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Abstract: A model-intersection problem (Ml problem) is a pair of a set of clauses and an exit mapping. We define Ml
problems on specialization systems, which include many useful classes of logical problems, such as proof
problems on first-order logic and query-answering (QA) problems in pure Prolog and deductive databases.
The theory presented in this paper makes clear the central and fundamental structure of representation and
computation for many classes of logical problems by (i) axiomatization and (ii) equivalent transformation.
Clauses in this theory are constructed based on abstract atoms and abstract operation on them, which can be
used for representation of many specific subclasses of problems with concrete syntax. Various computation
can be realized by repeated application of many equivalent transformation rules, allowing many possible
computation procedures, for instance, computation procedures based on resolution and unfolding. This theory
can also be useful for inventing solutions for new classes of logical problems.

1 INTRODUCTION problem, is a “yes/no” problem; it is concerned with
checking whether or not one given logical formulais a
This paper introduces model-intersection problem logical consequence of another given logical formula.
(MI problen, which is a pair(Cs ¢), whereCsisa  Formally, a proof problemis a pafE;, Ez), whereE;
set of clauses anlis a mapping, called aexit map- andE; are first-order formulas, and the answer to this
ping, used for constructing the output answer from the problem is defined to be “yes” i is a logical con-
intersection of all models oEs More formally, the ~ sequence oy, and itis defined to be “no” otherwise.
answer to a M probleniCs, ¢) is ¢(ModelgCs)), Historically, proof problems were first solved
whereModelgCs) is the set of all models afs The  (Robinson, 1965). Then QA problems on pure Prolog
set of all Ml problems constitutes a very large class of were solved based on the resolution principle, which
problems and is of great importance. is a solution for pl’OOf problems. This approach is
A QA problem is a paifCs a), whereCsis a set ~ Proof-centered. It has been believed that computa-
of clauses and is a user-defined query atom. The tion of Prolog is an inference process. The theory of
answer to such a QA problettCs a) is defined as  SLD resolution was used for the correctness of Pro-
the set of all ground instances afthat are logical 09 computation. Many solutions proposed so far for

consequences @s. A QA problem(Cs a) is a MI some other classes of logical problems are also basi-
problem(Cs ¢1), where for any se® of ground user-  cally proof-centered. _ _
defined atomsp1(G) is the intersection o6 and the In contrast, it was shown in (Akama and Nantajee-

set of all ground instances af Characteristically, a  Wwarawat, 2013) that the set of all proof problems can
QA problem is an “all-answers finding” problem, i.e., be embedded into the set of all QA problems. This
all ground instances of a given query atom satisfying esult supports a QA-centered approach to solving
the requirement above are to be found. Many logic Proof problems, i.e., first, develop a general solution
programming languages, including Datalog, Prolog, for QA problems, and then, apply it as a solution for
and other extensions of Prolog, deal with specific sub- Proof problems (Akama and Nantajeewarawat, 2012).

classes of QA problems. Since a QA problem is a Ml problem (as will be seen
The class of proof problems is also a subclass of in Theorem 3), we have

MI problems. In contrast to a QA problem, a proof PROOFC QA C MI,
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where RROOF, QA, and MI denote the class of all introduced for associating with each clause set a col-
proof problems, the class of all QA problems, and the lection of its specific models computed in a bottom-up
class of all Ml problems, respectively. The class of manner. Section 5 shows an example of solution of a
all Ml problems is larger than that of all QA prob- MI problem. Section 6 concludes the paper.
lems, and it is a more natural class to be solved by the  The notation that follows holds thereafter. Given
method presented in this paper. A general solution a setA, pow(A) denotes the power set & and
method for MI problems can be applied to any arbi- partialMap(A) the set of all partial mappings of
trary QA problem and any arbitrary proof problem.  (i.e., fromAto A). For any partial mapping from a

MI problems are axiomatically constructed on an SetAto a setB, dom(f) denotes the domain df, i.e.,
abstract structure, calledspecialization systemlt domf) ={a| (a€A) & (f(a) is defined}.
consists of abstract atoms and abstract operations
(extensions of variable-substitution operations) on
atoms, calledspecializations These abstract com- 2 CLAUSES AND
ponents can be any arbitrary mathematical objects as
long as they satisfy given axioms. Abstract clauses MODEL-INTERSECTION
can be built on abstract atoms. Thisis asharpcontrast PROBLEMS
to most of the conventional theories in logic program-
ming, where concrete syntax is usually used. In Pro-
log, for example, usual first-order atoms and substi-
tutions with concrete syntax are used, and there is no
way to give a foundation for other forms of extended
atoms and for various specialization operations other
than the usual variable-substitution operation.

An axiomatic theory enables us to develop a very
general theory. By instantiating a specialization sys-
tem to a specific domain and by imposing certain re-

strictions on clauses, our theory can be applied to stitution). A ground atom in the term domain is a
many subclasses of MI problems. variable-free atom

We proposed a general schema of solving Ml Likewise, in the string domain, substitutions for
problems by equivalent transformation (ET), where strings are used. A substitutigiX /*aY b, Y /“xyZ }
problems are solved by repeated simplification. We changes an atonp(*X5Y”) into p(*aYb&xy?).
introduced the concept of target mapping and pro- gych a substitution for strings defines a total mapping
posed three target mappings. Since transformationgp, the set of all atoms that may include string vari-
preserving a target mapping is ET, target mappings gples. Composition of such mappings is also realized
provide a strong foundation for inventing many ET py some string substitution. There is a string substi-
rules for solving MI problems on clauses. tution that does not change any atom (i.e., the empty

An ET-based solution consists of the following substitution). A ground atom in the string domain is a
steps: (i) formalize an initial Ml problem on some variable-free atom.
specialization system, (ii) prepare ET rules, (iii) con- A similar operation can be considered in the
struct an ET sequence, (iv) compute a set of modelsclass-variable domain. Consider, for example, an
using a target mapping, (v) apply the set-intersection atom p(X: animalY: dogZ: cat) in this domain,
operation to the resulting set of models, and (vi) apply where X : animal Y: dog andZ: cat represent an
an exit mapping to the intersection result to obtain a animal object, a dog object, and a cat object, re-
solution. spectively. When we obtain additional information

To begin with, Section 2 recalls the concept of that X is a dog, we can restricK: animal into
specialization system and formalizes M| problems on X: dog and the atomp(X: animalY: dogZ: catf)

a specialization system. Section 3 defines the notionsinto p(X: dogY : dog Z: cat). By contrast, with new

of atarget mapping and a representative mapping, andinformation thatZ is a dog, we cannot restrizt: cat
introduces a schema for solving Ml problems based and the above atom sin@Zecannot be a dog and a cat
on equivalent transformation (ET) preserving target at the same time. More generally, such a restriction
mappings. The correctness of this solution schemaoperation may not be applicable to some atoms, i.e.,
is shown. Section 4 applies the general ET-basedit defines a partial mapping on the set of all atoms.
schema in Section 3 to the domain of clause sets with Composition of such partial mappings is also a par-
built-in constraint atoms. A target mappifgiM, is tial mapping, and we can determine some composi-

2.1 Specialization Systems

A substitution {X/f(a),Y/g(z)} changes an atom
p(X,5,Y) in the term domain intop(f(a),5,9(2)).
Generally, a substitution in first-order logic defines
a total mapping on the set of all atoms in the term
domain. Composition of such mappings is also re-
alized by some substitution. There is a substitution
that does not change any atom (i.e., the empty sub-
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tion operation corresponding to it. An empty substi- 2.3
tution that does not change any atom can be intro-

Interpretations and Models

duced. A ground atom in the class-variable domain is An interpretationis a subset ofG,. Unlike ground

a variable-free atom.

user-defined atoms, the truth values of ground con-

In order to capture the common properties of such straint atoms are predetermined by 1€ (cf. Sec-
operations on atoms, the notion of a specialization tion 2.2) independently of interpretations. A ground

system was introduced around 1990.

Definition 1. A specialization systerhn is a quadru-
ple(4,G,S,p of three sets1, G, and.s, and a map-
ping p from $ to partialMap(.4) that satisfies the fol-
lowing conditions:

1. (vs,8"€85)(3s€.S): U9
2. (3s€ S)(Vae A): u(s)(a)
3.6CA.

Elements of4, G, and$ are calledatoms ground
atoms and specializationsrespectively. The map-
ping W is called thespecialization operatoof I'. A
specializatiors € S is said to beapplicableto a € 4
iff ae dom(p(s)). O

H(s) o (")
a.

Assume that a specialization systém- (4, G, S,
W) is given. A specialization i will often be denoted
by a Greek letter such & A specialization® € §
will be identified with the partial mapping(6) and
used as a postfix unary (partial) operator.@rfe.g.,

H(8)(a) = aB), provided that no confusion is caused.

Let e denote the identity specialization# i.e.,ac =
aforanya e 4. For anyB,0 € S, letBo o denote a
specializatiorp € § such thap(p) = p(o) o (), i.e.,
a(0oo) = (aB)o for anya e 4.

2.2 User-defined Atoms, Constraint
Atoms, and Clauses

Let My = (Au, Gu, Su, lu) andlc = (Ac, Ge, Sc, Ke) be
specialization systems such th&t= S.. Elements
of 4, are calleduser-defined atomand those oiG,
are calledground user-defined atomsElements of
A are calledconstraint atomsand those ofG. are
calledground constraint atomsHereinafter, assume
thats = Sy = Sc. Elements ofS are calledspecial-
izations Let TCoN denote the set of all true ground
constraint atoms.

A clauseon (I'y,l¢) is an expression of the form

al,...,am<—b1,...,bn,

wherem> 0,n> 0, and each ody,...,am,bs1,...,bn
belongs ta4, U A.. Itis agroundclause onl"y,l¢)
iff each ofay,...,am,bs,...,by belongs toGy U Ge.
Let CLs denote the set of all clauses dny, I ¢).
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constraint atong is true iff g € TCoON. It is false oth-
erwise.

A ground claus€ = (ay,...,am < b1,...,bn) is
true with respect to an interpretati@aC G, (in other
words,G satisfies ¢iff at least one of the following
conditions is satisfied:

1. There existd € {1,...,m} such thatg; € GU
TCoON.

2. There existsj € {1,...,n} such thatb; ¢ GU
TCoON.

A clauseC is true with respect to an interpretation
G C Gy (in other words( satisfies ¢iff for any spe-
cialization® such thatC8 is ground,C6 is true with
respect tds. A modelof a clause se€sC CLs is an
interpretation that satisfies every claus€m

Note that the standard semantics is taken in this
paper, i.e., all models of a formula are considered
instead of specific ones, such as those considered in
the minimal model semantics (Clark, 1978; Lloyd,
1987) (i.e., the semantics underlying logic program-
ming) and those considered in stable model semantics
(Gelfond and Lifschitz, 1988; Gelfond and Lifschitz,
1991) (i.e., the semantics underlying answer set pro-
gramming).

2.4 Model-Intersection (Ml) Problems

Let Modelsbe a mapping that associates with each
clause set the set of all of its models, iMgdelCs)
is the set of all models d@sfor anyCsC CLs.
Assume that a persof and a persorB are in-
terested in knowing which atoms ig, are true and
which atoms inG, are false. They want to know the
unknown seG of all true ground atoms. Due to short-
age of knowledgéA still cannot determine one unique
true subset of;,. The persorA can only limit possi-
ble subsets of true atoms by specifying a sulizet
of pow(Gy). The unknown seG of all true atoms
belongs toGs One way forA to inform this knowl-
edge toB compactly is to send t8 a clause seCs
such thatGsC ModelgCs). ReceivingCs, B knows
thatModelg Cs) includes all possible intended sets of
ground atoms, i.eG € Model§Cs). As such,B can
know that each ground atom outsidévlodelgCs) is
false, i.e., for anyg € G, if g ¢ UModelgCs), then
g ¢ G. The persorB can also know that each ground
atom in(ModelgCs) is true, i.e., for anyg € Gy, if
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g € NModelgCs), theng € G. This shows the impor-
tance of calculating)ModelgCs).

A model-intersection problergMI problem) is a
pair(Cs ¢), whereCsC CLs and¢ is a mapping from
pow(Gy) to some seWW. The mappingp is called an
exit mapping The answer to this problem, denoted by
ansy (Cs 9), is defined by

answi (Cs¢) = ¢((|ModelgCs)),

where\ModelgCs) is the intersection of all models
of Cs Note that wherModelgCs) is the empty set,
(ModelgCs) = G,

2.5 Query-Answering (QA) Problems

Let CsC CLs. For anyCs C CLs, C< is alogical
consequencef Cs, denoted byCs = Cs, iff every
model ofCsis also a model o€<. For anya € 4,,
ais alogical consequencef Cs, denoted byCs = a,
iff Csl={(a<)}.

A query-answering problefQA problen in this
paper is a paifCsa), whereCsC CLs andais a
user-defined atom irf,. Theanswerto a QA prob-
lem (Cs a), denoted byansya(Cs a), is defined by

anpa(Csa) = {aB| (B S) & (@B e Gu) &
(Csk=(aB )}

Theorem 1. For any CsC CLs and ac< 4,,
ansa(Cs a) = rep(a) N (["|ModelgCs)),

where rega) denotes the set of all ground instances
of a.

Proof: LetCsC CLs anda € 4,. By the defi-
nition of =, for any ground atong € G, Cs|= g iff
g € NModelgCs). Then

anga(Cs a)
{aB| (6 S) & (ab
{91 (8€s) & (9=

(Cs=(9<))}

= {9/ (gerep(a)) & (Csi= (g+))}

{g| (gcrep(a)) & (g€ (NModel{Cs)))}
rep(a) N (MNModelgCs)). O

€ Gu) & (Csf=(ab+))}
a0) & (g€ Gu) &

Theorem 1 shows the importance of the intersec-
tion of all models of a clause set. By this theorem, the
answer to a QA problem can be rewritten as follows:

Theorem 2. Let CsC CLs and a< 4,. Then
angHa(Cs a) = ansy (Cs ¢1), where for any GC Gy,
$1(G) =rep(a)NG.

Proof: It follows from Theorem 1 and the defini-
tion of ¢1 thatansa(Cs a) = ¢1(\ModelgCs)) =
ansu (Cs ¢1). O

This is one way to regard a QA problem as a Ml
problem, which can be understood as follows: The set
(ModelgCs) often contains too many ground atoms.
The setrep(a) specifies a range of interest in the set
Gu. The exit mapping focuses attention on the part
rep(a) by making intersection with it.

Theorem 3 below shows another way to formalize
a QA problem as a Ml problem.

Theorem 3. Let CsC CLs and a€ 4,. Then
anga(Cs a) = ansy (Csu{anga) « a},¢2), where
for any GC Gu, $2(G) = {x | angx) € G}

Proof: By Theorem 1 and the definition ¢,

anga(Csa)

rep(a) N (N ModelgCs))
$2(NModelgCsU {anga) < a}))
ansy (Csu{anga) «+ a},$2). O

In logic programming (Lloyd, 1987), a problem
represented by a pair of a set of definite clauses and a
guery atom has been intensively discussed. In the de-
scription logic (DL) community (Baader et al., 2007),

a class of problems formulated as conjunctions of
DL-based axioms and assertions together with query
atoms has been discussed (Tessaris, 2001). These two
problem classes can be formalized as subclasses of
QA problems considered in this paper.

3 SOLVING MI PROBLEMS BY
EQUIVALENT
TRANSFORMATION

A general schema for solving MI problems based on
equivalent transformation is formulated and its cor-
rectness is shown (Theorem 8).

3.1 Preservation of Partial Mappings
and Equivalent Transformation

Terminologies such as preservation of partial map-
pings and equivalent transformation are defined in
general below. They will be used with a specific class
of partial mappings called target mappings, which
will be introduced in Section 3.2.

1The expressioanga) is not an atom in the usual first-
order logic space. One way to understand Theorem 3 in the
context of the conventional first-order logic is éhga) is
interpreted agngv1,...,Vn), wherevy,...,v, are the vari-
ables occurring im, and then (ii}p2(G) = {x| angx) € G}
is interpreted ag,(G) = {a | & = andty,...,tn) € G}.
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Assume thatX andY are sets and is a par-
tial mapping fromX to Y. For anyx,x € dom(f),
transformation ofx into X' is said topreserve fiff
f(x) = f(X). For anyx,x € dom(f), transformation
of x into X is calledequivalent transformatioET)
with respect tof iff the transformation preservefy
i.e, f(x)=f(x).

Let F be a set of partial mappings from a sét
to a setY. Givenx,x' € X, transformation ok into
X' is calledequivalent transformatioET) with re-
spect toF iff there existsf € F such that the trans-
formation preserve$. A sequenceéXg,Xi,...,Xn) of
elements inX is called anequivalent transformation
sequencéET sequendewith respect tdF iff for any
i € {0,1,...,n— 1}, transformation of; into x+1 is
ET with respect tdf. When emphasis is placed on
the initial elemenkg and the final elemens,, this se-
quence is also referred to as an ET sequdrma X
to Xn.

3.2 Target Mappings

Given a MI problem(Cs ¢), sinceansy (Cs¢) =
d(NModelgCs)), the answer to this Ml problem is
determined uniquely biv¥lodel§Cs) and¢. As a re-
sult, we can equivalently consider a new MI prob-
lem with the same answer by switching fro@s to
another clause s€s if ModelgCs) = ModelgCs).
According to the general terminologies defined
in Section 3.1, on condition thaModelgCs) =
ModelgCs), transformation fromx = Csinto X' =
C< preservesd = Modelsand is called ET with re-
spect tof = Models where (i)x,x € pow(CLS) and
(i) Modelgx),Modelgx') € pow(pow(G)). We can
also consider an ET sequenfes,Cs,...,Csy] of
elements irpow(CLS) with respect to a singleton set
{Modelg. Ml problems can be transformed into sim-
pler forms by ET preservinlylodels

In order to use more partial mappings for simpli-
fication of MI problems, we extend our consideration
from the specific mappinilodelsto a class of partial
mappings, called GSrM AP, defined below.

Definition 2. GSETMAP is the set of all partial map-
pings frompow(CLS) to pow(pow( G)). O

As defined in Section 2.4 odelgCs) is the set of
all models ofCsfor anyCsC CLS. Since a model is
a subset of7, Modelsis regarded as a total mapping
from pow(CLS) to pow(pow(G)). Since a total map-
ping is also a partial mapping, the mappigdelsis
a partial mapping fronpow(CLS) to pow(pow(G)),
i.e., itis an element of GSrMAP.

A partial mappingM in GSETMAP is of par-
ticular interest ifYM(Cs) = ModelgCs) for any
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Cse domM). Such a partial mapping is calleda-
get mapping

Definition 3. A partial mappingM € GSETMAP s a
target mappingff for any Cs< domM), NM(Cs) =
(N ModelgCs). O

It is obvious that:

Theorem 4. The mapping Models is a target map-
ping. 0

Transformation preserving target mappings and
computation of a target mapping constitute a method
for solving Ml problems in this paper.

For more general consideration, we introduce a bi-
nary relation< on GETMAP as follows:

Definition 4. LetM1,M> € GSETMAP. M1 < M iff
the following conditions are satisfied:

1. domMj) C domMy).
2. For anyCsin domMjy),

(IM1(Cs) =(Mz(Cs). O

Obviously,= is reflexive and transitive. It is also
obvious that:

Proposition 1. Forany Me GSETM AP, M is a target
mapping iff M< Models. O

By its definition, a target mapping satisfies the
following two conditions: (i) the domain of is a
subset opow(CLs), and (ii) for any clause sésin
the domain oMM, the intersection of all ground-atom
sets inM(Cs) is equal to the intersection of all mod-
els of Cs. By the first condition, since the domain of
M can be smaller than that of the mappiNigpdels
we can expect a more efficient program for comput-
ing M(Cs) for Csin the domain oM. By the second
condition, the correctness of transformation and com-
putation is guaranteed (Theorems 5 and 8).

Let (Cs ¢) be a Ml problem. IM is a target map-
ping such thaM(Cs) is defined, thetM can be used
for computing the answer s ¢). More precisely:

Theorem 5. Let (Cs ¢) be a Ml problem and Me
GSETMAP. If M is a target mapping and Cs

dom(M), then ang (Cs ¢) = ¢(M(Cy)).

Proof: ~ Assume thatM is a target mapping
andCse domM). ThenNM(Cs) = ModelgCs).
Consequently,ansy (Cs ¢) = ¢(NModelgCs)) =
¢(NM(Cs)). .
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3.3 Representative Mappings Definition 8. Let (S, S) € STATE x STATE. (S,S) is
an ET stepwith mtiff if 1(S) = (Cs¢) andm(S) =
The relations “smaller than” and “finer than” on (Cs,¢’), thenansu (Cs $) = answ (Cs,¢’). O

GSETMAP are introduced below.

Definition 5. LetM¢, M, € GSETMAP. My issmaller Definition 9. A sequencdS, Sy, ..., S| of elements

thanM; iff the following conditions are satisfied: of STATE is anET sequencevith T iff for any i e
1. dom(My) C dom(M). {0,1,...,n—1},(S,S+1) isan ET step witht. O

2. ForanyCse domMj), M1(Cs) C Mz(Cs). O We can construct an ET step by using transfor-
mation preserving a target mapping. ET steps used
for solving Ml problems are mainly realized based on

Definition 6. Let M1,M> € GSETMAP. My is finer .
target mappings.

thanM; iff the following conditions are satisfied:
1. domM31) C dom(My). Theorem 7. Let SS € STATE. Assume that(S) =
2. For anyCs < dom(M;) and anym, € My(Cs), (Cs9), (S) = (Cs,¢), and M is a target mapping
there existsmy € M1(Cs) such thaty Cmp. O such that MCs) = M(Cs). Then(S, S) is an ET step
with 1t
A smaller target mapping is basically preferable
in order to reduce the cost of computing an answer. ~ Proof:

The concept of representative mapping defined below ansu (Cs ¢)
is useful for constructing small target mappings. = ¢(NModelgCs))
o ) = (sinceM is a target mapping)
Definition 7. Let M1,M; € GSETMAP. My is arep- = ¢(NM(Cs))
resentative mappingf M, iff the following condi- = (sinceM(Cs) = M(Cs))
tions are satisfied: = ¢(NM(CS))
1. My is smaller tharMa. = (sinceM is a target mapping)
2. My is finer thanM,. O = ¢(NModelgCs))

= angu(Cs,¢) O

Theorem 6. Let My,M2 € GSETMAP. If M1 is a rep-

resentative mapping of Mthen M < Ms. As shown below, we can solve MI problems by

constructing ET sequences.
Proof: Suppose thatl; is a representative map-

ping of M. Let Cse dom(M1). SinceM; is smaller Theorem 8. Assume that:

than Mz, M1(Cs) C Mp(Cs). Thus NMy(Cs) D * (Cs¢) is aMi problem.
NMz(Cs). We show that\M1(Cs) C NMz(Cs) * [S,S,...,S] is an ET sequence with
as follows: Assume thag € NMy(Cs). Letmp € e () = (Cs ¢) andT(S,) = (Csy, dn)-

MZ(CS). Since M]_ is finer than M2, there exists e Misa target mapp|ng such that QS don‘(M)
my € M1(Cs) such thatry C mp. Sinceg € M31(Cs), _
g belongs tam;. Sog € my, and thusg € (\M2(Cs). Then ang (Cs¢) = ¢a(TM(Cs)).

It follows that(\M1(Cs) = (NMz(Cs). HenceM; < Proof:
Me. = ansy (Cs ¢)
. ) = ¢(NModelgCs))
3.4 Solving MI Problems by Equivalent = (since[%, 3., ..., S is an ET sequence)
Transformation = ¢n(NModelgCs,))
= (sinceM is a target mapping)
Next, a schema for solving Ml problems based = 0n(NM(Csy)). O

on equivalent transformation (ET) preserving target
mappings is formulated. The notions of preservation

of target mappings, ET with respect to target map- 4 TARGET MAPPINGS FOR
pings, and an ET sequence are obtained by specializ- CLAUSES AND COMPUTATION

ing the general definitions in Section 3.1.

Let thbe a mapping, callestate mappingfrom a
given set SATE to the set of all Ml problems. Ele-
ments of SATE are calledstates

Next, three target mappings are introduced, ite.,
for sets of positive unit clauses; for sets of defi-
nite clauses, andMM for sets of arbitrary clauses in
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CLs. Based on these target mappings, an ET solution
for MI problems on clauses is given according to the
general schema of Section 3.

4.1 A Target Mapping for Sets of
Positive Unit Clauses

A positive unit clausés a clause of the fornma «+-),
wherea is a user-defined atom. Let Rl denote the
set of all positive unit clauses. For any user-defined
atom a, let rep(a) denote the set of all ground in-
stances o&.

A partial mappingt; € GSETMAP is defined as
follows:

1. Foranyr C PUcL, 11(F) is the singleton set
{U{rep(a) | (a«) e F}}.

2. For anyCsC CLs such thatCs¢Z PUcL, 11(Cs)
is undefined.

Theorem 9. 11 is a representative mapping of Models
and is a target mapping.

Proof: Assume thatF C PUcL. Let me
U{rep(a) | (a «~) € F}. Obviously,me is a model
of F, i.e.,, me € ModelgF). SoTt; is smaller than
Models Now letm € ModelgF). For any(a<) € F
and anyg € rep(a), g is true with respect tan, i.e.,
g€ m. Thenmg C m. Sot; is also finer thaModels
whencer; is a representative mapping itodels By
Theorem 6 and Proposition I; is a target map-
ping. O

4.2 A Target Mapping for Sets of
Definite Clauses

A definite clausés a clause whose left-hand side con-
tains exactly one user-defined atom and no constraint
atom. Let OcL denote the set of all definite clauses.
Given a definite claus€, the atom in the left-hand
side ofC is called theheadof C, denoted byheadC),

and the set of all user-defined atoms and constraint
atoms in the right-hand side &f is called thebody

of C, denoted byodyC). Assume thabD is a set of
definite clauses in BL. Themeaningof D, denoted

by M (D), is defined as follows:

1. A mappingTp onpow( G) is defined by: for any
setG C G, Tp(G) is the set

{headCB) | (CeD) & (8€S) &
(each user-defined atomlidy(C8) is in G) &
(each constraint atom inody(C9) is true)}.
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2. M (D) is then defined as the séfy_; TS (@),
whereT3 (@) = Tp(@) and for eacm > 1, T}(2)
=To(T5 (@)

Then a partial mapping € GSETMAP is defined
below.

1. For anyD C DcL, 12(D) is the singleton set
{M(D)}.

2. For anyCsC CLs such thatCs¢Z DcL, 12(Cs) is
undefined.

Theorem 10. 1, is a representative mapping of
Models and is a target mapping.

Proof: LetD C DcL. SinceM (D) is a model
of D, {M (D)} C ModelgD). Soty is smaller than
Models Letme Model$D). SincefM (D) is the least
model of D, M (D) C m. Sot; is finer thanModels
Thent; is a representative mapping bfodels and
thus, by Theorem 6 and Proposition 1, it is a target
mapping. O

Theorem 11. For any FC PUcL, 12(F) = 11(F).

Proof: For anyF C PUcL, 12(F) = {M(F)}
{U{rep(a) | (a<) € F}} =T1a(F).

4.3 A Target Mapping for Clause Sets

O

Given a claus€, the set of all user-defined atoms and
constraint atoms in the left-hand side®fs denoted
by Ihs(C) and the set of all those in the right-hand
side ofC is denoted byrhs(C). A clauseC is said

to bepositiveif Ihs(C) is not empty; it is said to be

negativeotherwise.

It is assumed henceforth that (i) for any constraint
atomc, not(c) is a constraint atom; (ii) for any con-
straint atomc and any specializatioB, not(c)6 =
not(cB); and (iii) for any ground constraint atom
cis true iff not(c) is not true.

The following notation is used for defining a tar-
get mappingIM for arbitrary clauses in G5 (Defi-
nition 10).

1. Let Cs be a set of clauses possibly with con-
straint atoms.Mv RHS(Cs) is defined as the set
{MVRHS(C) | C € Cs}, where for any claus€
Cs MVRHS(C) is the clause obtained fro@ as
follows: For each constraint atomin Ihs(C), re-
movec from Ihs(C) and addhot(c) to rhs(C).

. Let Cs be a set of clauses with no constraint
atom in their left-hand sides. For ary C G,
GINST(Cs G) is defined as the set

{RMCON(CB) | (CeC9 & (BES) &
(each user-defined atom@0 is in G) &
(each constraint atom ims(C0) is true },
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where for any claus€’, RMCoN(C') is the clause
obtained fronC’ by removing all constraint atoms
fromit.

. LetCsbe a set of clauses possibly with constraint
atoms. For anys C G, INST(Cs G) is defined by

INST(Cs,G) = GINST(MVRHS(Cs),G).

. Let Cs be a set of ground clauses with no con-
straint atom. We can construct a set of defi-
nite clauses frontCs as follows: For each clause
CeCs

o if Ins(C) = @, then construct a definite clause
the head of which isL and the body of which
is rhs(C), where_L is a special symbol not oc-
curring inCs

o if Ihs(C) # o, then (i) select one arbitrary atom
a from Ihs(C), and (i) construct a definite
clause the head of which sand the body of
which isrhs(C).

Let Dc(Cs) denote the set of all definite-clause
sets possibly constructed fro@s in the above
way.

Proposition 2. Let CsC CLs. Forany mC G, mis a
model of Cs iff m is a model dbRsT(Cs, G).

Proof: INST(Cs G) is obtained fromCs by (i)
moving constraint atoms in the left-hand sides of
clauses into their right-hand sides, (ii) instantiation of
variables into ground terms, (iii) removal of clauses
containing false constraint atoms in their right-hand
sides, and (iv) removal of true constraint atoms from
the remaining clauses. Each of the operations (i), (ii),
(i), and (iv) preserves models. O

A mappingMM is defined below.

Definition 10. A mappingMM € GSETMAP is de-
fined by
MM(Cs)

{M(D) | (D € Dc(INST(Cs G))) &
(L ¢ M(D))}

foranyCsC CLs. O

Theorem 12. MM is a representative mapping of
Models and is a target mapping.

Proof: First, we show thaMM is smaller than
Models Let CsC CLs. Suppose than € MM(Cs).
LetCs = INST(Cs G). Then there exist® such that
m= M (D), D € Dc(Cs), and_L ¢ M (D). We show
thatmis a model ofC< as follows:

e Let Cp be a positive clause i€<g. SinceD ¢
Dc(Cs), there exist€ € D such thaheadC) €
Ihs(Cp) andbody(C) = rhs(Cp). Sincem satis-
fiesC, malso satisfie€p. Hencemsatisfies every
positive clause ilCS.

e Let Cy be a negative clause i@s. SinceD ¢
Dc(Cs), there exist€’ € D such thaheadC') =
1 andbody(C') = rhs(Cy). Since L ¢ M (D),
m does not includéodyC’). Sorhs(Cy) € m,
whencem satisfiesCy. Hencem satisfies every
negative clause i€s.

Somis a model ofC<. By Proposition 2mis a model
of Cs i.e.,me ModelgCs).

Next, we show thaMM is finer thanModels Let
CsC CLs. Suppose thatt € ModelgCs), i.e.,m is
a model ofCs Let CS = INST(Cs G). By Propo-
sition 2, m' is also a model oCs. Let D be a set
of definite clauses obtained fro8¢ by constructing
from each positive clauggin C< a definite claus€’
as follows:

1. Select an atora from lhs(C) as follows:

(@) Ifrhs(C) Cm, then select an atome lhs(C)N
m.

(b) If rhs(C) Z m, then select an arbitrary atoare
lhs(C).

2. ConstructC' as a definite clause such that
headC’) = aandbody(C’) = rhs(C).

It is obvious thatrf is a model oD. Letm’ = 2 (D).
Sincen?’ is the least model oD, m” C m'. Since
m' is a model ofC<, N satisfies all negative clauses
in C<. Sincem” C m', m" also satisfies all negative
clausesirCs. Itfollowsthat L ¢ 2/ (D). Hencem'’ €
MM(Cs).

So MM is a representative mapping bodels
By Theorem 6 and Proposition[M is a target map-
ping. O

Theorem 13. For any DC DcL, MM(D) = 12(D).

Proof: LetD C DcL. Then Dc(INsT(D, G)) is
the singleton sefINST(D, G)}. Obviously, M (D) =
M(INST(D, G)) and_L ¢ M(INST(D, G)). It follows
that
MM(D) = {M (D) | (D' € Dc(INST(D, G))) &
(L ¢ M(D))}
{M(INST(D, G))}

{M(D)}
Tz(D).

O
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Answer

)

Model intersection

Models

Repr€ sentative
mapping

Intersection

Equivalent
transformation

Figure 1: Target mappings and ET computation paths.

4.4 Computation Cost for Solving Ml
Problems

Given a seCsof clauses, a user-defined atanand
an exit mappingd, the answer to the MI problem
(Cs ), i.e.,ansu (Cs ¢) = ¢(NModel{Cs)), can be
directly obtained by the computation shown in the
leftmost path in Fig. 1.

By Theorems 4, 9, and 12, eachMbdels 11, and
MM is a target mapping. By Theorem 8, whh=1,
ansy (Cs ¢) can be obtained as follows:

1. Construc& = (Cs ¢).

2. Construct an ET sequence basedvodelsand
MM starting with § and ending withS, =
(Cs, ¢n) such thaCs, € dom(11).

- angai (Cs¢) = on(NT2(Cx)).
For the discussion below, the following notation is
assumed:

e For anyS, S € STATE, lettrang(S, S) denote the
transformation oSinto S, andtime(trans(S, S))
denote the computation time required for this
transformation step.

e Letmbe a state mapping. For any target mapping
T andS e STATE, let comft,S) denote the com-
putation ofp (N t(Cs)), wherer(S) = (Cs ¢), and
lettime(compT, S)) denote the amount of time re-
quired for this computation.

Using this notation, the time of the above solution by
the ET sequenc, S, . . ., Sy with 11 above is eval-
uated by

T, = ZL time(trany(S_1,S)) + time(comf(11,Sy)).

By the definition ofty, timelcomgti,Sy)) is very

Ci: FM(X) < FP(x)

Co: FP(john) «

Cs: FP(mary) «

Ca: teachjohnai) «+

Cs: Stpaul) +

Cs: AC(ai) «

Cr: Tp(kr) «

Cs: Tp(lp) «

Co: curr(x,z) « exantx,y),subjecty, z), S{(x),

Ca(y), Tp(2)
mayDoThesix,y) < curr(x,z),experty, z),
St(x), Tp(2), FP(y),
AC(w), teact(y,w)
mayDoThesix,y) <+ St(x), NFP(y)
exangpaul ai) <
subjectai, kr)
subjectai,Ip) «
expertjonn kr) <
expertmary,lp) «+
AC(X) + teach{mary,x)
+ AC(x),BC(x)
AC(x),BC(x) + Co(X)
Co(x) < AC(x)
Co(x) + BC(x)
FP(x) < NFP(x)
+ NFP(x),teactx,y), Co(y)
teachy, x), NFP(y) < FP(y), funcf(y,x)
Co(x), NFP(y) < FP(y),funcp(y,x)
func(johnai) <
+ funcg(mary, ai)

Cloi

Ci1:
Cio:
Cis:
C14Z
Cis:
Cie:
Ci7:
Cis:
Cio:
Coo:
Cor:
Coo:
Cos:
Coa:
Cos:
Coe:
Cor:

Figure 2: Clauses representing the background knowledge
of the modifiednayDoThesiproblem.

sequence frong to S, is also very small, the value
T, is small enough and the solution by this ET se-
guence withr; can be efficient. This is a basic strat-
egy to obtain an efficient solution for a MI problem.

In order to uset; after repeated equivalent
transformation, the clause s€ls, determined by
(S,), where §, is the final state obtained from
the ET sequencdS,Si,...,S)), must be inside
dom(t1). In other words, the role of the ET sequence
[S0,S1,...,S] is to construcCs, that enterslonm(t1)
starting fromS,.

5 EXAMPLE

Usual first-order atoms are used for illustration be-
low. To apply the proposed theory in this section,
a specialization systeq#,, Gy, S, M) corresponding
to the usual first-order space is used, whégds the
set of all first-order atomsj, is the set of all ground

small. Assuming each transformation step in the ET first-order atoms,S is the set of all substitutions on
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A,, andy, provides the specialization operation cor-
responding to the usual application of substitutions in
S to atoms in4,.

5.1 Problem Description

Let Cs be the set consisting of the claus€s—
Cy7 in Fig. 2. These clauses are obtained from
the mayDoThesigproblem given in (Donini et al.,
1998) with some modificatioh. All atoms ap-
pearing in Fig. 2 belong to4,. The unary pred-
icates NFP, FP, FM, Co, AC, BC, St and Tp
denote “non-teaching full professor,” “full profes-
sor,” “faculty member,” “course,” “advanced course,”
“basic course,” “student,” and “topic,” respectively.
The clause$y—Cy1 together provide the conditions
for a student to do his/her thesis with a profes-
sor, wheranayDoThesig, p), curr(s,t), exper{p,t),
exants,c), andsubjectc,t) are intended to mears*“
may do his/her thesis with,” “ s studiedt in his/her
curriculum,” “p is an expertirt,” “ s passed the exam
of ¢,” and “c coverst,” respectively, for any studesst
any professop, any topict, and any course.

Let a be the atonmayDoThesigaul x). We con-
sider the QA probleniCs,a), which is to find all stu-
dents who may do their theses witlaul Let ¢ be
defined by: for anyé C G,

$(G) = {mayDoThesipaul,x) | angx) € G},

whereansis a unary predicate denoting “answer.”
The QA problem(Cs a) above can then be trans-
formed into a MI problemCsuU {Co}, ¢), whereCy
is the clause given by:

Co: angx) + mayDoThesigpaul, x)

Using rules for transformation of clauses given

in Sections 5.2-5.4, how to compute the answer to

the MI problem(CsuU {Co},9) is illustrated in Sec-
tion 5.5.

5.2 Unfolding Operation

Assume that:
e CsCCLs.
e D is a set of definite clauses in.S.

e occis an occurrence of an atdmin the right-hand
side of a claus€ in Cs

2To represent the originahayDoThesigproblem in a

clausal form, extended clauses with function variables are
used. To change atoms with function variables into user-

defined atoms, théuncfy predicate is used in the clauses
Co4—Cop7.

By unfolding Cs using D at ocg Csis transformed
into

(Cs—{C})U(|_J{resolventC,C',b) |C' € D}),
where for eaclC’ € D, resolvenfC,C',b) is defined
as follows, assuming thatis a renaming substitution

for usual variables such th@tandC’p have no usual
variable in common:

1. If bandheadC'p) are not unifiable, then
resolventC,C',b) = &.
2. If they are unifiable, then
resolventC,C’,b) = {C"},

whereC” is the clause obtained fro@ andC'p
as follows, assuming thdt is the most general
unifier ofb andheadC'p):

(a) Ihs(C") = Ins(CB)
(b) rhs(C”) = (rhs(C8) — {bB}) UbodyC'pb)

The resulting clause set is denoted byrdLD(Cs
D,occ).

5.3 ET by Unfolding and Definite-clause
Removal

For any predicate, let Atomgp) denote the set of
all atoms having the predicaj@ Equivalent trans-
formation (ET) of clauses using unfolding and using
definite-clause removal are formulated below.

Theorem 14. Let CsC CLs and ac 4,. Assume that:

1. gis the predicate of the query atom a.
2. pis apredicate such that q.

3. Dis a set of definite clauses in Cs that satisfies the
following conditions:

(a) For any definite clause € D,
headC) € Atomgp).
(b) For any clause Cc Cs—D,
lhs(C') NAtomgp) = @.

4. occ is an occurrence of an atom in Atdipsin
the right-hand side of a clause in €<D.
Then the following two sets are equal:
e (NModelgCs)) Nrep(a)
¢ (NModelgUNFOLD(Cs,D,occ)))Nrep(a). O
Theorem 15. Let CsC CLs and ac 4,. Assume that:
1. qis the predicate of the query atom a.
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2. pis a predicate such that+ g.

3. Dis aset of definite clauses in Cs that satisfies the
following conditions:

(a) For any definite clause € D,
headC) € Atomgp).
(b) For any clause Ce Cs— D,
lhs(C") N Atomgp) = @.
4. For any clause Ce Cs—D,
rhs(C") N Atomgp) = @.

Then the following two sets are equal:
¢ (NModelgCs)) Nrep(a)
¢ (NModelgCs— D)) Nrep(a) O

5.4 Other Transformations

5.4.1 Elimination of Subsumed Clauses and
Elimination of Valid Clauses

A clauseC; is said tosubsume clauseC; iff there
exists a substitutio® for usual variables such that
Ihs(C1)6 C Ihs(Cz) and rhs(Cq)0 C rhs(Cz). If a
clause seCs contains clause€; andC, such that
C;1 subsume<,, then Cs can be transformed into
Cs— {Cz}

A clause isvalid iff all of its ground instances are
true. Given a claus€, if some atom inrhs(C) be-
longs tolhs(C), thenC is valid. A valid clause can be
removed.

5.4.2 Side-change Transformation

Assume thatp is a predicate occurring in a clause
setCsand p does not appear in a query atom under
consideration. The clause g8 can be transformed
by changing the clause sides pfatoms as follows:
First, determine a new predicat®tp for p. Next,
move allp-atoms in each clause to their opposite side
in the same clause (i.e., from the left-hand side to the
right-hand side and vice versa) with their predicates
being changed fromp to notp. Side-change transfor-
mation is useful for decreasing the number of atoms
in a multi-head clause (i.e., a clause whose left-hand
side contains more than one atom)Xdeswhen (i) ev-

ery negative clause i€s has at most on@-atom in

its right-hand side and (ii) every non-negative clause
in Cshas morgp-atoms in its left-hand side than those
in its right-hand side.
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Cos: teachjohnai) <
Cog: AC(ai) —
30: AC(X) + teachmary,x)

Cs1: + AC(x),BC(x)

Cs2: AC(x),BC(x) < Co(x)

Casz: Co(x) + AC(x)

Csa: Co(x) + BC(x)

Css: < NFP(x),teachx,y),Co(y)

Cse: andy) < NFP(x)

Cs7:  angjohn) «+ AC(x),teachjohn,x),Co(ai)

Csg: angmary) < AC(x),teach{mary,x),Co(ai)

Cso:  angjohn) « AC(x),teachjohn,x),
NFP(john), Co(ai)

Cs0: angmary) < AC(x),teach{mary,x),
NFP(mary), Co(ai)

Ca1: teachjohnai), NFP(john) «

C42: Co(ai),NFP(john) <

Figure 3: Clauses obtained by application of unfolding and
application of basic transformation rules.

Caz: angx),notNFRX) «
Caa: notNFR(john) «
Css: angjohn) «

Css: + BC(ai)

Figure 4: Clauses obtained by further application of trans-
formation rules.

5.5 ET Computation
The clause sefsU {Cp}, consisting 0y—Cy7, given

in Section 5.1 is transformed using ET rules provided
by Sections 5.2-5.4 as follows:

e By (i) unfolding using the definitions of the predi-
catesmayDoThesig=P, Tp, curr, subject expert
St exam funcf, andFM, (ii) removing these def-
initions using definite-clause removal, and (iii) re-
moval of valid clauses, the claus€—Cy; are
transformed into the claus€sg—Cay in Fig. 3.

¢ Side-change transformation fi\FP enables (i)
unfolding using the definitions ofeach Co,
and AC, (ii) elimination of these definitions us-
ing definite-clause removal, (iii) removal of valid
clauses, and (iv) elimination of subsumed clauses.
By such side-change transformation followed by
transformation of these four type€ys-Cys2 are
transformed into the claus€s3-Cyg in Fig. 4.

e Side-change transformation folotNFP enables
unfolding using the definitions dBC and NFP.

By unfolding and definite-clause remova,s—
Cy6 are transformed intGys, i.e., (angjohn) «).

As a result, the Ml probleniCsU {Co}, ) in Sec-

tion 5.1 is transformed equivalently into the Ml prob-
lem ({(angjohn) «<-)},$). Hence
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