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Abstract: Motivated by the necessity of reasoning about transformation experiments and their results, we propose a map-
ping between an ontology representing transformation processes and probabilistic relational models. These
extend Bayesian networks with the notion of class and relation of relational data bases and, for this reason,
are well suited to represent concepts and ontologies’ properties. To easy the representation, we exemplify a
transformation process as a cooking recipe and present our approach for an ontology in the cooking domain
that extends the Suggested Upper level Merged Ontology (SUMO).

1 INTRODUCTION

A transformation process is a dynamic process com-
posed of a sequence of operations which allows in-
puts to be transformed in several different outputs. It
relies on data and knowledge coming from heteroge-
neous sources, often suffers from lack of information
and contains uncertain data, the observations being
acquired with seldom precise instruments, different
from a process to another. Reasoning on a transfor-
mation process supposes to be able, for instance, to
predict future outputs given certain inputs or given
that some inputs are missing, to diagnose how to ob-
tain the best output by determining the important in-
puts, to control the process and to suggest the best
sequence of operations. In this paper, we provide a
step forward toward reasoning on transformation pro-
cesses. To do that, we have to face two main locks:
(1) data and knowledge heterogeneity and (2) uncer-
tainty quantification.

In order to face the first lock, a relevant solution
is to use ontologies (Fridman Noy, 2004; Doan et al.,
2012). Many works propose solutions to manage un-
certainty in ontologies such as adapting the querying
process using fuzzy sets (Buche et al., 2005), rea-
soning using a possibilistic and probabilistic descrip-
tion logic reasoner (Qi et al., 2010; Lukasiewicz and
Straccia, 2008), reasoning in fuzzy ontology (Bobillo
et al., 2013) or using existing knowledge to predict
unfilled information (Saı̈s and Thomopoulos, 2014).

In this paper, we propose to quantify uncertainty in
reasoning with probability theory.

We propose to explore a novel way to reason
on transformation processes facing the two locks in-
troduced above: we combine the representation ex-
pression of ontologies with the reasoning possibili-
ties of probabilistic relational models which provides
a consistent framework to process uncertainty. Prob-
abilistic relational models add the notion of class to
Bayesian networks which allows to do filtering, pre-
diction, classification and smoothing. The notion of
‘class’, common to ontologies (concepts) and proba-
bilistic relational models, leads us to choose this prob-
abilistic model to be paired with the ontology’s repre-
sentation model. The first step of this combination
consists in proposing a mapping between a transfor-
mation process ontology and a probabilistic relational
model. The next step, not presented in this paper, will
be to learn the parameters of the model from an onto-
logical database and then to implement methods able
to reason on the learned model.

We present all our findings in the domain of cook-
ing recipes because it well exemplifies a general trans-
formation process, being simple and easy to under-
stand. We first present background on probabilistic
relational models. We detail, in Section 3, an ontol-
ogy of transformation processes and, in Sections 4,
its mapping with a probabilistic relational model. We
discuss our findings in Section 5 providing a compar-
ison with the state of the art.
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2 PRMs

A Bayesian network (BN) (Koller and Friedman,
2009) is the representation of a joint probability over
a set of random variables that uses a Directed Acyclic
Graph (DAG) to encode probabilistic relations be-
tween variables (Figure 1).

Figure 1: Two Bayesian networks.

Probabilistic Relational Models (PRMs) extend
the BN representation with a relational structure be-
tween (potentially repeated) fragments of BN called
classes (Torti et al., 2010). A class is defined as a
DAG over a set of inner attributes and a set of outer
attributes from other classes referenced by so-called
reference slots (Figure 2).

Figure 2: A relationa schema formed by two classesX and
Y. ρ is a reference slot inY which indicates that attributes
of classY (D,E,F) can have parents in classX (A,B,C).

The probabilistic models are defined at class level
over the set of inner attributes, conditionally to the set
of outer attributes and represent generic probabilistic
relations inside the classes that will be instantiated for
each specific situation. In this way, PRMs provide a
high-level, qualitative description of the structure of
the domain and the quantitative information provided
by the probability distribution (Friedman et al., 1999).

In a PRM, the (relational) schema describes a set
of classesC, associated with attributesA(C) and refer-
ence slotsR(C)1. A slot chain is defined as a sequence
of reference slots that allows to put in relation at-
tributes of objects that are indirectly related. A system
in the PRM provides a probability distribution over
a set of instances of a relational schema (Wuillemin

1Using the standard object-oriented notation, we will
write C.X (respectivelyC.Y) to refer to a given attributeX
(respectively, reference slotY) of a classC.

and Torti, 2012). In this paper we present a general
approach to deduce relational schemas from a given
ontology of transformation processes.

3 TRANSFORMATION
PROCESSES

A cooking recipe is a well known transformation pro-
cess. For this reason and its simplicity, we propose
to illustrate our ontology on the cooking domain. We
present, in the following, the ontology, its concepts
and relations and an example of recipe. Finally, we il-
lustrate examples of forms of uncertainty that can be
found in a transformation process.

3.1 Our Ontology

An ontology is designed to represent the knowledge
on a domain with concepts, relations between these
concepts and instances of these concepts (Guarino
et al., 2009). When defining an ontology, it is impor-
tant to refer to an upper level ontology to guarantee
its genericity. Muljarto et. al. defines an ontology for
food transformation extending the upper level ontol-
ogy DOLCE (Muljarto et al., 2014). In this paper,
we propose, instead, to extend the Suggested Upper
level Merged Ontology (SUMO) because it separates
physical from abstract entities and gives a definition
of object, separated from the definition of process.

Despres presents an ontology of numeric cook-
ing (Despres, 2014). We keep four of the concepts
introduced in her work: ingrédient calledproduct,
matériel calleddevice (using the SUMO concept’s
name), technique de base calledoperationand étapes
de réalisation,realization step. To these, we add two
concepts, the conceptattributealready defined in the
SUMO ontology, and the conceptobservationthat
records the values assumed by the attribute during the
process. Figure 3 presents the general relation schema
of these concepts that are detailed below.

Figure 3: The general relation schema of the concepts used
to describe the proposed ontology. Subconcepts are con-
nected with discontinuous lines.
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3.1.1 Concepts and their Relations

We define a recipe (a transformation process) as a se-
quence ofrealization steps. Each realisation step is
composed of one or moreoperation(s)applied either
to one or moreproduct(s)using one or moredevice(s)
or to a devicein order to change some of itsprop-
erties. The product output(s) of one operation can
be the input of another following it in the sequence
given by the recipe. In Figure 4, we report part of
the SUMO ontology highlighting the concepts we use
and the ones we define.

Figure 4: Part of the SUMO ontology, highlighting in italic
the concepts we use and in bold the concepts we define. We
have omitted part of the concepts we do not use.

In the SUMO ontology,cookingis a subconcept
of process. We define two subconcepts of the pro-
cesscooking: operationandrealization step. An op-
erationcan be applied to adevice. For example, the
operationof pre-heatingthe oven at a certain temper-
ature has as input thedevice ovenand operates chang-
ing its state. Anoperationcan also be applied to one
or moreproduct(s). Thedevice mixercan be used
to whip eggs, whipping takes as input eggs and re-
turns eggs with changed properties. Theoperation

whippinguses thedevice mixerto modify some of the
properties of the objecteggsgiven as input. Another
example ofoperationapplied to one or moreproducts
is the operation ofmixing flourandsugar. Thedevice
spoonandbowlare used by theoperation. Thedevice
spoonis used tomix the two products in abowl, to
return a product that is anintermediary mixture.

In the SUMO ontology,food anddeviceare sub-
concepts of the conceptobject. We define a subcon-
cept ofobjectthat is superconcept of the conceptfood.
We call it product. This can be afoodor aninterme-
diary mixturewith its own recipe. For instance,flour
is an ingredient of a recipe of a cake, it is afoodand
so aproduct; themix made offlour andsugarready
to be added toeggsin the cake baking process is the
output of themixingoperation; thecreamto be put on
top of a cake is an ingredient’s of the recipe which can
be separately prepared with its own recipe.

The SUMO conceptattribute represents qualities
of objects or operations. Thefood flourhasattribute
typewhich can have value ‘whole grain’, thedevice
ovenhasattribute temperaturewhich can have value
‘280°’and theoperation mixhasattribute speedwith
value ‘quick’. To record the values of theattributes
we define the conceptobservationas a sub-concept
of thecontent bearing objectSUMO concept2. While
making a cake, we can observe themixtureof flour
andsugarand record itscolor andtemperature(color
and temperature are attributes of the mixture, the ob-
servations about them are collected in the observa-
tion). While observing themixtureof butterandsugar
we will register also itsgranularity. Observations
cannot be modified by the transformation process.

In a recipe, there are operations that have a dura-
tion, we call themtemporal operations and we dif-
ferentiate them fromunitary operations. Temporal
properties can be described by the time ontology3 of
the semantic web proposed in (Hobbs and Pan, 2004).
Temporal operationis a subconcept of the time on-
tology conceptinterval; unitary operationis a sub-
concept of the conceptinstant; those are both sub-
concepts of the time concepttemporal entity(Fig-
ure 5). Thus, we can use properties of the time con-
cept temporal entityto represent temporal relations
between operations and so partially ordering the op-
erations of a recipe inrealization steps.

3.1.2 A Recipe Example

The TAAABLE project4 has the purpose of solving

2A content bearing objectis defined as aself connected
objectwhich expresses information.

3http://www.w3.org/TR/owl-time/
4http://intoweb.loria.fr/taaable3ccc/
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Figure 5: Operation’s subconcept hierarchy tree.

cooking problems on the basis of a recipe book (Badra
et al., 2008). They propose preparation graphs of a set
of recipes that their system has analysed with the on-
tology presented in (Despres, 2014). Being produced
automatically, the generated graphs may contain er-
rors. Consider, for instance, the following recipe for
the Aunt Lila’s cookies:

Aunt Lila’s cookies

11/2 lb butter

2 c Nuts ground

2 c All-purposes flour

4 tb Sugar

2 ts Vanilla

to roll Powdered sugar

Preheat oven to 180◦C. Cream sugar and butter until light and fluffy.

Add vanilla and nuts. Add flour gradually. Roll into small balls. Place

on baking sheet. Bake 15 to 20 minutes. Roll baked balls in powdered

sugar while still warm.

The graph for this recipe reported on the
TAAABLE Wiki presents some errors. In particular,
for the phrase ‘roll baked balls in powdered sugar’,
the automatic system recognizes as ingredient the
proposition ‘in’ and as operation the term ‘powdered’.
Given the graph errors and the differences between
the two ontologies, we propose the graph of Figure 6.

Figure 6: The preparation graph for the Aunt Lila’s snow-
ball cookies based on our ontology.

The operationpreheatthe oven is a temporal oper-
ation which relates with an observation (thex°in the
rhombus in Figure 6). Representing the observation
of the temperature of the oven during time, could help

a decision process on when to put the cookies in the
oven, which can be an uncertain information.

3.2 Uncertainty in Transformation
Processes

Data and knowledge in transformation processes are
widely tainted with uncertainty. Often the instruments
used to take measurements during a transformation
process are able to return only an estimation of the
quantity observed. Devices are generally calibrated
according to some environmental conditions that can
be difficult to be repeated somewhere else. They also
have some built-in characteristics that are different
from device to device. Moreover, the problems of
missing data (e.g. the salt ingredient is not always
mentioned in a recipe) and missing values (e.g. ”to
roll” powdered sugar) are known problems in trans-
formation processes. Our aim is to provide a model
able to handle all these uncertainties.

Different languages model uncertainty in ontolo-
gies. BayesOWL (Pan et al., 2005), OntoBayes (Yang
and Calmet, 2005) and PR-OWL (da Costa et al.,
2008; Carvalho et al., 2013) are extensions of the
Web Ontology Language called OWL to model uncer-
tainty in semantic web. PROWL provides a method to
write ontologies containing probabilistic information.
This information can be processed but it cannot be en-
riched as in the case of learning or updating from new
data. BayesOWL and OntoBayes add to the ontology
a BN that models the uncertainty on the domain, pro-
viding a pair ontology-BN. In (Helsper and van der
Gaag, 2002) BNs are built to integrate knowledge ex-
pressed by experts in an ontology. The BNs built with
these approaches cannot summarize the information
contained in the ontology because BNs cannot repre-
sent relational information. In this way, the two mod-
els need to be paired.

Different approaches have been presented that
map ontologies into BNs, see for instance (Devitt
et al., 2006) and (Fenz, 2012) where, with different
approaches, BNs are built starting from a knowledge
base modelled as an ontology. These approaches take
advantage of the information provided by the ontol-
ogy, simplifying the BN learning. Learning a BN,
they flatten the information coming from the ontology
loosing its relational aspect.

The method proposed in (Truong et al., 2005)
brings together ontology and PRMs, merging them in
a new model on which different types of reasoning are
supported. To implement Bayesian reasoning on this
model, a BN is constructed from the unified model. In
this way, as in the works above, the reasoning is done
on a BN and not on probabilistic relational model.
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In (Ishak et al., 2011) an approach for learning
probabilistic graphical models from ontology is pre-
sented. Their approach learns object-oriented BNs by
morphing a given ontology. Object-oriented BNs are
another extension of BNs using the object-oriented
paradigm. Differently from PRMs, object-oriented
BNs cannot manipulate reference slots but determine
a set of “interface”nodes which allow the communica-
tion between objects. Thus, object-oriented BNs are
less generic and, in our opinion, less suitable (because
less similar) to ontology morphing than PRMs.

With the aim of maintaining the structural and
relational information expressed in the ontology, we
present, in this paper our mapping of an ontology of
transformation processes into PRMs. Having a PRM
for the Aunt Lila’s cookies recipe would help us rea-
soning about different questions that are not possible
to be answered with an ontology. For instance, we
could compute the probability of having tasty Aunt
Lila’s cookies, given the fact that we have/haven’t
cream very well butter and sugar (this is the predic-
tion problem). We could also infer the probability of
having done a good job in creaming butter and sugar
having observed very tasty cookies (inference prob-
lem). The defined PRM can be used to suggest a spe-
cific sequence of operations to obtain a certain output.
For instance, given the butter at a certain temperature,
we could suggest the best speed at which using the
mixer to cream it with sugar (process control). Fi-
nally, we could use the PRM to simulate experiences
under different condition.

4 MAPPING

Our approach maps a transformation processes ontol-
ogy into a PRM’s relational schema. We describe the
mapping for the ontology’s concepts:object, unitary
andtemporal operation, attributeandobservation.

The SUMO conceptobject and its subconcepts
product, deviceandobservation(see Figure 3) is rep-
resented by a class (called class object).

Definition. A class objectin a PRM is a mapping be-
tween properties of the ontology conceptsobjectand
PRM attributes.

In Figure 7, the conceptinput1 with proper-
ties att1 and att2 is mapped into the class object
Obj.input1 with attributes the variables att1 and att2.

We propose to represent the conceptunitary oper-
ationby a specific class: the class operation.

Definition. A class operationin a PRM is defined
by (1) a DAG over

• the reference slots giving access to the properties
of the classes mapping theinput object(s)and the
device object(s)of theoperation,

• an attribute for eachpropertyof theoperationand
• the attributes representing thepropertiesof the

output object(s)of theoperation;

and (2) a probability distribution over the attributes
representing thepropertiesof the results objectsof
theoperationgiven the values of the attributes repre-
senting theinput and thedevice objects properties.

Figure 7 shows (at the top) the relational schema
and (at the bottom) the PRM for two classes oper-
ation: operation1and operation2. The output of
the first operation is input for the other, so a refer-
ence slot (ρ4) exists between the two classes. Each
class object representing theinputs and thedevice
(Obj.input1, Obj.input2, Obj.Device1, Obj.input3 and
Obj.Device2) are referred to by a reference slot in the
class operation (ρ1,ρ2,ρ3,ρ5 andρ6). The attributes
representing thepropertiesof theoutput objectof the
operation (att4, att5) define a class to which other
classes operation can refer (seeρ4 in Figure 7)5.

Figure 7: (top) The relational schema and (bottom) the
PRM for two operation classes. Aρi in a class represents
the reference slot giving access to the properties of the class
it refers to. Each square represents an object.

A temporal operation is mapped with a concate-
nation of(unitary) operation. Following the standard
definition of dynamic BNs (Murphy, 2002) we can
define a PRM mapping atemporal operation.

Definition. A temporal operation classmaps atem-
poral operationas a pair of classes operation with a
reference slot among them:

5With respect to the literature on PRMs, we should rep-
resent the attributes representing the properties of the object
output of the operation as a class outside the class operation.
Here, we represent it inside, to mean that the output is, in-
deed, a superclass of the operation itself.
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• one (operation0) representing the dependencies
between variables at the beginning of theopera-
tion and

• another (operation→) representing the dependen-
cies from the generic instant of timei to the next
instanti +1, with a reference slot to itself.

The second class operation (operation→) refers to it-
self, creating a (possibly infinite) loop. To avoid the
loop to run forever, we fix the number of times this
class can refer to itself. In this way, we ensure the
overall model to describe a probability distribution.
Figure 8 shows the relational schema of the PRM for
a temporal and a unitary operation classes. As before,
the output of thetemporal operationis input for the
unitary one, so a reference slot exists between the two
classes.The output of the class operationoperation0
is input of the classoperation→. A reference slot ex-
ists, also, betweenoperation→ and itself. The number
of time the temporal operation class can refer to itself
is fixed (reported in the triangle).

Figure 8: The relational schema of the PRM for a temporal
operation class linked to a unitary operation class.

An ontology of transformation processes is
mapped into a relational schema of a PRM that is
a concatenation of classes representingrealization
stepschained by reference slots. In our ontology,at-
tributesare abstract entities representing properties of
objector processes. We map ontology’sattributes, in
the PRM, as attributes of the classes mapping theob-
jectsof which they represent the property. Finally,ob-
servationsare ontology concepts that record a partic-
ular measurement done over anobjector process. In
a PRM, anobservationis mapped to a class to which
anattributecan refer to.

4.1 A PRM for the Example

Reasoning about mapping an ontology for transfor-
mation processes in a PRM leads us to better define
the ontology. In a BN, the conditional probability dis-
tribution of a node depends upon the number of its
parents. Referring to the Aunt Lila’s cookies exam-
ple, the ontology of the operationadd in Figure 6 is

the same no matter the number of products we have
to add together. For a PRM, instead, changing the
number of parents of an attribute changes its condi-
tional probability distribution. Following this obser-
vation, we enrich our ontology with concepts specify-
ing the number of inputs each operation can have. We
replace the operationadd with two subclassesadd2
(Figure 9). Then we map the new ontology into a
PRM following the approach presented in the previ-
ous subsection. In the following, we report the map-
ping for only three operations.

The operationadd2 is mapped in a PRM with
three reference slots, two for the inputs of the oper-
ation (nutsandvanilla) and one for the device used
by the operation (bowl). The PRM defines a class
mixture1output of the operation. In Figure 9 the rela-
tional schema of this PRM with arrows representing
possible dependencies between the attributes of the
classes are reported.

Figure 9: The PRM for the operation add2.

The operationbakeis a temporal operation. It is
represented by a pair of classes: one representing how
the operationbakestarts, the other representing the
probability distribution of the process of baking. The
PRM for the operationbakereported in Figure 10 is
equivalent to a PRM consisting of the first class in the
pair and 20 copies (if the duration of a time step is
equivalent to 1 minute) of the second. Beingmixture4
an output of themaking ballsoperation, it is formed
by small balls to be put in the oven. The concept
mixture4has property thediameterof the balls that
is mapped as an attribute of the PRM class mixture4.
Thediameter attributeof mixture4influences the con-
sistency of the output of the baking operationmix-
ture5, as expressed by the probabilistic dependency
that exists between these two attributes.

The operationadd graduallyis a special temporal
operation because the ontology does not give us the
number of times the probabilistic model has to loop
over the second class in the pair before passing to the
operation that is next to it (Figure 11). We are cur-
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Figure 10: The PRM for the operation bake.

Figure 11: The PRM for the operationadd gradually.

rently reasoning about two possible solutions to treat
this problem. The first one being to rely onstructure
uncertainty. If a probabilistic distributionp on the
number of times the loop has to be done is given, we
can make the structure uncertain. We add a parameter
θ parent of the operation following the temporal one.
The probability of the operation givenθ is given by
p. The second being to define a simulation process
on top of the PRM ruled by the conditions underlin-
ing the exit of the loop (e.g. cook till brown). We
condition the loop exit to the truth of this condition.

5 CONCLUSIONS

We presented how to map an ontology of transforma-
tion processes to a PRMs’s relational schema. The
probabilistic model defined starting from the ontology
is a powerful reasoning tool. It integrates data infor-
mation into the relational schema obtained from the
ontology. Incorporating this information, we could
deal with common data mining problems such as
missing data and data integration. We propose to
combine the two models while maintaining them sep-

arate: each formalism can benefit from the strength of
the other and be, at the same time, a standing-alone
model. We illustrate our mapping on an ontology of
transformation processes in the cooking domain, re-
lying on the SUMO upper level ontology.

We propose a methodology able to automati-
cally map SUMO physical concepts (objectsandpro-
cesses) into PRM classes and the SUMO abstract en-
tity attributeinto PRM attributes. We propose a map-
ping for the ontology conceptsoperationandtempo-
ral operation. To map the former into a PRM we ex-
tend the standard definition of PRMs with ideas used
in dynamic Bayesian networks. To map temporal op-
erations that have an uncertain stop criterion, we pro-
pose the use of structure uncertainty or the definition
of a simulation process over the sequence of opera-
tions. These have drawbacks that we are studying.

Learning PRMs is an NP hard problem that can
be compared to learning Bayesian networks. Acquir-
ing the parameters of a PRM knowing its relational
schema is much easier. Even if we do not have exper-
imental result on that, we think that we can say that
learning the PRM of a transformation process whose
relational schema has been obtained mapping the on-
tology of that transformation process is much easier
than learning it from scratch.

We plan to pair the proposed approach with an
algorithm for learning PRM’s parameters. This will
provide the possibility to experiment the proposed ap-
proach. Finally, we would like to apply our mapping
to other transformation processes such as microorgan-
ism production and stabilization processes.
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R. (2005). Fuzzy querying of incomplete, imprecise,
and heterogeneously structured data in the relational
model using ontologies and rules.IEEE T. Fuzzy Sys-
tems, 13(3):373–383.

Mapping Ontology with Probabilistic Relational Models - An Application to Transformation Processes

177



Carvalho, R. N., Laskey, K. B., and da Costa, P. C. G.
(2013). PR-OWL 2.0 - bridging the gap to OWL
semantics. In Bobillo, F., da Costa, P. C. G.,
d’Amato, C., Fanizzi, N., Laskey, K. B., Laskey, K. J.,
Lukasiewicz, T., Nickles, M., and Pool, M., editors,
Uncertainty Reasoning for the Semantic Web II, Inter-
national Workshops URSW 2008-2010 Held at ISWC
and UniDL 2010 Held at FLoC, Revised Selected Pa-
pers, volume 7123 ofLecture Notes in Computer Sci-
ence, pages 1–18. Springer.

da Costa, P. C. G., Laskey, K. B., and Laskey, K. J. (2008).
PR-OWL: A bayesian ontology language for the se-
mantic web. In da Costa, P. C. G., d’Amato, C.,
Fanizzi, N., Laskey, K. B., Laskey, K. J., Lukasiewicz,
T., Nickles, M., and Pool, M., editors,Uncertainty
Reasoning for the Semantic Web I, ISWC International
Workshops, URSW 2005-2007, Revised Selected and
Invited Papers, volume 5327 ofLecture Notes in Com-
puter Science, pages 88–107. Springer.

Despres, S. (2014). Construction d’une ontologie mod-
ulaire pour l’univers de la cuisine numérique. In
Catherine Faron-Zucker. IC - 25émes Journées fran-
cophones d’Ingénierie des Connaissances, May 2014,
Clermont-Ferrand, France, number 1, pages pp.27–
38.

Devitt, A., Danev, B., and Matusikova, K. (2006). Con-
structing bayesian networks automatically using on-
tologies.Applied Ontology, 0.

Doan, A., Halevy, A. Y., and Ives, Z. G. (2012).Principles
of Data Integration. Morgan Kaufmann.

Fenz, S. (2012). An ontology-based approach for construct-
ing bayesian networks.Data Knowl. Eng., 73:73–88.

Fridman Noy, N. (2004). Semantic integration: A sur-
vey of ontology-based approaches.SIGMOD Record,
33(4):65–70.

Friedman, N., Getoor, L., Koller, D., and Pfeffer, A. (1999).
Learning probabilistic relational models. In Dean,
T., editor,Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence, IJCAI 99,
Stockholm, Sweden, July 31 - August 6, 1999. 2 Vol-
umes, 1450 pages, pages 1300–1309. Morgan Kauf-
mann.

Guarino, N., Oberle, D., and Staab, S. (2009). What is an
ontology? In Staab, S. and Studer, R., editors,Hand-
book on Ontologies, International Handbooks on In-
formation Systems, pages 1–17. Springer Berlin Hei-
delberg.

Helsper, E. M. and van der Gaag, L. C. (2002). Building
bayesian networks through ontologies. In van Harme-
len, F., editor,Proceedings of the 15th Eureopean
Conference on Artificial Intelligence, ECAI’2002,
Lyon, France, July 2002, pages 680–684. IOS Press.

Hobbs, J. R. and Pan, F. (2004). An ontology of time for the
semantic web.ACM Trans. Asian Lang. Inf. Process.,
3(1):66–85.

Ishak, M. B., Leray, P., and Amor, N. B. (2011). A two-way
approach for probabilistic graphical models structure
learning and ontology enrichment. In Filipe, J. and Di-
etz, J. L. G., editors,KEOD 2011 - Proceedings of the
International Conference on Knowledge Engineering
and Ontology Development, Paris, France, 26-29 Oc-
tober, 2011, pages 189–194. SciTePress.

Koller, D. and Friedman, N. (2009).Probabilistic Graph-
ical Models: Principles and Techniques - Adaptive
Computation and Machine Learning. The MIT Press.

Lukasiewicz, T. and Straccia, U. (2008). Managing uncer-
tainty and vagueness in description logics for the se-
mantic web. Web Semantics: Science, Services and
Agents on the World Wide Web, 6(4):291 – 308. Se-
mantic Web Challenge 2006/2007.

Muljarto, A., Salmon, J., Neveu, P., Charnomordic, B., and
Buche, P. (2014). Ontology-based model for food
transformation processes - application to winemaking.
In Closs, S., Studer, R., Garoufallou, E., and Sicilia,
M., editors,Metadata and Semantics Research - 8th
Research Conference, MTSR 2014, Karlsruhe, Ger-
many, November 27-29, 2014. Proceedings, volume
478 ofCommunications in Computer and Information
Science, pages 329–343. Springer.

Murphy, K. P. (2002).Dynamic bayesian networks: repre-
sentation, inference and learning. PhD thesis, Univer-
sity of California, Berkeley.

Pan, R., Ding, Z., Yu, Y., and Peng, Y. (2005). A bayesian
network approach to ontology mapping. In Gil, Y.,
Motta, E., Benjamins, V. R., and Musen, M. A., ed-
itors, The Semantic Web - ISWC 2005, 4th Interna-
tional Semantic Web Conference, ISWC 2005, Gal-
way, Ireland, November 6-10, 2005, Proceedings, vol-
ume 3729 ofLecture Notes in Computer Science,
pages 563–577. Springer.

Qi, G., Ji, Q., Pan, J. Z., and Du, J. (2010). Possdl - A possi-
bilistic DL reasoner for uncertainty reasoning and in-
consistency handling. InThe Semantic Web: Research
and Applications, 7th Extended Semantic Web Confer-
ence, ESWC 2010, Heraklion, Crete, Greece, May 30
- June 3, 2010, Proceedings, Part II, pages 416–420.

Saı̈s, F. and Thomopoulos, R. (2014). Ontology-aware pre-
diction from rules: A reconciliation-based approach.
Knowl.-Based Syst., 67:117–130.

Torti, L., Wuillemin, P.-H., and Gonzales, C. (2010). Re-
inforcing the Object-Oriented Aspect of Probabilistic
Relational Models. InProceedings of the 5th Proba-
bilistic Graphical Models, pages 273–280.

Truong, B. A., Lee, Y., and Lee, S. (2005). A unified con-
text model: Bringing probabilistic models to context
ontology. In Enokido, T., Yan, L., Xiao, B., Kim,
D., Dai, Y., and Yang, L. T., editors,Embedded and
Ubiquitous Computing - EUC 2005 Workshops, EUC
2005 Workshops: UISW, NCUS, SecUbiq, USN, and
TAUES, Nagasaki, Japan, December 6-9, 2005, Pro-
ceedings, volume 3823 ofLecture Notes in Computer
Science, pages 566–575. Springer.

Wuillemin, P. and Torti, L. (2012). Structured probabilistic
inference.Int. J. Approx. Reasoning, 53(7):946–968.

Yang, Y. and Calmet, J. (2005). Ontobayes: An ontology-
driven uncertainty model. In2005 International
Conference on Computational Intelligence for Mod-
elling Control and Automation (CIMCA 2005), Inter-
national Conference on Intelligent Agents, Web Tech-
nologies and Internet Commerce (IAWTIC 2005), 28-
30 November 2005, Vienna, Austria, pages 457–463.
IEEE Computer Society.

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

178


