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Abstract: Clustering is a significant data mining task which partitions datasets based on similarities among data. In 
this study, partitional clustering is considered as an optimization problem and an improved ant-based 
algorithm, named Opposition-Based API (after the name of  Pachycondyla APIcalis ants), is applied to 
automatic grouping of large unlabeled datasets. The proposed algorithm employs Opposition-Based 
Learning (OBL) for ants' hunting sites generation phase in API.  Experimental results are compared with the 
classical API clustering algorithm and three other recently evolutionary-based clustering techniques. It is 
shown that the proposed algorithm can achieve the optimal number of clusters and, in most cases, 
outperforms the other methods on several benchmark datasets in terms of accuracy and convergence speed. 

1 INTRODUCTION 

Research investigations in different organizations 
have recently shown that huge amount of data are 
being stored and collected in databases and this large 
amount of stored data continues to grow fast. 
Valuable knowledge which is hidden in this large 
amount of stored data should be revealed to improve 
the decision-making process in organizations. 
Therefore, a field called knowledge discovery and 
data mining in databases has emerged due to such 
large databases (Han and Kamber, 2001). Data 
mining analysis includes a number of technical 
approaches such as classification, data 
summarization, finding dependency networks, 
clustering, regression, and detecting anomalies 
(Amiri and Armano, 2014). 

The process of grouping data into classes or 
clusters such that the data in each cluster share a 
high degree of similarity while being very dissimilar 
to data from other clusters is called data clustering. 
Generally speaking, hierarchical and partitional 
clustering are the two main categories of clustering 
methods (Kao et al., 2008). Hierarchical clustering 
results in a tree which presents a sequence of 
clustering while each cluster is a group of dataset 
(Leung et al., 2000). Partitional clustering 
decomposes a dataset into a set of disjoint clusters. 
Many partitional clustering algorithms try to 
minimize some measure of dissimilarity in the 
samples within each cluster while maximizing the 
dissimilarity of different clusters. 

Swarm Intelligence (SI) is an innovative artificial 
intelligence category inspired by intelligent 
behaviors of insect or animal groups in nature, such 
as ant colonies, bird flocks, bee colonies, bacterial 
swarms, and so on. Over the recent years, the SI 
methods like ant-based clustering algorithms were 
successful dealing with clustering problems. Ants 
have an incredible optimizing capacity due to their 
ability to communicate indirectly by means of 
pheromone deposits (Bonabeau et al., 1999). In most 
research works, clustering analysis is considered as 
an optimization problem and solved by using the 
different types of ACO and ant-based algorithms. 
The idea is to make a group of ants to explore the 
search space of the optimization problems and find 
the best candidates of solutions. These candidates 
create clusters of the datasets and are selected 
according to a fitness function, which evaluate their 
quality with respect to the optimization problem.  

In order to improve the convergence of the ant-
based clustering algorithm, a combination of the 
popular k-means algorithm and the stochastic and 
exploratory behavior of clustering ants is proposed 
in (Monmarche et al., 1999). An ant system and 
ACO, which is based on the parameterized 
probabilistic model of the pheromone, is presented 
by Dorigo (Dorigo et al., 1999). Slimane et al.  
applies explorative and stochastic principles from 
the ACO meta-heuristic combined with deterministic 
and heuristic principles of k-means (Slimane et al., 
1999). A novel strategy called ACLUSTER is 
developed in (Ramos and Merelo, 2002) to deal with 
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unsupervised clustering as well as data retrieval 
problems. Two other ant-based clustering 
algorithms, named Ant-Clust and AntTree, are 
presented in (Labroche et al., 2003), respectively. In 
Ant-Clust, the ants proceed according to chemical 
properties and odors to recognize themselves as 
similar or not. Both algorithms are applied to 
unsupervised learning problems. Hartmann added a 
neural network to each ant in his proposed algorithm 
which enables the ants to take the objects of their 
vicinity as input, and return the move action, the 
pick up or drop action, as outputs (Hartmann, 2005). 
An advanced clustering algorithm called ant colony 
ISODATA is proposed in (Wang et al., 2007) for 
applying in real time computer simulation. Ant 
clustering algorithm is also used in (Chen and Mo, 
2009) to improve k-means and optimize the rule of 
ant clustering algorithm. 

The API algorithm, named after “apicalis” in 
Pachycondyla apicalis, is inspired by a model of the 
foraging behavior of a population of primitive ants 
(Monmarché et al., 2000).  It is demonstrated in 
(Aupetit et al., 2006) that API can be applied to 
continuous optimization problems and achieved 
robust performance for all the test problems. Despite 
being powerful, the ant-based algorithms, including 
API, can remain trapped in local optimums. This 
situation can occur when a certain component is 
very desirable on its own, but leads to a sub-optimal 
solution when combined with other components. 
Moreover, most of the reported ant-based clustering 
methods need the number of clusters as an input 
parameter instead of determining it automatically on 
the run. Many practical situations show that it is 
impossible or very difficult to determine the 
appropriate number of groups in a previously 
unlabeled datasets. Also, if a dataset contains high-
dimensional feature vectors, it is practically 
impossible to graph the data for determining its 
number of clusters. 

This paper has two objectives. First, it attempts 
to show that application of the API algorithm in 
clustering problems, with a modification of using 
Opposition-Based Learning (OBL) in hunting sites 
generation, can achieve very promising results. The 
improvement is based on the idea of opposition 
numbers and attempt to increase the exploration 
efficiency of the solution space (Tizhoosh, 2006). 
The modification focuses on the initialization of 
sites' positions. Second, it tries to determine the 
optimal number of clusters in any unlabeled dataset 
automatically. A comparison of the proposed 
algorithm's results with classical API, and the 
reported results of three other automatic clustering 

methods including Genetic Algorithm (GA) 
(Bandyopadhyay and Maulik, 2002), Particle Swarm 
Optimization (PSO) (Omran et al., 2005), and 
Differential Evolution (DE) (Das et al., 5008) has 
been investigated. The accuracy of the final 
clustering results, the capability of the algorithms to 
achieve nearly similar results over randomly 
repeated runs (robustness), and the convergence 
speed are used as the performance metrics in the 
comparative analyses. 

Organization of the rest of this paper is as follows. 
In Section 2, the clustering problem is defined in a 
formal language. The API algorithm is shortly 
reviewed in Section 3. The proposed algorithm 
optimization algorithm and the clustering scheme 
used in this study are presented in Sections 4 and 5. A 
set of experimental results are provided in Section 6. 
Finally, the work is concluded in Section 7. 

2 CLUSTERING PROBLEM 

Clustering problem consists of dividing a set of data 
into different groups based on one or more features 
of the data. In the area of machine learning, 
clustering analysis is considered as an unsupervised 
learning method that constitutes a main role of an 
intelligent data analysis process. This tool explores 
the data structure and attempt to group objects into 
clusters such that the objects in the same clusters are 
similar and objects from different clusters are 
dissimilar. It is called unsupervised learning 
because, unlike classification (known as supervised 
learning), no a priori labeling of patterns is available 
to use in categorizing the cluster structure of the 
whole dataset. As the aim of clustering is to find any 
interesting grouping of the data, it is possible to 
define cluster analysis as an optimization problem in 
which a given function, called the clustering validity 
index, consisting of within cluster similarity and 
among clusters dissimilarities needs to be optimized. 

In every optimization algorithm it is necessary to 
measure the goodness of candidate solutions. In this 
problem, the fitness of clusters must be evaluated. In 
order to achieve this, one given clustering definition 
called the clustering validity index has been 
considered, that is the objects inside a cluster are 
very similar, whereas the objects located in distinct 
clusters are very different. Thereby, the fitness 
function is defined according to the concepts of 
cohesion and separation: 

1) Cohesion: The variance value of the objects in a 
cluster indicates the cluster’s compactness. In other 
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words, the objects within a cluster should be as 
similar to each other as possible. 
2) Separation: The objects inside different clusters 
should be as dissimilar to each other as possible. To 
achieve this objective, different distance measures 
such as Euclidean, Minowsky, Manhatann, the 
cosine distance, etc are used as the cluster 
separation’s indication (Jain et al., 1999). 

The clustering validity index is also used to 
determine the number of clusters. Traditionally, the 
clustering algorithms were run with a different 
number of clusters as an input parameter. Then, 
based on the best gained validity measure of the 
dataset partitioning, the optimal number of clusters 
was selected (Halkidi and Vazirgiannis, 2001). Since 
the definitions of cohesion and separation are given, 
the fitness function of clustering can be introduced. 
There are some well-known clustering validity 
indexes in the literature which their maximum and 
minimum values indicate proper clusters. Therefore, 
these indexes can be used to define the fitness 
functions for optimization algorithms. In the current 
paper, a validity measure, named CS measure index 
(Chou et al., 2004) is employed in the study of 
automatic clustering algorithm. This index is 
introduced as follows: 

First the centroid of the cluster Ci is calculated as the 
average of the elements within that cluster: 
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. The CS measure is also a 

function of the sum of within-cluster scatter to 
between-cluster separation. It is stated in (Chou et 
al., 2004) that while dealing with datasets of 
different densities and/or sizes the CS measure is 
more efficient than the other measures introduced in 
the literature. 

3 API  ALGORITHM 

The API algorithm is inspired by the colonies of P. 
APIcalis ants in tropical forests near the Guatemala 

border in Mexico (Monmarché et al., 2000). In this 
algorithm, a population of na ants ),,,( 21 anaaa   is 

located in search space S to minimize objective 
function f. API contains two parameters named Orand 
and Oexplo.  Orand generates a random point (named 
nest N) that indicates a valid solution in search space 
S according to a uniform distribution and Oexplo 
generates a new points in the neighbourhood of N 
and also hunting sites. In the beginning, the nest 
location N placed randomly in the search space 
using parameter Orand. Then, each ant ai of the na 
ants leaves the nest to create hunting sites randomly 
and utilizes Oexplo with an amplitude Asite(ai) of the 
neighbourhood centred in N.  The Asite(ai) values are 
set as: 
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where ( ) anx 101.01= . Afterwards, local search 

starts and each ant ai goes to one of its p hunting 
sites s' in the neighbourhood of its site s using Oexplo 
with an amplitude Alocal(ai). Alocal(ai) is set to 
Asite(ai)/10 based on the behaviour of real ants. If 

)()( sfsf <′ , the local search will be considered as 

successful (a prey has been caught) and ant ai  will 
memorize point s' and update its memory from s to s' 
and does a new exploration in the vicinity of the new 
site. On the contrary, ai will randomly choose 
another site among its p sites saved in memory in the 
next exploration. If ant ai cannot catch any prey in a 
hunting site which has been explored successively 
for more than tlocal(ai) times, that hunting site will be 
forgotten and repeated by a new site created using 
Oexplo.  

 

Figure 1: Search space of the API algorithm. s1, s2, and s3 
are sites randomly generated around nest N and their 
maximum distance from the nest being given by Asite. The 
small squares denote local exploration of site s2 (points 
situated at a maximum distance of Alocal from the site 
center s2). 
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Then, nest N moves after T movements of the na 
ants (after every na × T individual moves) and goes 
to the best point found since its own last 
displacement. Finally, all sites will be erased from 
the ants' memories to avoid local minima. It is 
presented in Figure 1. how the initial solution space 
is divided into smaller search spaces in the AIP 
algorithm. The API algorithm usually terminates 
after a specific number of iterations or when the 
best-so-far solution achieves a desired value. 

4 OPPOSITION-BASED API 
ALGORITHM 

In most instances, Evolutionary Algorithms (EAs) 
start with random initial populations and attempt to 
lead them toward some optimal solutions. This 
searching process usually terminates when EAs meet 
some predefined criteria. However, the distance of 
these initial guesses from the optimal solutions has a 
significant effect on the computation effort and the 
obtained solutions' quality. The concept of 
Opposition-Based Learning (OBL) is introduced by 
(Tizhoosh, 2006) to increase the chance of starting 
from fitter initial (closer to optimal solutions) points 
in the search space. In the proposed method, the 
opposition points of the initial guesses are found 
simultaneously. After making a comparison between 
initial solutions and their opposites in the search 
space, the fitter ones are chosen as the initial 
solutions. The judgment between a point and its 
opposite position is made based on their 
corresponding fitness function values. This 
procedure has the potential to improve the 
convergence speed and quality of solutions and can 
be applied not only to initial points but also 
continuously to each solution in the current 
population. The concept of opposite point can be 
defined as (Tizhoosh, 2006): 

Let ),,,( 21 DxxxX =  be a point in a D-

dimensional space, where ℜ∈Dxxx ,,, 21   and 

},,2,1{],[ Dibax iii ∈∀∈ . The opposition point 

),,,( 21 DxxxX =  is defined by its components by: 

iiii xbax −+=  (4) 

Now assume that )(Xf  and )(Xf  are the 

fitness function values which are evaluated 
simultaneously to measure the fitness of the main 
point X and its opposition position X  in the search 
space. Making a comparison between these two 
fitness values we continue the optimization process 

with the fitter one. In other words, If )()( XfXf ≥  

then point X can be replaced with X ; otherwise, the 
process will be continued by X. 

In this study, we enhance the hunting sites' 
creation step of the API algorithm by using OBL 
scheme. We choose the original API as the main 
algorithm and the proposed opposition-base idea is 
embedded in API to improve its performance and 
convergence speed.  

In this part, we explain the OBL approach added 
to the original API algorithm. Based on optimization 
literature, the common method to create initial 
solutions, in absence of a priori knowledge, is 
random number generation. Therefore, as explained 
previously, by applying the OBL concept, fitter 
starting candidate solutions can be obtained when 
there is no a priori knowledge about the solutions. 
The implementation of opposition-based 
initialization for API can be presented as: 

1) Create hunting sites { }
ansssS ,,, 21 =  randomly 

using Oexplo where ),,( Djijj xxs =  and 

{ }aiiij njDibax ,,1},,,2,1{],[  ∈∈∀∈ . 

2) Calculate opposite points { }
ansososoSo ,,, 21 =  of 

the initialized random sites by: 

ijiiij xbaxo −+=  (5) 

where ),,( Djijj xoxoso = . 

3) Select na fittest hunting sites from }{ SoS ∪  as 

initial hunting sites using fitness function values. 

A similar approach is applied to the algorithm 
when an ant loses all of its p sites and needs to 
create new hunting sites (steps 8-9 in Tab. 1.). 
Therefore, after making new sites by that ant, 
hunting sites which are ideally fitter than current 
created ones will be established in each iteration. 

5 CLUSTERING FORMULATION 
AND FITNESS FUNCTION 

The clustering method we applied in this work is the 
scheme proposed by (Das et al. 2008), in which the 
chromosomes of a Differential Evolution (DE) 
algorithm (Storn and Price, 1997) are assigned to 
vectors of real numbers. These vectors contain 2Kmax 
entries, where Kmax is the maximum number of 
clusters specified by user. To control the activation 
of each cluster during the clustering process, first 
Kmax elements of the defined vectors are assigned to 
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random positive floating numbers Ti,j (for jth cluster 
center in the ith vector) in [0,1]. These floating 
numbers are called activation thresholds. In this 
model, if 5.0, ≥jiT , the jth cluster center in the ith 

vector will be used for clustering of the associated 
data. In contrast, if  5.0, <jiT , the corresponding jth 

cluster center will not be considered in the 
partitioning process. In other words, Ti,j's are used as 
selection rules in each vector controlling the 
activation of  cluster centers. The second part of 
vectors contains Kmax D-dimensional centroids. 
Figure 2 shows a vector with five centroids and their 
corresponding activation thresholds. As it can be 
seen, only three of those centroids are active (have 
activation thresholds more than 0.5) in this vector. 

 

Figure 2: Active thresholds and their corresponding cluster 
centroids in vector i (the white and grey centroids are 
active and inactive, respectively). 

In this scheme, when a new vector is constructed, 
the T values are used to active the cancroids of 
clusters. If in a vector all Ti,j's are smaller than 0.5, 
two of the thresholds will be selected randomly and 
their values will be reinitialized between 0.5 and 1.0 
which means the minimum number of clusters in a 
vector is 2.  

In OBAPI, each clustering vector is considered 
as a hunting site. Ants are moving on the search 
space and can take or drop centroids according to the 
behavioral rules of the algorithm. Then, the nest is 
brought closer to the proper hunting sites and ants go 
back to new fruitful sites to try another pick up. To 
compare the performance of our proposed algorithm 
with the performance of other reported algorithms 
(Das et al., 2008), we applied the CS measure 
introduced in Section 2. Therefore, the fitness 
functions is constructed as: 

)(

1

KCS
f

i

=  (6) 

where CSi is the clustering index defined in Eqs. (2). 
These index evaluates the quality of the clusters 
delivered by vector i. Since all selected centroids 
and their opposites are always built inside the 
boundary of the dataset, there is no probability of a 
division by zero while computing the CS measures. 

6 EXPERIMENTAL RESULTS 
AND DISCUSSION 

6.1 Results and Discussions 

In this work, five real world clustering problems 
from the UCI database (Blake et al., 1998), which is 
a well-known database repository for machine 
learning, are used to evaluate the performance of the 
Opposition-Based API (OBAPI) algorithm. The 
datasets are briefly summarized as (Here, n is the 
number of data points, d is the number of features, 
and K is the number of clusters): 
1) Iris (n = 150, d = 4, K = 3): This dataset with 150 
random samples of flowers from the iris species 
setosa, versicolor, and virginica consists 50 
observations for sepal length, sepal width, petal 
length, and petal width in cm. 
2) Wine (n = 178, d = 13, K = 3): This dataset is the 
results of a chemical analysis of wines grown in the 
same region in Italy but derived from three different 
cultivars. The analysis determined the quantities of 
13 constituents found in each of the three types of 
wines. There are 178 instances with 13 numeric 
attributes in the wine dataset. All attributes are 
continuous and there is no missing attributes. 
3) Wisconsin breast cancer (n = 683, d = 9, K = 2): 
The Wisconsin breast cancer database has 9 relevant 
features: clump thickness, cell size uniformity, cell 
shape uniformity, marginal adhesion, single 
epithelial cell size, bare nuclei, bland chromatin, 
normal nucleoli, and mitoses. The dataset has two 
types: benign (239 objects) or malignant (444 
objects) tumors. 
4) Vowel (n = 871, d = 3, K = 6): This dataset 
consists of 871 Indian Telugu vowel sounds. The 
dataset has 3 features which are the first, second, and 
third vowel frequencies, and 6 overlapping classes 
named d (72 objects), a (89 objects), i (172 objects), 
u (151 objects), e (207 objects), and o (180 objects). 
5) Glass (n = 214, d = 9, K = 6): This dataset 
presents 6 different glass types called building 
windows float processed (70 objects), building 
windows nonfloat processed (76 objects), vehicle 
windows float processed (17 objects), containers (13 
objects), tableware (9 objects), and headlamps (29 
objects), respectively. Each of these types has 9 
features: refractive index, sodium, magnesium, 
aluminium, silicon, potassium, calcium, barium, and 
iron. 

The performance of the OBAPI algorithm is 
compared with three recently proposed partitional 
clustering algorithms called automatic clustering 
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using an improved deferential evolution (ACDE) 
(Das et al., 2008), genetic clustering with an 
unknown number of clusters K (GCUK) 
(Bandyopadhyay and Maulik, 2002), and dynamic 
clustering particle swarm optimization (DCPSO) 
(Omran et al., 2002). The improvement effects of 
our modified algorithm with normal API have been 
also investigated dealing with similar clustering 
problems. We used the default parameter settings, 
selected in (Monmarché et al., 2000), for all 
conducted experiments: 

• Number of ants, Na = 20. 
• Number of iterations (explorations performed 

by each ant between two nest moves), T =50. 
• Number of hunting sites, p = 2. 
• Search number (number of times ant ai cannot 

catch any prey in a hunting site which has 
been explored successively), tlocal(ai) = 50, i = 
1, ..., Na. 

For API and OBAPI, the hunting sites (cluster 
centroids) are selected randomly between the 
minimum and maximum numerical values of any 
feature of the datasets. Parameter Orand generates a 
uniformly distributed random point within those 
intervals. Parameter Oexplo is also used to create new 
hunting site ),...,( 1 Dxxs ′′=′  from site ),...,( 1 Dxxs =  

as follows: 

[ ]DiabAUxx iiii ,,1)( ∈∀−××+=′  (7) 

where },,2,1{],[ Dibax iii ∈∀∈ , U is a uniformly 

distributed value within [ ]5.0,5.0 +−  and A is the 

maximum amplitude of the move introduced in Eq. 
(3). The maximum and minimum number of 
clusters, Kmax and Kmin, are set to 20 and 2, 
respectively. 

In this study, a comprehensive comparison 
between the results of the API and OBAPI 
algorithms and the results of the ACDE, GCUK, and 
DCPSO reported in (Das et al., 2008) has been made 
to verify the performance of our proposed approach. 
We compare the convergence speed of all the 
algorithms by measuring the number of function 
calls (NFCs) which is most commonly and fair used 
metric in optimization literature. The quality of 
obtained solutions, determined by the CS measure, 
and ability of the algorithms to find the optimal 
number of clusters have been also considered as two 
other evaluation metrics. In order to minimize the 
effect of the stochastic nature of API and OBAPI on 
the metrics, our reported results for each clustering 
problem is the average over 40 independent trials 
which is equal to the number of independent the 
algorithms' runs reported in (Das et al., 2008). The 

results of two sets of experiments are presented by 
utilizing the five evolutionary clustering algorithms 
(API, OBAPI, ACDE, GCUK, and DCPSO) while 
CS measure is separately considered as their fitness 
function. For a detailed discussion on the parameter 
settings and simulation strategy of the ACDE, 
GCUK, and DCPSO algorithms please refer to (Das 
et al., 2008., Bandyopadhyay and Maulik, 2002, 
Omran et al., 2002, and Monmarché et al., 2000) We 
implemented both the API and OBAPI algorithms in 
Python 2.7.6 on a Intel Core i7, with 2.4 GHz, 8 GB 
RAM in Ubuntu 14.04 environment. 

In order to compare the accuracy of OBAPI and 
API with ACDE, DCPSO, and GCUK, maximum 
NFCs is set to 610  and considered as the termination 
criterion for each clustering algorithm. Afterwards, 
final solutions are considered as the number of 
clusters found, final value of fitness function, and 
two other metrics called inter-cluster and intra-
cluster distances. The inter-cluster distance shows 
the average of distances among centroids of the 
obtained clusters and the intra-cluster distance 
presents the average of distances among data vectors 
inside a cluster. To achieve crisp and compact  
 

Table 1: Mean and standard deviation values of average 
number of found clusters and CS over 40 independent 
trials (NFCs = 106 is set as the termination criterion). 

Dataset Algorithm Ave. number of 
clusters found 

CS value 

Iris 

OBAPI 3.11±0.05214 0.6122±0.053 
API 3.42±0.02451 0.6812±0.142 

ACDE 3.25±0.0382 0.6643±0.097 
DCPSO 2.23±0.0443 0.7361±0.671 
GCUK 2.35±0.0985 0.7282±2.003 

Wine 

OBAPI 3.16±0.0874 0.9622±0.047 
API 3.21±0.0456 0.9132±0.0514

ACDE 3.25±0.0391 0.9249±0.032 
DCPSO 3.05±0.0352 1.8721±0.037 
GCUK 2.95±0.0112 1.5842±0.328 

Breast 
Cancer 

OBAPI 2.00±0.00 0.4726±0.015 
API 2.15±0.0496 0.4869±0.637 

ACDE 2.00±0.00 0.4532±0.034 
DCPSO 2.25±0.0632 0.4854±0.009 
GCUK 2.00±0.0083 0.6089±0.016 

Vowel 

OBAPI 6.13±0.0421 0.9011±0.624 
API 5.77±0.0645 0.9232±0.224 

ACDE 5.75±0.0751 0.9089±0.051 
DCPSO 7.25±0.0183 1.1827±0.431 
GCUK 5.05±0.0075 1.9978±0.966 

Glass 

OBAPI 6.00±0.00 0.3112±0.647 
API 6.11±0.0324 0.4236±0.278 

ACDE 6.05±0.0148 0.3324±0.487 
DCPSO 5.96±0.0093 0.7642±0.073 
GCUK 5.85±0.0346 1.4743±0.236 
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clusters, the clustering algorithms try to maximize 
the inter-cluster distance and minimize intra-cluster 
distance, simultaneously. Table 1 and Table 2 show 
the average number of found clusters, the final CS 
values (Eq. 2), and the inter-cluster and intra-cluster 
distances obtained by OBAPI and API and the other 
three algorithms. Then, we need to compare the 
different algorithms in term of convergence speed. 

For each dataset, a cutoff value of CS fitness 
function is selected as a threshold. This values is 
somewhat larger than the minimum CS fitness 
function amount obtained by each algorithm in 
Table 1. The NFCs that each algorithm takes to 
achieve the cutoff CS fitness function value is given 
in Table 3 and Table 4. Best obtained values are 
shown in boldface in all the tables. 

It is demonstrated in Tabs. 1 and 2 that for the 
iris dataset the OBAPI has gained the lowest values 
of the final CS measure and the best values of mean 
intra- and inter-cluster distances. As discussed in 
(Das et al., 2008), the considerable overlap between 
two clusters (virginica and versicolor) in the iris 
dataset has caused GCUK and DCPSO to gain only 
two clusters on average while OBAPI, API, and 
 

Table 2: Mean and standard deviation values of inter- and 
intra-cluster distances over 40 independent trials (NFCs = 
106 is set as the termination criterion). 

Dataset Algorithm Mean intra- cluster 
distance 

Mean inter-cluster 
distance 

Iris 

OBAPI 2.8736±1.542 2.7211±0.362 
API 3.2232±0.324 2.4516±0.024 

ACDE 3.1164±0.033 2.5931±0.027 
DCPSO 3.6516±1.195 2.2104±0.773 
GCUK 3.5673±2.792 2.5058±1.409 

Wine 

OBAPI 4.005±0.004 3.6411±0.324 
API 4.096±0.041 3.1123±0.745 

ACDE 4.046±0.002 3.1483±0.078 
DCPSO 4.851±0.184 2.6113±1.637 
GCUK 4.163±1.929 2.8058±1.365 

Breast 
Cancer 

OBAPI 4.3232±0.214 3.2114±0.526 
API 4.4568±0.0354 3.0412±2.324 

ACDE 4.2439±0.143 3.2577±0.138 
DCPSO 4.8511±0.373 2.3613±0.021 
GCUK 4.9944±0.904 2.3944±1.744 

Vowel 

OBAPI 1406.32±9.324 2796.67±0.547
API 1434.85±0.457 2732.11±0.213 

ACDE 1412.63±0.792 2724.85±0.124 
DCPSO 1482.51±3.973 1923.93±1.154 
GCUK 1495.13±12.334 1944.38±0.747 

Glass 

OBAPI 521.278±65.23 896.31±6.123 
API 550.217±14.52 871.35±3.662 

ACDE 563.247±134.2 853.62±9.044 
DCPSO 599.535±10.34 889.32±4.233 
GCUK 594.673±30.62 869.93±1.789 

ACDE were successful in finding about three 
clusters and among them OBAPI has yielded the 
closest value to the real number of iris clusters. For 
the wine dataset, all the algorithms have been 
outperformed by DCPSO in term of number of 
clusters. OBAPI has achieved the best average 
values of fitness functions, and intra- and inter-
cluster distances. 

It is also observed in Tabs. 1 and 2 that for the 
breast cancer dataset, despite the fact that OBAPI, 
ACDE, and GCUK were competitively successful to 
yield high accurate vales of the number of clusters, 
ACDE has outperformed the other algorithms in 
terms of the other metrics. As it can be seen the 
difference between the final solutions of the two best 
algorithms (ACDE and OBAPI) is not significant. 
Tables 1 and 2 also show that the OBAPI algorithm 
has provided better results than the other four 
algorithms dealing with vowel and glass datasets 
which consist of large number of data vectors as 
well as six overlapping clusters. 

Table 3 and Table 4 clearly illustrate the 
effectiveness of the proposed OBAPI algorithm 
dealing with clustering of the benchmarks. As it is 
 

Table 3: Mean and standard deviation values of NFCs 
required by clustering algorithms to reach the defined 
cutoff thresholds over 40 independent trials. 

Dataset Algorithm Cutoff value for 
CS measure 

Ave. of required NFCs

Iris 

OBAPI 

0.95 

284567.23±24.36 
API 432578.36±84.65 

ACDE 459888.95±20.50 
DCPSO 679023.85±31.75 
GCUK 707723.70±120.21 

Wine 

OBAPI 

1.90 

42311.84±77.12 
API 66251.32±87.59 

ACDE 67384.25±56.45 
DCPSO 700473.35±31.42 
GCUK 785333.05±21.75 

Breast 
Cancer 

OBAPI 

1.10 

165278.32±15.36 
API 273111.67±14.56 

ACDE 292102.50±29.73 
DCPSO 587832.50±7.34 
GCUK 914033.85±24.83 

Vowel 

OBAPI 

2.50 

292487.32±14.36 
API 405524.65±32.11 

ACDE 437533.35±51.73 
DCPSO 500493.15±35.47 
GCUK 498354.10±74.60 

Glass 

OBAPI 

1.80 

288524.62±74.32 
API 408975.41±98.32 

ACDE 443233.30±47.65 
DCPSO 566335.80±25.73 
GCUK 574938.65±82.64 
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shown, a significantly lower NFCs is needed by our 
algorithm to reduce both CS fitness function values 
to the cutoff thresholds in all cases. After OBAPI, 
ACDE, API, DCPSO, and GCUK have needed 
lesser NFCs to achieve cutoff threshold values, 
respectively. Moreover, OBAPI has yielded the best 
amount of mean intra- and inter-cluster distances 
over most datasets. 

To conclude, the obtained results indicate that 
OBAPI surpass normal API on the clustering of all 
the benchmarks. The OBL method applied to the 
API led to accuracy improvements in most 
clustering problems and convergence speed-ups 
reaching about 33%. It is interesting to see that 
improvements of the convergence speed were 
relatively similar for all benchmark datasets. In 
contrast, OBAPI was not as successful as ACDE 
dealing with the breast cancer dataset in term of 
accuracy. In general, it seems that OBL performs 
well with the more difficult problems, as it helps the 
learning process. These results are very encouraging, 
as they demonstrate that opposition can help 
improve performance. However, it is important to 
 

Table 4: Mean and standard deviation values of inter- and 
intra-cluster distances required to reach to reach the 
defined cutoff thresholds in Table 3 over 40 independent 
trials. 

Dataset Algorithm Mean intra- cluster 
distance 

Mean inter-cluster 
distance 

Iris 

OBAPI 3.3145±0.471 2.8674±0.547 
API 3.9124±0.841 2.0456±0..875 

ACDE 3.7836±0.509 2.0758±0.239 
DCPSO 3.9637±1.666 2.0093±0.795 
GCUK 3.9992±2.390 1.9243±1.843 

Wine 

OBAPI 3.9165±0.874 3.5211±0.0774 
API 4.6232±0.547 2.8765±0.145 

ACDE 4.9872±0.148 3.1275±0.0357 
DCPSO 4.0743±0.093 1.9967±1.828 
GCUK 5.9870±1.349 2.1323±1.334 

Breast 
Cancer 

OBAPI 5.1221±0.132 2.8011±0.411 
API 5.43266±0.025 2.832±0.741 

ACDE 4.9744±0.105 3.0096±0.246 
DCPSO 5.6546±0.241 2.1173±0.452 
GCUK 8.0442±0.435 2.0542±1.664 

Vowel 

OBAPI 1475.32±0.852 2932.64±1.459 
API 1482.65±0.741 2687.57±0.573 

ACDE 1494.12±0.378 2739.85±0.163 
DCPSO 1575.51±3.786 1923.93±1.154 
GCUK 1593.72±1.789 2633.45±1.213 

Glass 

OBAPI 572.326±65.78 861.56±0.901 
API 600.985±42.32 852.11±0.324 

ACDE 590.572±34.24 853.62±0.44 
DCPSO 619.980±15.98 846.67±0.804 
GCUK 615.88±20.95 857.34±1.465 

consider here that OBAPI performs better than 
normal API according to the current comparison 
strategies as well. 

6.2 Pros, Cons, and Future Works 

The obtained results show that the enhanced OBAPI 
technique has a good performance and is very 
promising. In fact, this method can significantly 
decrease the number of function evaluations in 
comparison with the original API and other 
evolutionary techniques without having bad effects 
on the quality of solutions. Moreover, OBAPI is able 
to automatically find the optimal number of clusters 
and does not need to know them in advance. I is 
important to note that the results gained in this work 
are only examined and valid for five numerical test 
functions. In other words, the proposed 
approximation technique within API algorithm 
makes a heuristic method which is only designed 
and studied for solving the introduced problems. 
This method also does not add any new parameter to 
conventional form of the algorithm. As a part of our 
future work we plan to improve and study the 
opposition-based technique in order to solve high 
dimensional optimization problems with minimum 
decrease in quality of results. 

Computational complexity analysis of OBAPI is 
also another task that we decide to perform in the 
future. The main disadvantage of OBAPI is its 
computational cost which basically is due to the 
evolutionary nature of this method. Therefore, in 
order to gain a deeper understanding of when 
OBAPI is expected to work well (or poorly) for a 
given complex problem and why, its computational 
time complexity should be analyzed. It is still 
unclear how powerful theoretically OBAPI is in 
solving high dimensional clustering problems, and 
where the real theoretical power of OBAPI is in 
comparison with more traditional deterministic 
algorithms. Impact of the parameters on the average 
computation of OBAPI is another aspect that must 
be analyzed. Especially, proper number of ants and 
hunting sites bring robustness and efficiency to 
OBAPI and it is important to compare different 
values theoretically. 

To conclude, experimental studies will be carried 
out to validate and complement our theoretical 
analysis. The expected outcomes of this method will 
not only deepen our understanding of how and when 
OBAPI works, but also guide the design of more 
efficient algorithm in practice. 
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7 CONCLUSIONS 

The main motivation for the current work was 
utilizing the notion of opposition values to accelerate 
an ant-based algorithm called API (after the name of 
Pachycondyla APIcalis ants) for crisp clustering of 
real-world datasets. The performance of the 
proposed algorithm is studied by comparing it with 
three different state-of-the-art clustering algorithms 
and original version of API. The obtained results 
over five benchmark datasets show that the 
enhanced API algorithm, called OBAPI, is able to 
outperform four other algorithms over a majority of 
the datasets. The proposed method can significantly 
decrease the number of function evaluations while 
improving the quality of solutions in most cases 
without adding any new parameter to the original 
API. The proposed technique makes a heuristic 
method which is only studied for clustering datasets 
with average number of features. 
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