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Abstract: Persons are often asked to provide information about themselves. These data are very heterogeneous and 
result in as many “profiles” as contexts. Sorting a large amount of profiles from different contexts and 
assigning them back to a specific individual is quite a difficult problem. Semantic processing and machine 
learning are key tools to achieve this goal. This paper describes a framework to address this issue by means 
of concepts and algorithms selected from different Artificial Intelligence fields. Indeed, a Vector Space Model 
is customized to first transpose semantic information into a mathematical model. Then, this model goes 
through a Genetic Algorithm (GA) which is used as a supervised learning algorithm for training a computer 
to determine how much two profiles are similar. Amongst the GAs, this study introduces a new reproduction 
method (Best Together), and compare it to some usual ones (Wheel, Binary Tournament).This paper also 
evaluates the accuracy of the GAs predictions for profiles clustering with the computation of a similarity 
score, as well as its ability to classify two profiles are similar or non-similar. We believe that the overall 
methodology can be used for any kind of sources using profiles and, more generally, for similar data 
recognition. 

1 INTRODUCTION 

For several years, we have witnessed the exponential 
growth of data worldwide. According to the experts, 
90% of world data had been generated over the last 
two years. Human cannot handle this large amount of 
data, hence machine comes in the foreground for 
processing and extracting meaningful information 
from them. 

In this paper, we will focus on a special kind of 
data: those concerning people. These data can be very 
heterogeneous due to the diversity of their origin. 
Data comes from several sources: public (social 
media, forums, etc.) or private (employee database, 
customer database, etc.). 

Despite their diversity, collected data are 
processed the same way: each user (a real person) is 
matched with one or several profiles. A profile could 
contain global information (city, gender …) or 
specific information (work history …). The 
information volume could also be dense or sparse.  

This paper differs from existing studies about 
profiles recognition in social networks (Rawashdeh & 
Ralescu, 2014) because it does not focus on similarity 
between profiles within a social network but between 

different social networks. Even if existing solutions, 
such as the use of Vector Space Models (VSM) for 
information retrieval (Salton, 1968), inspired our 
study, they are not straight related. 

The problem is to identify the same real person 
between different profiles from different sources. 

To do so, the objective is to teach a computer to 
automatically answer the question: “Are these two 
profiles about the same real person?”. Just like it 
would be for a human, the teaching will be split in 
two phases. During a first phase, the computer will 
use a human-made set of data to train. Within this 
training set, for each possible combination of profiles, 
the question above had been answered. The training 
should be done with various profiles from different 
sources to be relevant. After the training phase, the 
computer will be able to predict a similarity score 
between two profiles. The performances will be 
determined through the analysis of predefined criteria 
for predictions. 

In this study, we investigate how to determine a 
person profile using a combination of natural 
language processing, genetic algorithm and machine 
learning. In addition, we propose a new reproduction 
mechanism, named here Best Together (BT). The 
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new reproduction is compared with other methods 
such as Wheel and Binary Tournament. Results 
indicate BT as a promising strategy for profile 
recognition. 

This paper is organized as follows: Section 2 
introduces how to convert a profile (a set of semantic 
information) to a mathematic model, understandable 
for a computer. Section 3 describes the overview of 
the genetic algorithm used to train the computer for 
profile recognition. Section 4 analyses the results of 
the prediction made by our model and it will be 
followed by our conclusions. 

2 MATHEMATICS DESIGN FOR 
PROFILES 

2.1 Representation of a Profile 

First of all, let us introduce the mathematical model 
used for profiles representation. A profile will be 
considered as a set of labelled semantic information. 
For example: 

Table 1: Profile example. 

Information Label 
Foo firstname 
Bar lastname 

Paris city 
beer like 

 

In order to be able to compare several profiles on 
a same frame of references, we will use the Vector 
Space Models (VSM) of semantics.  

Indeed, computers have difficulty understanding 
semantic information but VSM provides a solution 
for this problem. They have widely been used in 
different fields as a recent survey highlights (Turney 
and Pantel, 2010). In particular, they have been 
successfully used in the field of Machine Learning for 
classification  (Dasarathy, 1991) and  also for 
clustering  (A. K. Jain, 1999). 

Within a VSM, each profile Px will be transposed 
as a vector Vx with Nx dimensions which are all the 
information in the profile Px. For example, the profile 
above will be a vector with the dimensions: “Foo”, 
“Bar”, “Paris” and “beer”. 

The value of Vx in a specific dimension δ will be 
a weighting from the label matched with the 
information δ. 

The VSM consists in creating a new vector space 
of M dimensions. For two vectors Vx and Vy, the 
dimension M is set as: 

M = Nx ∪ Ny (1)

 

Whenever transposing a vector into a VSM, the 
vector has a value 0 on its non-existing dimensions. 

Illustration to the use of VSM with an example : 
considering two profiles P1 and P2: 

Table 2: Contents for profiles P1 and P2. 

P1 P2 
Foo firstname Foo firstname
Bar lastname Bar lastname 

Google organisation Horses like 
Paris city Google like 

 

For the purpose of this example, the weighting for 
each label are: 

Table 3: Weighting example. 

Label Weight 
firstname 0.7 
lastname 0.8 

organisation 0.4 
city 0.5 
like 0.1 

 

The associated VSM, with the vector V1 for P1 and 
V2 for P2, will be: 

Table 4: VSM for V1 and V2. 

Dimension V1 V2 
Foo 0.7 0.7 
Bar 0.8 0.8 

Google 0.4 0.1 
Paris 0.5 0 

Horses 0 0.1 
 

The advantage of this representation is to keep the 
semantic information in the forefront of the 
mathematic analysis. In the example above, both 
profiles have the information “Google” but for one, 
this information is labelled as “organisation” and for 
the other, it is labelled as “like”. Even with these 
different labels, this model will consider the 
information important but at a different scale. By 
intuition, we would like to set the label “organisation” 
at a higher value than the label “like” because the 
former is usually more relevant to distinct two 
profiles than the later. We acquired this intuition 
through our experience and we would like the 
computer to get the same “intuition” for any kind of 
labels. 
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2.2 Similarity Function 

Once the VSM for two vectors Vx and Vy is created, 
the usual method is to compute their similarity with 
the cosine (Turney and Pantel, 2010): 

similarity (Vx,Vy) = cos (α) (2)

where α is the angle between Vx and Vy. 
This similarity rate gives a good clue of how close 

two vectors are within their vector space, therefore 
how similar two profiles are. 

But there is a human intuition in profiles 
recognition that is missing with this computation. 
Sometimes, two profiles do not contain enough 
relevant information to evaluate their similarity. For 
example, if two profiles like the same singer and these 
profiles only contain this information, it is not enough 
to determine they both concern the same person. 
Through experimentation, we noticed that the norm 
of a vector is a good metric to evaluate the relevance 
of a profile. Therefore, the similarity rate is smoothed 
with the average norm of the two vectors:  

similarity(Vx,Vy) = cos(α) * (‖Vx‖ + ‖Vy‖) / 2 (3)

where ‖V‖ is the Euclidean norm for the vector V. The 
factor (‖Vx‖ + ‖Vy‖) / 2 goes through a repair function 
which assures it stays in the real interval [0,1]. 

This similarity rate is a real value in [0,1] and it 
can be interpreted as a percentage. For example, a rate 
of 0.27 corresponds to 27% of similarity. 

To sum it up, making use a VSM is an effective 
process to move from semantic information to a 
mathematic model which will be used to compute 
effectively the similarity between two profiles. The 
next step is to teach the computer to find dynamically 
the weighting for each label. For this purpose, a 
genetic algorithm is applied in this study. 

3 GENETIC ALGORITHM 

Genetic algorithms (GA) are heuristics, based on 
Charles Darwin’s theory of natural evolution, used to 
solve optimization problems (Hüe, 1997). The 
general process for a GA is described as follows 
(Eberhart et al., 1996), (Kim and Cho, 2000): 
 Step 1: Initialize a population. 
 Step 2: Compute the fitness function for each 
chromosome in the population. 
 Step 3: Reproduce chromosomes, based on their 
fitness. 
 Step 4 : Perfom crossover and mutation. 
 Step 5 : Go back to step 2 or stop according to a 
given stopping criteria. 

GA can also be used as Machine Learning (ML) 
algorithm and has been shown to be efficient in this 
purpose (Goldberg, 1989). The idea behind is that 
natural-like algorithms can demonstrate, in some 
cases in the ML field, a higher efficiency compared 
to human-designed algorithms (Kluwer Academic 
Publishers, 2001). Indeed, actual evolutionary 
processes have succeeded to solve highly complex 
problems, as proved through probabilistic arguments 
(Moorhead and Kaplan, 1967). 

In our case, GA will be used to determine an 
adequate set of weighting for each label present in a 
training set. Our training set is composed with 
similarities between profiles, two profiles are either 
similar (output = 1) or not similar (output = 0).  

3.1 Genetic Representation 

The genotype for each chromosome of the population 
will be the group of all labels in the training set. Each 
label is defined as a gene and the weighting for a 
specific label is the allele of the linked gene. The 
weighting is a value in [0,1], it could be translated as 
the relevance of a label and it reaches its best at value 
1 and worst at 0. 

3.2 Population Initialization 

For population initialization, there are two questions 
: “What is the initial population size ?” and “What is 
the procedure to initialize the population ?”. 

About the population size, the goal is to find a 
compromise between the global complexity and the 
performance of the solution  (Holland, 1992). A small 
population may fail to converge and a large one may 
demand an excessive amount of memory and 
computation time. It turns out that the size of the 
initial population has to be carefully chosen, tailored 
to address our specific problem. 

As a reminder, in our problem, the GA have to 
compute weighting for a number N of labels in the 
training set.  We evaluated different values for the 
population size, compromised between efficienty and 
complexity and chose to fix the population size to 
2×N. 

Secondly, to initialize a population, there are 
usually two ways: heuristic initialization or random 
initialization. The heuristic initialization, even if it 
allows to converge faster to a solution, has the issue 
to restrain the GA to search solutions in a specific area 
and it may fail to converge to a global optimum  (Hüe, 
1997). A random initialization is a facilitating factor 
for preventing GA to get stuck in a local optima. 

In our case, the random initialization consists in 
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giving a random weighting between [0,1] for each 
gene within the genotype. 

3.3 Fitness Function 

The main purpose of a fitness function is to evaluate 
a chromosome, based on how well it fits the desired 
solution (Hüe, 1997).  

In our case, chromosomes are evaluated on how 
well they fit the training set, using the VSM method 
to predict similarities. We chose to use a fitness 
function which is widely used in the ML field (Shen, 
2005), as our problem can be related to a regression 
problem. It is called the logarithmic loss which is 
defined as follows: 

loss	= -
1

M
  (yi log

M

i=1

ሺpiሻ+ሺ1- yiሻlog(1- pi)) (4)

where M is the number of examples in our  training 
set, yi is the output (0 or 1) of the ith example and pi 
is the output in [0;1] from the current chromosome. 
To prevent the asymptote at 0 from the logarithmic 
function, the predicted output p is replaced with:  

p	:ൌ	maxሺminሺp,	1‐10‐15ሻ ,	10‐15ሻ (5)

3.4 Crossover 

Crossover is the artificial reproduction method for a 
GA. It has to define how two selected chromosomes 
will produce an offspring. Crossover is crucial for 
GA, causing a structured exchange of genetic 
information between solutions which could lead good 
solutions to better ones (Srinivas and Patnaik, 1994). 

We chose to use the arithmetic crossover with an 
alpha parameter at 0.5. This crossover creates 
children that are the weighted arithmetic mean of two 
parents: 

offspring = 0.5 * parent1 + 0.5 * parent2 (6)

3.5 Mutation 

Mutation forces some chromosomes to change and it 
allows the GA to get away from a local optima (Hüe, 
1997). 

In our case, the risk to get stuck in a local optima 
is present. Indeed, the aim for our GA is to find the 
optimized weighting for a set of labels which consists 
in finding the relevant labels (high weighting) and the 
non-relevant ones (low weighting), consequently 
creating an ordering for the labels. Local optima 
would consists of a version of the GA detecting that, 
for example, the label “lastname” is relevant to find 

some similarities within the training set. This result 
will lead to a better fitness function. But it would be 
a local optima due to the necessity to find the right 
weighting and ranking for each label. The GA should 
be defined with a sufficient amount of diversity which 
will allows keeping a good weighting for a specific 
label but still enabling variation to the other labels. 

Therefore, we chose to implement a mutation 
method which enhances the diversity. 

Beside the mutation chance Mc, which determines 
the chance for an offspring to mutate, we set up a 
mutation rate Mr. If a new chromosome mutates (i.e. 
if a random number in [0,1] < Mc), each of its alleles 
will vary depending on a random factor F in [1 - Mr, 
1 + Mr]. Of course, a repair function is applied to 
ensure that each allele stays in [0,1]. 

3.6 Reproduction 

The reproduction (or selection) method is intended to 
improve the average quality for a new generation. To 
fulfill this goal, this method usually follows the 
Darwin’s principle that the fittest chromosomes will 
tend to reproduce more (Hüe, 1997). 

There are two categories of reproduction methods: 
proportionate and ordinal-based.  

The first one is based on the fitness value and 
gives each chromosome a chance to reproduce 
proportionally to its value. A typical method is the 
wheel (Goldberg, 1989). We consider a wheel where 
each chromosome has a portion with a size 
proportional to its score. To select partners for 
crossover, we simply “launch” the wheel. With this 
method, each chromosome has a chance to be a 
parent, even so, statistically, the fittest chromosomes 
might have a better chance than the others.  

On the contrary, for ordinal-based methods, the 
chromosomes are ranked according to their fitness 
and the selection is based upon the rank of a 
chromosome within the population. A classical 
approach is the use of the tournament method (Miller 
and Goldberg, 1995). This method needs to get a 
parameter S (tournament size) which determines the 
size for a round. In fact, this method proceeds round 
after round. At each round, S chromosomes are 
randomly selected, the highest-ranked chromosome 
wins the round and it is selected for crossover. 

However, for this specific problem of profiles 
recognition, we came up with a new idea which will 
be presented afterwards. Then, we will show the 
results in comparison with the state of the art of 
reproduction method. 

Usually, a GA have a low mutation chance (~ 
0.05) which leads to a controlled diversity. The 
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reproduction method also controls the diversity by 
letting globally a chance for each chromosome to be 
selected for crossover. 

The idea of our GA is to set up a huge mutation 
factor (Section 3.5) which will ensure the diversity of 
our algorithm and prevent it to get stuck in a local 
optima. Beside this point, the tactic is to have a highly 
selective reproduction method which allows to get rid 
of all non-adequate chromosomes. To sum up, a 
generation will have a lot of diversity but will quickly 
throw non-suitable chromosomes away. The diversity 
is assured by our mutation method, so we just need 
the reproduction method to be selective. 

Consequently, we created our own reproduction 
method, labelled as Best Together (BT). It is inspired 
by the idea of considering only an elite group of 
chromosomes for reproduction, introduced with the 
incoming of Biased Random-Key Genetic 
Algorithms (Resende, 2010). It is an ordinal-based 
method; thereby it is necessary to rank the population. 
For a population of size N, this method will select a 
number X of the best chromosomes. Each of these 
selected chromosomes will reproduce with all others 
selected chromosomes. We know that it leads to a 
number of crossover equals to: 

X * (X – 1) / 2 (7)

Each crossover producing an offspring, the 
population size needs to stay approximately the same. 
To do so, we need the equation 7 to be equal to N, 
which leads to the following polynomial equation:  

X² - X – 2*N = 0 (8)

The X computed by the BT method is the positive 
solution of this quadratic form (which always exists 
because if a = 1 and c = -2, then the determinant ≥ 0). 
The solution might be a real number, therefore only 
the floor of X is kept. It slightly decreases the 
population size but it does not really affect the quality 
of the GA. 

As we explained, once the BT method has 
computed this value X, it takes a group of X best 
chromosomes and applies crossover with all 
combinations, except for a chromosome with itself. 

3.7 Comparison 

In (Section 3.6), we presented a new reproduction 
method which differs from the state of the art. In this 
section, we will compare it with some state of the art 
GA over our training set. 

We compared 3 GA with the following 
parameters: 

1) A wheel reproduction. 

2) A tournament reproduction with a 
tournament size 2 (binary tournament). 

3) Our BT reproduction method. 
 

For the figure 1, we set Mc = 0.75 and Mr = 0.8, which 
is considered as a large mutation chance and we saved 
the best score for the fitness function in each 
generation. 

 
Figure 1: Comparison of reproduction with a large 
mutation. 

The BT method converges faster than the Wheel and 
Tournament methods: it reaches a LogLoss value 
below 0.17 at the 14th generation. The Wheel reaches 
this threshold at the 27th generation and the 
Tournament does not reach it within the first 50 
generations. 

But the BT method is a specific method for a large 
mutation chance and it performs poorly with a low 
mutation chance. As you can observe with the figure 
2, where we set Mc = 0.1 and Mr = 0.8: 

 
Figure 2: Comparison of reproduction with a low mutation. 
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4 RESULTS 

The real test of our algorithm will be done in a 
supervised machine learning context. It will be 
evaluated for the quality of its predictions.  

For that, we trained our model with the GA 
presented in (Section 3) over a training set composed 
of 3,003 similarities between profiles. In the training 
set, an output for a similarity between two profiles is 
either 1 (the two profiles correspond to the same 
person) or 0. Apart from the training set, we have a 
test set, composed with 741 similarities and their 
output with the same format. This set is not used to 
train the model with the GA; its only purpose is to 
evaluate predictions for our trained model. 

These sets are extracted from different sources. 
Therefore, each set is really disparate because its 
contain profiles with different size.  

 

Figure 3: Distribution of the profiles in the training set. 

The distribution of profiles, in the training set, 
according to the number of information per profile is 
as follows: 

Within the training set, the average information 
per profile is 14.49 but the standard deviation is 
11.13. This standard deviation is really high 
compared with the average, which proves the 
diversity in the training set. Even if the test set is 
smaller, its average is 14.57 and its standard deviation 
is 11.08, which is almost the same diversity as the 
training set.   

During our training phase, our model learns from 
a dataset with discrete outputs. But as we are using a 
mathematical model (described in section 2) based on 
cosine to compute similarity rate, the outputs are 
continuous values. 

Therefore, this section will present how our model 
performs on this test set viewed from two aspects: 
regression problem and classification. The former 
will evaluate our original model to predict continuous 
valued output, corresponding to the similarity rate 
between two profiles. The second will adapt our 

model to determine if either two profiles are similar 
(class = 1) or non-similar (class = 0). 

4.1 Regression Problem 

In our case, the regression problem is translated into 
the capacity for our model to determine that some pair 
of profiles are more similar than others, even if all 
these pairs correspond to the same person (output = 
1). The differences between similarity rates come 
from the fact that, even for a human, deducing that 2 
profiles correspond to the same person is more 
obvious with some data than others. 

But we cannot objectively evaluate the similarity 
score computed by our model. Imagine that, for a 
specific pair of profiles, our model sets up a similarity 
score at 0.7. As humans, a value of 0.7 has no 
meaning when it comes to decide whether two 
profiles concern the same person, or two. We expect 
“yes” or “no”. For our model, 0.7 makes sense from 
a computational point of view. 

Actually, what we really need is to find clusters of 
profiles which correspond to the same person. 

In our test set, we have the following clusters: 

 

Figure 4: Clusters within the test set. 

Each node represents a profile and each link 
represents a similarity between 2 profiles (output = 
1). The cluster 1 – 2 – 3 means that each profile is 
related to the same real person. 

 
Our model predicted the following clusters: 

ECTA 2015 - 7th International Conference on Evolutionary Computation Theory and Applications

162



 

Figure 5: Clusters prediction. 

Each value matched with a link corresponds to a 
similarity value between 2 profiles. We removed the 
links with a 0 value. 

The first observation is that each cluster is there, 
even if some links (5-7, 4-7 and 12-23) are missing. 
This means that the model allows us to indirectly link 
profiles which are not similar with the direct 
comparison of their data. 

We can also observe an expected pattern with the 
first cluster (1-2-3), where the links 1-2 and 2-3 have 
strong similarities while the link 1-3 is weak. Indeed, 
when we look closer at the test set, the profile 2 
contains more relevant information than both profiles 
1 and 3. Therefore, this is really positive that our 
model is also able to detect both strong and weak 
similarities. 

4.2 Binary Classification 

For binary classification, we need our model to be 
able to classify two profiles as similar (class 1, 
positive class) or non-similar (class 0, negative class). 

4.2.1 Threshold 

In order to allow our model to classify two profiles, 
we need to set up a threshold. Two profiles with a 
predicted value below this threshold will be classified 
as the class 0, otherwise as the class 1. 

As part of the learning phase, this threshold shall 
be tuned so as to match user’s expectation about the 
model. A high threshold should be used if the user 
wants his model to be restrictive to determine that two 
profiles are similar and, in return, a low threshold for 
an extendible model is needed. 

To give an example, in the context of our project, 
we fixed the threshold to 0.075 because we presume 
that two profiles are similar when some relevant 
information match. 

4.2.2 Metrics 

First of all, we need to define the different metrics 
widely used in binary classification problems. 

In binary classification, a model predicts if a data 
has a class 0 or 1 (predicted class) and a dataset 
indicate the actual class for this data. 

Then, we can introduce 4 metrics as follow: 

Table 5: Main metrics for binary classification. 

  Actual Class 
  1 0 
 

Predicted 
Class 

1 True positive  False 
positive 

0 False 
negative 

True 
negative 

 

In general, positive = identified and negative = 
rejected. Therefore: 

 True positive (TP) = correctly identified 
 False positive (FP) = incorrectly identified 
 True negative (TN) = correctly rejected 
 False negative (FN) = incorrectly rejected 

 

Usually, a metric accuracy is used and defined as: 

ݕܿܽݎݑܿܿܽ ൌ ሺܶܲ  ܶܰሻ ⁄ܯ  (9)

where M = size of the dataset. 
But in our case it will not be relevant because we 

can define our class 1 as a skewed class. Our training 
set is composed with 3003 similarities but only 26 of 
them (0.87%) have an output of 1. It means that if a 
model predicts always the class 0, it would have an 
accuracy of 99.13%. 

Therefore, a binary classification problem with a 
skewed class is defined as an imbalanced learning 
problem and it should be handled specially (He & 
Garcia, 2009). Then, we would use other metrics such 
as precision (P) and recall (R). Precision is defined as 
follows: 

݊݅ݏ݅ܿ݁ݎ ൌ ܶܲ ሺܶܲ  ⁄ሻܲܨ  (10)

This metrics is useful to evaluate how well a 
model predicts positives values. 

The recall (R) is defined as follows: 

݈݈ܽܿ݁ݎ ൌ ܶܲ ሺܶܲ  ⁄ሻܰܨ  (11)

This metric, also named sensitivity, measures the 
rate of a model to predict incorrect positives classes. 
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These two metrics are really useful but there is an  
issue: they are interdependent. 

Supposing that we want the model to predict that 
two profiles are similar only if it is very confident (i.e. 
avoid false positives). Then, we would fix the 
threshold to a high value, like 0.9. Doing so, the 
model will have a higher precision and a lower recall. 

On the contrary, considering we would like a 
model which avoid missing similarities between 
profiles (i.e. avoid false negatives). This time, we 
would fix the threshold to a low value, like 0.1. The 
result will be a higher recall and a lower precision. 

Now, the problem is that we need a good metric 
that will help to find a balance between precision and 
recall. As an illustration, considering the following 
table: 

Table 6: Use of Average to compare Precision and Recall. 

Precision Recall Average 

0.5 0.4 0.45 

0.7 0.1 0.4 

0.02 1.0 0.51 

 
Genuinely, the first pair (0.5, 0.4) seems better 

than the last pair (0.02, 1.0) which is unbalanced. But 
the first pair has a worse average than the last pair. 

To prevent that, we introduce a last metric, the F1-
Score, as follows: 

݁ݎ1ܵܿܨ ൌ ሺ2	 ൈ	ܲ	 ൈ ܴሻ	 	ሺܲ  ܴሻ⁄  (12)

This metric is a weighted average of the precision and 
recall and we will use this one to measure our test 
accuracy. 

To show its effectiveness, we updated the table 
above with this new metric: 

Table 7: Comparison of the Average and F1Score. 

Precision Recall Average F1Score 

0.5 0.4 0.45 0.444 

0.7 0.1 0.4 0.175 

0.02 1.0 0.51 0.0392 

 
The F1Score, as well as the other metrics, reaches 

its best at value 1 and worst score at 0.  
For our test set, we tried different values for the 

threshold: 

 
Figure 6: Precision, Recall and F1Score within the test set. 

Considering this figure, the first information is that 
our model is highly precise. From a low threshold 
(0.075) to the highest prediction within the test set 
(0.79), the metric precision is always at 1. This level 
of precision allows to select a low threshold. This low 
threshold also permits to keep a high value for the 
metric recall, which gets lower when the threshold 
rises. 

4.2.3 ROC Curve 

In binary classification, a Receiver Operation 
Characteristic (ROC) curve is a statistical tool for 
evaluating a classifier and choosing a threshold. In 
particular, it is fundamental in medicine to determine 
a cutoff value for a clinical test (Campbell & Zweig, 
1993). 

The curve is created by plotting the true positive 
rate in function of the false positive rate at various 
threshold settings. In Machine Learning, the true 
positive rate is the metric called recall and the false 
positive rate is named fall-out. The fall-out is defined 
as follows: 

݂݈݈ܽ െ ݐݑ ൌ ܲܨ ሺܲܨ  ܶܰሻ⁄  (13)

A high threshold would decrease both fall-out and 
recall. However, the objective is to get the highest 
recall and the lowest fall-out. Indeed, a test with 
perfect discrimination has a ROC curve that passes 
through the point (0,1) which is called a perfect 
classification. Therefore, the closer the curve is to the 
upper left corner, the higher the overall accuracy of 
the test (Campbell & Zweig, 1993). 

The graphical plot of the ROC curve for our test 
set is as follows: 
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Figure 7: ROC curve within the test set. 

The linear line from the point (0,0) to the point (1,1) 
corresponds to a random classification and is called 
the line of no-discrimination. 

The elbow of the curve (i.e. the best trade-off 
point) is explicit and correspond to our selected 
threshold of 0.75. The curve for our classifier is really 
close to the perfect classification which proves the 
high accuracy of our model. 

5 CONCLUDING REMARKS 

In this paper, we proposed and developed a machine 
learning algorithm based on a genetic algorithm for 
profiles recognition. Our solution is a combination 
between natural language processing, evolutionary 
algorithm and surpervised machine learning. 

First, we recalled how to represent a profile in a 
Vector Space Models, in order to ease the processing 
of semantic data. 

In a second part, the principle of genetic 
algorithms is described; and used to train the 
computer to evaluate the significance of each label. 
This phase still requires human intervention throught 
a training set. 

Finally, we tested the model predictions within a 
complete new dataset. These predictions revealed a 
highly precise model.  

Our model allowed to automatically determine 
both a similarity score between profiles and which 
profiles correspond to the same person. 

The solution proposed in this paper is adaptable 
and generic. This adaptation is due to the fact that the 

model is not restricted to a fixed set of labels. As long 
as the labels are present into the training set, both the 
mathematical model and the genetic algorithm would 
adapt to a new set of labels. 

Therefore we strongly believe it could be used for 
any kind of sources containing profiles. Moreover, 
this solution could also be used to other applications 
of similar data recognition. 
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