in order to allow (timed) range queries for a key-
word. It is also possible to build information graphs
containing aggregate information, such as the growth
over time of the number of registered users or trans-
actions aggregated by type.

Furthermore, we also exploit Carrot2 (a Solr plu-
gin) in order to make the search even more effective
as it provides real time clustering features that are ex-
ploited to derive new dimensions for analyzing data.
More in detail, based on the clusters obtained by Car-
rot2, we add new categories to the data warehouse that
will be exploited for guiding user through the search.

In order to display search results, we exploit Hue
features. The latter is a software that perfectly fits
the Hadoop ecosystem. It offers a user friendly in-
terface shown in Figure 5, that can be customized for
different user categories, e.g. end-users and domain
experts. In particular, end-users are allowed to search
only data indexed by Solr, while domain experts may
also view/edit data available in the data warehouse
(including those induced by the system automatically)
and add new dimensions.

Figure 5: Hue interface.

For the sake of efficiency, we prevent the rever-
sal of the entire data warehouse within Solr. More in
detail, we distinguish between indexed data used to
search for documents and data stored on Solr which

DATA�2015�-�4th�International�Conference�on�Data�Management�Technologies�and�Applications

376



can be accessed directly avoiding the access to raw
data. In order to improve system performances we
keep the minimum amount of information on Solr in-
dex while we allow access to the complete informa-
tion by REST API service1.

Finally, the architecture reported in Figure 4, of-
fers two solutions for the different data to be man-
aged: persistent data and streaming data. In Figure 4
we denote by blue full arrows the components that are
used for data streams processing, while the ones de-
noted by red dashed arrows deal with persistent data.

Indeed, the overall architecture is composed of
two modules: Module 1 for Near Real Time process-
ing and Module 2 for Batch processing whose features
are described below:

1. Near Real Time processing is tailored for end-
users. This module allows:

� Full-text search, interactive, scalable and flexi-
ble indexing system;
� Discovering new dimensions of analysis based

on result search logs;
� Static faceted navigation of categories defined

a priori and dynamic faceted navigation by ex-
ploiting dimensions induced on line by cluster-
ing algorithms.

2. Batch processing is tailored for expert users. This
module allows:

� Off-line discovery (i.e. based on the whole
dataset) and storage of new dimensions for the
data warehouse by a customizable result visu-
alization;
� Selection of the mining tool for data analysis

(we actually implemented clustering and clas-
sification features) based on the scenario to be
analyzed;

4 CONCLUSION

Big data analysis is a challenging task as we need
to take into account the velocity, variety and volume
of information to be analyzed. Indeed, such features
heavily influence the design of a system for big data
analysis. In this respect, we analyzed several de-
sign options in order to implement a prototype for
Big Data Warehousing offering advanced search func-
tions. Our prototype has been used for tourism big
data analysis both by end-users and domain experts.
Results on the usability of the system were quite sat-
isfactory. We are now gathering real data form public

1We allow access by HBase Rest Server

sources (Facebook, Twitter, Yelp, Tripadvisor) in or-
der to perform a detailed analysis of the accuracy we
can obtain by our prototype.

ACKNOWLEDGEMENTS

This work was supported by MIUR Project
PON04a2 D DICET INMOTO Organization
of Cultural Heritage for Smart Tourism and REal
Time Accessibility (OR.C.HE.S.T.R.A.)

REFERENCES

(2008). Big data. Nature.
(2010). Data, data everywhere. The Economist.
(2011). Drowning in numbers - digital data will flood

the planet - and help us understand it better. The
Economist.

Agrawal et al., D. (2012). Challenges and opportunities
with big data. A community white paper developed
by leading researchers across the United States.

Labrinidis, A. and Jagadish, H. V. (2012). Challenges and
opportunities with big data. PVLDB, 5(12):2032–
2033.

Lohr, S. (2012). The age of big data. nytimes.com.
Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R.,

Roxburgh, C., and Byers, A. H. (2011). Big data: The
next frontier for innovation, competition, and produc-
tivity. McKinsey Global Institute.

Noguchi, Y. (2011a). Following digital breadcrumbs to big
data gold. National Public Radio.

Noguchi, Y. (2011b). The search for analysts to make sense
of big data. National Public Radio.

Saccà, D. and Serra, E. (2013). Data posting: a new fron-
tier for data exchange in the big data era. In Bravo, L.
and Lenzerini, M., editors, Proceedings of the 7th Al-
berto Mendelzon International Workshop on Founda-
tions of Data Management, Puebla/Cholula, Mexico,
May 21-23, 2013., volume 1087 of CEUR Workshop
Proceedings. CEUR-WS.org.

Surfing�Big�Data�Warehouses�for�Effective�Information�Gathering

377


