Mapping Ontology with Probabilistic Relational Models
An Application to Transformation Processes

Cristina Manfredotti, Cedric Baudr#, Juliette Dibie-Barthélemyand Pierre-Henri Wuillemih
1INRA AgroParisTech, 16, rue Claude Bernard, 75231 Paris Cedex 5, France
2|nstitut National de la Recherche Agronomique, Institut de Mécanique et d’Ingénierie, Talence, France
3Sorbonne Universites, UPMC, Univ Paris 06, CNRS UMR 7606, LIP6, Paris, France

Keywords:  Ontology, Probabilistic Graphical Models, Probabilistic Relational Models.

Abstract: Motivated by the necessity of reasoning about transformation experiments and their results, we propose a map-
ping between an ontology representing transformation processes and probabilistic relational models. These
extend Bayesian networks with the notion of class and relation of relational data bases and, for this reason,
are well suited to represent concepts and ontologies’ properties. To easy the representation, we exemplify a
transformation process as a cooking recipe and present our approach for an ontology in the cooking domain
that extends the Suggested Upper level Merged Ontology (SUMO).

1 INTRODUCTION In this paper, we propose to quantify uncertainty in
reasoning with probability theory.
A transformation process is a dynamic process com-  We propose to explore a novel way to reason
posed of a sequence of operations which allows in- on transformation processes facing the two locks in-
puts to be transformed in several different outputs. It troduced above: we combine the representation ex-
relies on data and knowledge coming from heteroge- pression of ontologies with the reasoning possibili-
neous sources, often suffers from lack of information ties of probabilistic relational models which provides
and contains uncertain data, the observations beinga consistent framework to process uncertainty. Prob-
acquired with seldom precise instruments, different abilistic relational models add the notion of class to
from a process to another. Reasoning on a transfor-Bayesian networks which allows to do filtering, pre-
mation process supposes to be able, for instance, todiction, classification and smoothing. The notion of
predict future outputs given certain inputs or given ‘class’, common to ontologies (concepts) and proba-
that some inputs are missing, to diagnose how to ob- bilistic relational models, leads us to choose this prob-
tain the best output by determining the important in- abilistic model to be paired with the ontology’s repre-
puts, to control the process and to suggest the bestsentation model. The first step of this combination
sequence of operations. In this paper, we provide aconsists in proposing a mapping between a transfor-
step forward toward reasoning on transformation pro- mation process ontology and a probabilistic relational
cesses. To do that, we have to face two main locks: model. The next step, not presented in this paper, will
(1) data and knowledge heterogeneity and (2) uncer-be to learn the parameters of the model from an onto-

tainty quantification. logical database and then to implement methods able
In order to face the first lock, a relevant solution to reason on the learned model. _
is to use ontologies (Fridman Noy, 2004; Doan et al.,  We presentall our findings in the domain of cook-

2012). Many works propose solutions to manage un- ing recipes because it well exemplifies a general trans-
certainty in ontologies such as adapting the querying formation process, being simple and easy to under-
process using fuzzy sets (Buche et al., 2005), rea-Stand. We first present background on probabilistic
soning using a possibilistic and probabilistic descrip- relational models. We detail, in Section 3, an ontol-
tion logic reasoner (Qi et al., 2010; Lukasiewicz and 0gy of transformation processes and, in Sections 4,
Straccia, 2008), reasoning in fuzzy ontology (Bobillo its mapping with a probabilistic relational model. We
et al., 2013) or using existing knowledge to predict discuss our findings in Section 5 providing a compar-
unfilled information (Sais and Thomopoulos, 2014). ison with the state of the art.
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2 PRMs and Torti, 2012). In this paper we present a general
approach to deduce relational schemas from a given

A Bayesian network (BN) (Koller and Friedman, ontology of transformation processes.

2009) is the representation of a joint probability over

a set of random variables that uses a Directed Acyclic

Graph (DAG) to encode probabilistic relations be- 3 TRANSFORMATION

tween variables (Figure 1). PROCESSES
OO oD

SH I

A cooking recipe is a well known transformation pro-
cess. For this reason and its simplicity, we propose

O O to iIIustra‘Fe our ontology on the cooking plomain. We
© present, in the following, the ontology, its concepts
and relations and an example of recipe. Finally, we il-
oG lustrate examples of forms of uncertainty that can be
Figure 1: Two Bayesian networks. found in a transformation process.

Probabilistic Relational Models (PRMs) extend 3.1 Our Ontology
the BN representation with a relational structure be-
tween (potentially repeated) fragments of BN called An ontology is designed to represent the knowledge
classes (Torti et al., 2010). A class is defined as a on a domain with concepts, relations between these
DAG over a set of inner attributes and a set of outer concepts and instances of these concepts (Guarino
attributes from other classes referenced by so-calledet al., 2009). When defining an ontology, it is impor-
reference slots (Figure 2). tant to refer to an upper level ontology to guarantee
its genericity. Muljarto et. al. defines an ontology for
CaoCe food transformation extending the upper level ontol-
ogy DOLCE (Muljarto et al., 2014). In this paper,
Co |x we propose, instead, to extend the Suggested Upper
----- i level Merged Ontology (SUMO) because it separates
ORC physical from abstract entities and gives a definition
- of object, separated from the definition of process.
Despres presents an ontology of numeric cook-

Fi 2 A relati o ; d by two claskeand ing (Despres, 2014). We keep four of the concepts
igure 2: A relationa schema formed by two classezn introduced in her work: ingrédient callgatoduct
Y. p is a reference slot il which indicates that attributes L. . . ,
of classY (D, E, F) can have parents in cla¥s(A, B,C). matériel callgddewce(usmg the SU_MO concept’s
name), technique de base callgerationand étapes

de réalisationrealization step To these, we add two
concepts, the concepttribute already defined in the
SUMO ontology, and the concepbservationthat
records the values assumed by the attribute during the
process. Figure 3 presents the general relation schema
of these concepts that are detailed below.

The probabilistic models are defined at class level
over the set of inner attributes, conditionally to the set
of outer attributes and represent generic probabilistic
relations inside the classes that will be instantiated for
each specific situation. In this way, PRMs provide a
high-level, qualitative description of the structure of
the domain and the quantitative information provided )
by the probability distribution (Friedman et al., 1999). ~——

TN IsinputOf
. . { Object
In a PRM, the (relational) schema describes aset - N  reatmtorsen
of classe£, associated with attribute§C) and refer- (product ) e U B
ence slotR(C)L. A slot chain is defined as a sequence HasForAttibute Q’,‘Tﬁ/ IsComposedof
of reference slots that allows to put in relation at-
tributes of objects that are indirectly related. A system HasForOutput Q;;;;};‘ Next
in the PRM provides a probability distribution over N Hasroratribute |
N -

a set of instances of a relational schema (Wuillemin

HasForObservation ~ Quantity/

“~Qbservation
Figure 3: The general relation schema of the concepts used
to describe the proposed ontology. Subconcepts are con-
nected with discontinuous lines.

1Using the standard object-oriented notation, we will
write C.X (respectivelyC.Y) to refer to a given attributX
(respectively, reference slg) of a clas<C.
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3.1.1 Concepts and their Relations

whippinguses thalevice mixeto modify some of the
properties of the objeaggsgiven as input. Another

We define a recipe (a transformation process) as a se-example obperationapplied to one or morproducts

guence ofrealization steps Each realisation step is
composed of one or momperation(slapplied either

to one or morgroduct(s)using one or mordevice(s)

or to adevicein order to change some of ifmop-
erties The product output(s) of one operation can
be the input of another following it in the sequence
given by the recipe. In Figure 4, we report part of
the SUMO ontology highlighting the concepts we use
and the ones we define.

SUMO's Subconcept Hierarchy Tree

+ @ entity
« @ physical
« @ object
+ @ self connected object
« @ corpuscular object
« @ organic object
+ @ artifact
* @ device
-@
+ @ content bearing object
+ @ observation
c@ .
+ @ product
« @ food
+ @ meat
+ @ fruit or vegetable
+ @ beverage
+ @ intermediary mixture
L C
L C
+ @ process
+ @ intentional process
+ ® making
+ @ cooking
+ @ realization step
+ ® operation
+ @ unitary operation
+ @ temporal operation
. @
L C
L C
« @ abstract
+ @ guantity
+ @ number
« @ physical quantity
+ @ attribute
L C I

Figure 4: Part of the SUMO ontology, highlighting in italic

is the operation ofnixing flourandsugar. Thedevice
spoonandbowlare used by theperation Thedevice
spoonis used tomix the two products in dowl, to
return a product that is antermediary mixture

In the SUMO ontologyfood anddeviceare sub-
concepts of the concepbject We define a subcon-
cept ofobjectthat is superconcept of the concégd
We call it product This can be dood or aninterme-
diary mixturewith its own recipe. For instancéour
is an ingredient of a recipe of a cake, it i$cd and
so aproduct the mix made offlour andsugarready
to be added teggsin the cake baking process is the
output of themixingoperation; thereamto be put on
top of a cake is an ingredient’s of the recipe which can
be separately prepared with its own recipe.

The SUMO concepattribute represents qualities
of objects or operations. THeod flourhasattribute
typewhich can have value ‘whole grain’, thaevice
ovenhasattribute temperaturevhich can have value
‘280°’and theoperation mixhasattribute speedvith
value ‘quick’. To record the values of tredtributes
we define the concemtbservationas a sub-concept
of thecontent bearing obje@UMO concept While
making a cake, we can observe timéxture of flour
andsugarand record itgolor andtemperaturgcolor
and temperature are attributes of the mixture, the ob-
servations about them are collected in the observa-
tion). While observing thenixtureof butterandsugar
we will register also itsgranularity. Observations
cannot be modified by the transformation process.

In a recipe, there are operations that have a dura-
tion, we call themtemporal operatioa and we dif-
ferentiate them frorunitary operatioss. Temporal
properties can be described by the time ontofoofy
the semantic web proposed in (Hobbs and Pan, 2004).
Temporal operationis a subconcept of the time on-
tology conceptinterval; unitary operationis a sub-
concept of the concepihstant those are both sub-
concepts of the time conceptmporal entity(Fig-

the concepts we use and in bold the concepts we define. Weure 5). Thus, we can use properties of the time con-

have omitted part of the concepts we do not use.

In the SUMO ontologycookingis a subconcept
of process We define two subconcepts of the pro-
cesscooking operationandrealization step An op-
erationcan be applied to device For example, the
operationof pre-heatinghe oven at a certain temper-
ature has as input theevice overand operates chang-
ing its state. Aroperationcan also be applied to one
or moreproduc(s). Thedevice mixercan be used
to whip eggs whipping takes as input eggs and re-
turns eggs with changed properties. Tderation

cepttemporal entityto represent temporal relations
between operations and so partially ordering the op-
erations of a recipe irealization steps

3.1.2 A Recipe Example

The TAAABLE project has the purpose of solving

2A content bearing objeds defined as aelf connected
objectwhich expresses information.

Shttp://www.w3.org/TR/owl-time/

“http://intoweb.loria.fr/taaable3ccc/
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o> a decision process on when to put the cookies in the
. oven, which can be an uncertain information.
Time:Instance @ ) . .
3.2 Uncertainty in Transformation
operaon Processes
- Data and knowledge in transformation processes are

widely tainted with uncertainty. Often the instruments
used to take measurements during a transformation

. . . process are able to return only an estimation of the
coaking problems on the basis of a recipe book (Badraquantity observed. Devices are generally calibrated

g'; ?elzlc’:izcc)agi)ﬁa?t]ﬁgifrsors?esri ?\rsgggaat:ogegdr%\[/)ithhs t?]feaosr:'}_taccording to some environmental conditions that can
tolo P resented in ([))/es res 2014)yBein roduced be difficult to be repeated somewhere else. They also

9y pr pres, : g prod have some built-in characteristics that are different
automatically, the generated graphs may contain er-

rors. Consider, for instance, the following recipe for from device to device. Moreover, the problems of
’ S . ' 9 P missing data (e.g. the salt ingredient is not always
the Aunt Lila’s cookies:

mentioned in a recipe) and missing values (e.g. "to
Aunt Lila's cookies roll” powdered sugar) are known problems in trans-
formation processes. Our aim is to provide a model

Figure 5: Operation’s subconcept hierarchy tree.

L1b butter able to handle all these uncertainties.

2 ¢ Nuts ground . . .

2 ¢ All-purposes flour Different languages model uncertainty in ontolo-
4th Sugar gies. BayesOWL (Pan et al., 2005), OntoBayes (Yang
2ts Vanilla and Calmet, 2005) and PR-OWL (da Costa et al.,
to roll Powdered sugar 2008; Carvalho et al., 2013) are extensions of the
Preheat oven to 18C. Cream sugar and butter until light and fluffy. Web Ontology Language called OWL to model uncer-
Add vanilla and nuts. Add flour gradually. Roll into small lsalPlace tainty in semantic web. PROWL provides a method to
on baking sheet. Bake 15 to 20 minutes. Roll baked balls indeoed write ontologies containing probabilistic information.
sugar while still warm. This information can be processed but it cannot be en-

The graph for this recipe reported on the riched as in the case of learning or updating from new

TAAABLE Wiki presents some errors. In particular, data. BayesOWL and OntoBayes add to the ontology
for the phrase ‘roll baked balls in powdered sugar’, &BN that models the uncertainty on the domain, pro-
the automatic system recognizes as ingredient theViding a pair ontology-BN. In (Helsper and van der

proposition ‘in’ and as operation the term ‘powdered’. ©2ag, 2002) BNs are built to integrate knowledge ex-
Given the graph errors and the differences betweenPressed by experts in an ontology. The BNs built with

the two ontologies, we propose the graph of Figure 6. these'appr'oaches cannot summarize the information
contained in the ontology because BNs cannot repre-

G, sent relational information. In this way, the two mod-

N ‘ els need to be paired.
{enin] Different approaches have been presented that

map ontologies into BNs, see for instance (Devitt
et al., 2006) and (Fenz, 2012) where, with different
e > (T s S B8 > (78] approaches, BNs are built starting from a knowledge
S e ' base modelled as an ontology. These approaches take
e e 03 advantage of the information provided by the ontol-
s g g ogy, simplifying the BN learning. Learning a BN,
WO e 18 they flatten the information coming from the ontology
x loosing its relational aspect.
Figure 6: The preparation graph for the Aunt Lila’s snow- The method proposed in (Truong et al., 2005)
ball cookies based on our ontology. brings together ontology and PRMs, merging them in

a new model on which different types of reasoning are
The operatiopreheathe ovenis atemporal oper- supported. To implement Bayesian reasoning on this
ation which relates with an observation (tkfén the model, a BN is constructed from the unified model. In
rhombus in Figure 6). Representing the observation this way, as in the works above, the reasoning is done
of the temperature of the oven during time, could help on a BN and not on probabilistic relational model.
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In (Ishak et al., 2011) an approach for learning < the reference slots giving access to the properties
probabilistic graphical models from ontology is pre- of the classes mapping tlirgput object(snd the
sented. Their approach learns object-oriented BNs by  device object(sdf theoperation

morphing a given ontology. Object-oriented BNs are « an attribute for eachropertyof theoperationand
anothgr exten3|on of BNs using the opject—quented « the attributes representing thigopertiesof the
paradigm. D|ﬁerently from PRMs, object-orlente_d output object(spf the operation

BNs cannot manipulate reference slots but determine M ,

a set of “interface”’nodes which allow the communica- @nd (2) @ probability distribution over the attributes
tion between objects. Thus, object-oriented BNs are '€Presenting theropertiesof the results objectsof
less generic and, in our opinion, less suitable (becausdN€Operationgiven the values of the attributes repre-
less similar) to ontology morphing than PRMs. senting thenputand thedevice objects properties

With the aim of maintaining the structural and Figure 7 shows (at the top) the relational schema
relational information expressed in the ontology, we and (at the bottom) the PRM for two classes oper-
present, in this paper our mapping of an ontology of ation: operationland operation2 The output of
transformation processes into PRMs. Having a PRM the first operation is input for the other, so a refer-
for the Aunt Lila’s cookies recipe would help us rea- ence slot ¢4) exists between the two classes. Each
soning about different questions that are not possible class object representing theputs and thedevice
to be answered with an ontology. For instance, we (Obj.inputl, Obj.input2, Obj.Devicel, Obj.input3 and
could compute the probability of having tasty Aunt Obj.Device2) are referred to by a reference slot in the
Lila’s cookies, given the fact that we have/haven't class operatiorpl, p2, p3,p5 andp6). The attributes
cream very well butter and sugar (this is the predic- representing thpropertiesof the output objecbf the
tion problem). We could also infer the probability of operation (att4, att5) define a class to which other
having done a good job in creaming butter and sugar classes operation can refer (gren Figure 7)°.
having observed very tasty cookies (inference prob-
lem). The defined PRM can be used to suggest a spe- |
cific sequence of operations to obtain a certain output. |- =
For instance, given the butter at a certain temperature, ———
we could suggest the best speed at which using the || ..

Obj.inputll  Obj.input2 | [op; pevicel Obj.input3 [ [obj.Device2

operation2 ;=
3.
outputl]

EXN Obj.output2

o) (53 (o)

=ipl 34 P2 - atta

mixer to cream it with sugar (process control). Fi- - O
nally, we could use the PRM to simulate experiences | "™ — propertes
under different condition. Sompat] PR [om oot e B e
«.attl oo .
. att?.k A
i““: . _______J"_____,______,‘_______4: operanonz"""“: | Ny g e
4 MAPPING iopeftlon;l" ,.i\ 0bj.outputl | ____,"A;\,";*gx, r}g\ Qbj.output2
oGy 3 N o I NN [T
. ” properties atts e —
Our approach maps a transformation processes ontol- —_— popetes |+ o |

Learnt from data

ogy into a PRM’s relational schema. We describe the
mapping for the ontology’s conceptsbject unitary X ;
. . . PRM for two operation classes. @ in a class represents
andtemporal Operat'onatt”_bmeandpbservat'on the reference slot giving access to the properties of thescla
The SUMO concepbbjectand its subconcepts it refers to. Each square represents an object.
product deviceandobservation(see Figure 3) is rep-

resented by a class (called class object). A temporal operation is mapped with a concate-

Definition. A class objeciin a PRM is a mapping be- nation of(unitary) operation Following the standard
tween properties of the ontology conceptgectand ~ definition of dynamic BNs (Murphy, 2002) we can
PRM attributes. define a PRM mappingt@mporal operation
Definition. A temporal operation classmaps aem-
poral operationas a pair of classes operation with a
reference slot among them:

Figure 7: (top) The relational schema and (bottom) the

In Figure 7, the concepinputl with proper-
ties attl and att2 is mapped into the class object
Obj.inputl with attributes the variables attl and att2.

We propose to represent the concempitary oper- Swith respect to the literature on PRMs, we should rep-
ation by a specific class: the class operation. resent the attributes representing the properties of tieebb

o o ) ) output of the operation as a class outside the class operatio
Definition. A class operationin a PRM is defined  Here, we represent it inside, to mean that the output is, in-

by (1) a DAG over deed, a superclass of the operation itself.
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e one (peration) representing the dependencies the same no matter the number of products we have
between variables at the beginning of thgera- to add together. For a PRM, instead, changing the
tion and number of parents of an attribute changes its condi-

- another operation,) representing the dependen- tional probability distribution. Following this obser-
cies from the generic instant of timido the next vation, we enrich our ontology with concepts specify-

instanti + 1, with a reference slot to itself. ing the number of inputs ea}ch operation can have. We
) . . replace the operatioadd with two subclasseadd?
The second class operatiamperation,,) refers to it- (Figure 9). Then we map the new ontology into a

self, creating a (possibly infinite) loop. To avoid the pRr\ following the approach presented in the previ-

loop to run forever., we fix the_number of times this ;5 subsection. In the following, we report the map-
class can refer to itself. In this way, we ensure the ping for only three operations.

overall model to describe a probability distribution. The operationadd2 is mapped in a PRM with
Figure 8 shows the relational schema of the PRM for a6 reference slots, two for the inputs of the oper-
atemporal and a unitary operation classes. As before, 44ion (utsandvanilla) and one for the device used
the output of theemporal operatioris input for the by the operationtfow)). The PRM defines a class
unitary one so a reference slot exists between the two iy yre1output of the operation. In Figure 9 the rela-
classes.The output of the class operab@eration,  ional schema of this PRM with arrows representing

is input of the claseperation.,. Areference slotex-  yogsiple dependencies between the attributes of the
ists, also, betweemperation, and itself. The number classes are reported.

of time the temporal operation class can refer to itself
is fixed (reported in the triangle).

i Obj.inputdf | obj.inputy [obj.Device3 ]
Obj.input3| [obj.Device2 N o ||V

opergtionN =
H i

ml Obj.input2|| Obj.Devicel

opgration0

b e oz (o8
Objoutputy p10 Obj.output

properties

e " | properties N t
properties oprdy, | L—— Lxd [

Obj.Observ]] | [N
i Mixturel

Properties

Figure 8: The relational schema of the PRM for a temporal
operation class linked to a unitary operation class.

Figure 9: The PRM for the operation add2.

An ontology of transformation processes is
mapped into a relational schema of a PRM that is

a concatenation of classes representieglization o gheratiorbakestarts, the other representing the

stepschained by reference slots. In our ontolog¥,  ,opability distribution of the process of baking. The
tributesare abstract entities representing properties of by for the operatiotakereported in Figure 10 is

objector processesWe map ontology'attributes in o4, jialent to a PRM consisting of the first class in the
the PRM, as attributes of the classes mappingthe i a0 20 copies (if the duration of a time step is
jectsof which they represent the property. Finab§s- o4 ivalent to 1 minute) of the second. Beinixture4
servationsare ontology concepts that record a partic- output of thenaking ballsoperation, it is formed
ular measurement done over apjector process In -,y gma)| palls to be put in the oven. The concept
a PRM, arobservatioris mapped to a class to which iy re4has property theliameterof the balls that
anattributecan refer to. is mapped as an attribute of the PRM class mixture4.
Thediameter attributef mixturedinfluences the con-
4.1 A PRM for the Example sistency of the output of the baking operatiix-
ture5, as expressed by the probabilistic dependency
Reasoning about mapping an ontology for transfor- that exists between these two attributes.
mation processes in a PRM leads us to better define  The operatioradd graduallyis a special temporal
the ontology. In a BN, the conditional probability dis- operation because the ontology does not give us the
tribution of a node depends upon the number of its number of times the probabilistic model has to loop
parents. Referring to the Aunt Lila’s cookies exam- over the second class in the pair before passing to the
ple, the ontology of the operatiaadd in Figure 6 is operation that is next to it (Figure 11). We are cur-

The operatiorbakeis a temporal operation. It is
represented by a pair of classes: one representing how
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@ 1" Bake
1 (20min) »

IsUsedBy

Oven

oven

mixture4 oven

- diameter | [« ..

MixtureS_t
Mixture5_0 A~

{| Properties  (p53 . consistency ¢

Properties [% %
« “consistency_oll 11—

ObsMix5_t

* consistency

Figure 10: The PRM for the operation bake.

|
i

|

| raduall
L

mixture2

flour

bowl fork |

flour bow!

Add gfadually -> |
e (p6 (o708 |

l:\dd grédualjyo i
bpl (P23 o3

Mixture3_0 . - Mixture3_t
_ - Propierties ~~ 2 W am— .

(P
3

Propierties

ObsMix3_t| A"

Figure 11: The PRM for the operati@ud gradually

rently reasoning about two possible solutions to treat
this problem. The first one being to rely structure
uncertainty If a probabilistic distributionp on the
number of times the loop has to be done is given, we

arate: each formalism can benefit from the strength of
the other and be, at the same time, a standing-alone
model. We illustrate our mapping on an ontology of
transformation processes in the cooking domain, re-
lying on the SUMO upper level ontology.

We propose a methodology able to automati-
cally map SUMO physical conceptsi{jectsandpro-
cessepinto PRM classes and the SUMO abstract en-
tity attributeinto PRM attributes. We propose a map-
ping for the ontology conceptsperationandtempo-
ral operation To map the former into a PRM we ex-
tend the standard definition of PRMs with ideas used
in dynamic Bayesian networks. To map temporal op-
erations that have an uncertain stop criterion, we pro-
pose the use of structure uncertainty or the definition
of a simulation process over the sequence of opera-
tions. These have drawbacks that we are studying.

Learning PRMs is an NP hard problem that can
be compared to learning Bayesian networks. Acquir-
ing the parameters of a PRM knowing its relational
schema is much easier. Even if we do not have exper-
imental result on that, we think that we can say that
learning the PRM of a transformation process whose
relational schema has been obtained mapping the on-
tology of that transformation process is much easier
than learning it from scratch.

We plan to pair the proposed approach with an
algorithm for learning PRM’s parameters. This will
provide the possibility to experiment the proposed ap-
proach. Finally, we would like to apply our mapping
to other transformation processes such as microorgan-
ism production and stabilization processes.

can make the structure uncertain. We add a parameter

0 parent of the operation following the temporal one.
The probability of the operation givehis given by

p. The second being to define a simulation process
on top of the PRM ruled by the conditions underlin-
ing the exit of the loop (e.g. cook till brown). We
condition the loop exit to the truth of this condition.

5 CONCLUSIONS

We presented how to map an ontology of transforma-
tion processes to a PRMs'’s relational schema. The
probabilistic model defined starting from the ontology
is a powerful reasoning tool. It integrates data infor-
mation into the relational schema obtained from the
ontology. Incorporating this information, we could
deal with common data mining problems such as
missing data and data integration. We propose to
combine the two models while maintaining them sep-
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