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Abstract: A model-intersection problem (MI problem) is a pair of a set of clauses and an exit mapping. We define MI
problems on specialization systems, which include many useful classes of logical problems, such as proof
problems on first-order logic and query-answering (QA) problems in pure Prolog and deductive databases.
The theory presented in this paper makes clear the central and fundamental structure of representation and
computation for many classes of logical problems by (i) axiomatization and (ii) equivalent transformation.
Clauses in this theory are constructed based on abstract atoms and abstract operation on them, which can be
used for representation of many specific subclasses of problems with concrete syntax. Various computation
can be realized by repeated application of many equivalent transformation rules, allowing many possible
computation procedures, for instance, computation procedures based on resolution and unfolding. This theory
can also be useful for inventing solutions for new classes of logical problems.

1 INTRODUCTION

This paper introduces amodel-intersection problem
(MI problem), which is a pair〈Cs,ϕ〉, whereCs is a
set of clauses andϕ is a mapping, called anexit map-
ping, used for constructing the output answer from the
intersection of all models ofCs. More formally, the
answer to a MI problem〈Cs,ϕ〉 is ϕ(

⋂
Models(Cs)),

whereModels(Cs) is the set of all models ofCs. The
set of all MI problems constitutes a very large class of
problems and is of great importance.

A QA problem is a pair〈Cs,a〉, whereCs is a set
of clauses anda is a user-defined query atom. The
answer to such a QA problem〈Cs,a〉 is defined as
the set of all ground instances ofa that are logical
consequences ofCs. A QA problem〈Cs,a〉 is a MI
problem〈Cs,ϕ1〉, where for any setG of ground user-
defined atoms,ϕ1(G) is the intersection ofG and the
set of all ground instances ofa. Characteristically, a
QA problem is an “all-answers finding” problem, i.e.,
all ground instances of a given query atom satisfying
the requirement above are to be found. Many logic
programming languages, including Datalog, Prolog,
and other extensions of Prolog, deal with specific sub-
classes of QA problems.

The class of proof problems is also a subclass of
MI problems. In contrast to a QA problem, a proof

problem, is a “yes/no” problem; it is concerned with
checking whether or not one given logical formula is a
logical consequence of another given logical formula.
Formally, a proof problem is a pair〈E1,E2〉, whereE1
andE2 are first-order formulas, and the answer to this
problem is defined to be “yes” ifE2 is a logical con-
sequence ofE1, and it is defined to be “no” otherwise.

Historically, proof problems were first solved
(Robinson, 1965). Then QA problems on pure Prolog
were solved based on the resolution principle, which
is a solution for proof problems. This approach is
proof-centered. It has been believed that computa-
tion of Prolog is an inference process. The theory of
SLD resolution was used for the correctness of Pro-
log computation. Many solutions proposed so far for
some other classes of logical problems are also basi-
cally proof-centered.

In contrast, it was shown in (Akama and Nantajee-
warawat, 2013) that the set of all proof problems can
be embedded into the set of all QA problems. This
result supports a QA-centered approach to solving
proof problems, i.e., first, develop a general solution
for QA problems, and then, apply it as a solution for
proof problems (Akama and Nantajeewarawat, 2012).
Since a QA problem is a MI problem (as will be seen
in Theorem 3), we have

PROOF⊂ QA ⊂MI ,
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where PROOF, QA, and MI denote the class of all
proof problems, the class of all QA problems, and the
class of all MI problems, respectively. The class of
all MI problems is larger than that of all QA prob-
lems, and it is a more natural class to be solved by the
method presented in this paper. A general solution
method for MI problems can be applied to any arbi-
trary QA problem and any arbitrary proof problem.

MI problems are axiomatically constructed on an
abstract structure, called aspecialization system. It
consists of abstract atoms and abstract operations
(extensions of variable-substitution operations) on
atoms, calledspecializations. These abstract com-
ponents can be any arbitrary mathematical objects as
long as they satisfy given axioms. Abstract clauses
can be built on abstract atoms. This is a sharp contrast
to most of the conventional theories in logic program-
ming, where concrete syntax is usually used. In Pro-
log, for example, usual first-order atoms and substi-
tutions with concrete syntax are used, and there is no
way to give a foundation for other forms of extended
atoms and for various specialization operations other
than the usual variable-substitution operation.

An axiomatic theory enables us to develop a very
general theory. By instantiating a specialization sys-
tem to a specific domain and by imposing certain re-
strictions on clauses, our theory can be applied to
many subclasses of MI problems.

We proposed a general schema of solving MI
problems by equivalent transformation (ET), where
problems are solved by repeated simplification. We
introduced the concept of target mapping and pro-
posed three target mappings. Since transformation
preserving a target mapping is ET, target mappings
provide a strong foundation for inventing many ET
rules for solving MI problems on clauses.

An ET-based solution consists of the following
steps: (i) formalize an initial MI problem on some
specialization system, (ii) prepare ET rules, (iii) con-
struct an ET sequence, (iv) compute a set of models
using a target mapping, (v) apply the set-intersection
operation to the resulting set of models, and (vi) apply
an exit mapping to the intersection result to obtain a
solution.

To begin with, Section 2 recalls the concept of
specialization system and formalizes MI problems on
a specialization system. Section 3 defines the notions
of a target mapping and a representative mapping, and
introduces a schema for solving MI problems based
on equivalent transformation (ET) preserving target
mappings. The correctness of this solution schema
is shown. Section 4 applies the general ET-based
schema in Section 3 to the domain of clause sets with
built-in constraint atoms. A target mapping,MM, is

introduced for associating with each clause set a col-
lection of its specific models computed in a bottom-up
manner. Section 5 shows an example of solution of a
MI problem. Section 6 concludes the paper.

The notation that follows holds thereafter. Given
a set A, pow(A) denotes the power set ofA and
partialMap(A) the set of all partial mappings onA
(i.e., fromA to A). For any partial mappingf from a
setA to a setB, dom( f ) denotes the domain off , i.e.,
dom( f ) = {a | (a∈ A) & ( f (a) is defined)}.

2 CLAUSES AND
MODEL-INTERSECTION
PROBLEMS

2.1 Specialization Systems

A substitution {X/ f (a),Y/g(z)} changes an atom
p(X,5,Y) in the term domain intop( f (a),5,g(z)).
Generally, a substitution in first-order logic defines
a total mapping on the set of all atoms in the term
domain. Composition of such mappings is also re-
alized by some substitution. There is a substitution
that does not change any atom (i.e., the empty sub-
stitution). A ground atom in the term domain is a
variable-free atom.

Likewise, in the string domain, substitutions for
strings are used. A substitution{X/“aYbc” ,Y/“xyz”}
changes an atomp(“X5Y”) into p(“aYbc5xyz”).
Such a substitution for strings defines a total mapping
on the set of all atoms that may include string vari-
ables. Composition of such mappings is also realized
by some string substitution. There is a string substi-
tution that does not change any atom (i.e., the empty
substitution). A ground atom in the string domain is a
variable-free atom.

A similar operation can be considered in the
class-variable domain. Consider, for example, an
atom p(X : animal,Y : dog,Z : cat) in this domain,
whereX : animal, Y : dog, and Z : cat represent an
animal object, a dog object, and a cat object, re-
spectively. When we obtain additional information
that X is a dog, we can restrictX : animal into
X : dog and the atomp(X : animal,Y : dog,Z : cat)
into p(X : dog,Y : dog,Z : cat). By contrast, with new
information thatZ is a dog, we cannot restrictZ : cat
and the above atom sinceZ cannot be a dog and a cat
at the same time. More generally, such a restriction
operation may not be applicable to some atoms, i.e.,
it defines a partial mapping on the set of all atoms.
Composition of such partial mappings is also a par-
tial mapping, and we can determine some composi-
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tion operation corresponding to it. An empty substi-
tution that does not change any atom can be intro-
duced. A ground atom in the class-variable domain is
a variable-free atom.

In order to capture the common properties of such
operations on atoms, the notion of a specialization
system was introduced around 1990.

Definition 1. A specialization systemΓ is a quadru-
ple 〈A ,G ,S ,µ〉 of three setsA , G , andS , and a map-
pingµ from S to partialMap(A) that satisfies the fol-
lowing conditions:

1. (∀s′,s′′ ∈ S)(∃s∈ S) : µ(s) = µ(s′)◦µ(s′′).
2. (∃s∈ S)(∀a∈ A) : µ(s)(a) = a.
3. G ⊆ A .

Elements ofA , G , andS are calledatoms, ground
atoms, and specializations, respectively. The map-
ping µ is called thespecialization operatorof Γ. A
specializations∈ S is said to beapplicableto a∈ A
iff a∈ dom(µ(s)).

Assume that a specialization systemΓ = 〈A ,G ,S ,
µ〉 is given. A specialization inS will often be denoted
by a Greek letter such asθ. A specializationθ ∈ S
will be identified with the partial mappingµ(θ) and
used as a postfix unary (partial) operator onA (e.g.,
µ(θ)(a) = aθ), provided that no confusion is caused.
Let ε denote the identity specialization inS , i.e.,aε=
a for anya ∈ A . For anyθ,σ ∈ S , let θ ◦σ denote a
specializationρ ∈ S such thatµ(ρ) = µ(σ)◦µ(θ), i.e.,
a(θ◦σ) = (aθ)σ for anya∈ A .

2.2 User-defined Atoms, Constraint
Atoms, and Clauses

Let Γu = 〈Au,Gu,Su,µu〉 andΓc = 〈Ac,Gc,Sc,µc〉 be
specialization systems such thatSu = Sc. Elements
of Au are calleduser-defined atomsand those ofGu
are calledground user-defined atoms. Elements of
Ac are calledconstraint atomsand those ofGc are
calledground constraint atoms. Hereinafter, assume
that S = Su = Sc. Elements ofS are calledspecial-
izations. Let TCON denote the set of all true ground
constraint atoms.

A clauseon 〈Γu,Γc〉 is an expression of the form

a1, . . . ,am← b1, . . . ,bn,

wherem≥ 0, n≥ 0, and each ofa1, . . . ,am,b1, . . . ,bn
belongs toAu∪Ac. It is a groundclause on〈Γu,Γc〉
iff each of a1, . . . ,am,b1, . . . ,bn belongs toGu∪Gc.
Let CLS denote the set of all clauses on〈Γu,Γc〉.

2.3 Interpretations and Models

An interpretation is a subset ofGu. Unlike ground
user-defined atoms, the truth values of ground con-
straint atoms are predetermined by TCON (cf. Sec-
tion 2.2) independently of interpretations. A ground
constraint atomg is true iff g∈ TCON. It is false oth-
erwise.

A ground clauseC = (a1, . . . ,am← b1, . . . ,bn) is
truewith respect to an interpretationG⊆Gu (in other
words,G satisfies C) iff at least one of the following
conditions is satisfied:

1. There existsi ∈ {1, . . . ,m} such thatai ∈ G∪
TCON.

2. There existsj ∈ {1, . . . ,n} such thatb j /∈ G∪
TCON.

A clauseC is true with respect to an interpretation
G⊆ Gu (in other words,G satisfies C) iff for any spe-
cializationθ such thatCθ is ground,Cθ is true with
respect toG. A modelof a clause setCs⊆ CLS is an
interpretation that satisfies every clause inCs.

Note that the standard semantics is taken in this
paper, i.e., all models of a formula are considered
instead of specific ones, such as those considered in
the minimal model semantics (Clark, 1978; Lloyd,
1987) (i.e., the semantics underlying logic program-
ming) and those considered in stable model semantics
(Gelfond and Lifschitz, 1988; Gelfond and Lifschitz,
1991) (i.e., the semantics underlying answer set pro-
gramming).

2.4 Model-Intersection (MI) Problems

Let Modelsbe a mapping that associates with each
clause set the set of all of its models, i.e.,Models(Cs)
is the set of all models ofCs for anyCs⊆ CLS.

Assume that a personA and a personB are in-
terested in knowing which atoms inGu are true and
which atoms inGu are false. They want to know the
unknown setG of all true ground atoms. Due to short-
age of knowledge,Astill cannot determine one unique
true subset ofGu. The personA can only limit possi-
ble subsets of true atoms by specifying a subsetGs
of pow(Gu). The unknown setG of all true atoms
belongs toGs. One way forA to inform this knowl-
edge toB compactly is to send toB a clause setCs
such thatGs⊆ Models(Cs). ReceivingCs, B knows
thatModels(Cs) includes all possible intended sets of
ground atoms, i.e.,G∈Models(Cs). As such,B can
know that each ground atom outside

⋃
Models(Cs) is

false, i.e., for anyg ∈ Gu, if g /∈ ⋃
Models(Cs), then

g /∈ G. The personB can also know that each ground
atom in

⋂
Models(Cs) is true, i.e., for anyg∈ Gu, if
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g∈⋂
Models(Cs), theng∈G. This shows the impor-

tance of calculating
⋂

Models(Cs).
A model-intersection problem(MI problem) is a

pair〈Cs,ϕ〉, whereCs⊆CLS andϕ is a mapping from
pow(Gu) to some setW. The mappingϕ is called an
exit mapping. The answer to this problem, denoted by
ansMI (Cs,ϕ), is defined by

ansMI (Cs,ϕ) = ϕ(
⋂

Models(Cs)),

where
⋂

Models(Cs) is the intersection of all models
of Cs. Note that whenModels(Cs) is the empty set,⋂

Models(Cs) = Gu.

2.5 Query-Answering (QA) Problems

Let Cs⊆ CLS. For anyCs′ ⊆ CLS, Cs′ is a logical
consequenceof Cs, denoted byCs |= Cs′, iff every
model ofCs is also a model ofCs′. For anya∈ Au,
a is a logical consequenceof Cs, denoted byCs|= a,
iff Cs|= {(a←)}.

A query-answering problem(QA problem) in this
paper is a pair〈Cs,a〉, whereCs⊆ CLS and a is a
user-defined atom inAu. Theanswerto a QA prob-
lem 〈Cs,a〉, denoted byansQA(Cs,a), is defined by

ansQA(Cs,a) = {aθ | (θ ∈ S) & (aθ ∈ Gu) &
(Cs|= (aθ←))}.

Theorem 1. For any Cs⊆ CLS and a∈ Au,

ansQA(Cs,a) = rep(a)∩ (
⋂

Models(Cs)),

where rep(a) denotes the set of all ground instances
of a.

Proof: Let Cs⊆ CLS anda ∈ Au. By the defi-
nition of |=, for any ground atomg∈ Gu, Cs |= g iff
g∈⋂

Models(Cs). Then

ansQA(Cs,a)
= {aθ | (θ ∈ S) & (aθ ∈ Gu) & (Cs|= (aθ←))}
= {g | (θ ∈ S) & (g= aθ) & (g∈ Gu) &

(Cs|= (g←))}
= {g | (g∈ rep(a)) & (Cs|= (g←))}
= {g | (g∈ rep(a)) & (g∈ (

⋂
Models(Cs)))}

= rep(a)∩ (⋂Models(Cs)).

Theorem 1 shows the importance of the intersec-
tion of all models of a clause set. By this theorem, the
answer to a QA problem can be rewritten as follows:

Theorem 2. Let Cs⊆ CLS and a∈ Au. Then
ansQA(Cs,a) = ansMI (Cs,ϕ1), where for any G⊆Gu,
ϕ1(G) = rep(a)∩G.

Proof: It follows from Theorem 1 and the defini-
tion of ϕ1 that ansQA(Cs,a) = ϕ1(

⋂
Models(Cs)) =

ansMI (Cs,ϕ1).

This is one way to regard a QA problem as a MI
problem, which can be understood as follows: The set⋂

Models(Cs) often contains too many ground atoms.
The setrep(a) specifies a range of interest in the set
Gu. The exit mappingϕ1 focuses attention on the part
rep(a) by making intersection with it.

Theorem 3 below shows another way to formalize
a QA problem as a MI problem.

Theorem 3. Let Cs⊆ CLS and a∈ Au. Then
ansQA(Cs,a) = ansMI (Cs∪{ans(a)← a},ϕ2), where
for any G⊆ Gu, ϕ2(G) = {x | ans(x) ∈G}.1

Proof: By Theorem 1 and the definition ofϕ2,

ansQA(Cs,a)
= rep(a)∩ (⋂Models(Cs))
= ϕ2(

⋂
Models(Cs∪{ans(a)← a}))

= ansMI (Cs∪{ans(a)← a},ϕ2).

In logic programming (Lloyd, 1987), a problem
represented by a pair of a set of definite clauses and a
query atom has been intensively discussed. In the de-
scription logic (DL) community (Baader et al., 2007),
a class of problems formulated as conjunctions of
DL-based axioms and assertions together with query
atoms has been discussed (Tessaris, 2001). These two
problem classes can be formalized as subclasses of
QA problems considered in this paper.

3 SOLVING MI PROBLEMS BY
EQUIVALENT
TRANSFORMATION

A general schema for solving MI problems based on
equivalent transformation is formulated and its cor-
rectness is shown (Theorem 8).

3.1 Preservation of Partial Mappings
and Equivalent Transformation

Terminologies such as preservation of partial map-
pings and equivalent transformation are defined in
general below. They will be used with a specific class
of partial mappings called target mappings, which
will be introduced in Section 3.2.

1The expressionans(a) is not an atom in the usual first-
order logic space. One way to understand Theorem 3 in the
context of the conventional first-order logic is (i)ans(a) is
interpreted asans(v1, . . . ,vn), wherev1, . . . ,vn are the vari-
ables occurring ina, and then (ii)ϕ2(G) = {x | ans(x) ∈G}
is interpreted asϕ2(G) = {a′ | a′ = ans(t1, . . . , tn) ∈G}.
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Assume thatX and Y are sets andf is a par-
tial mapping fromX to Y. For anyx,x′ ∈ dom( f ),
transformation ofx into x′ is said topreserve f iff
f (x) = f (x′). For anyx,x′ ∈ dom( f ), transformation
of x into x′ is calledequivalent transformation(ET)
with respect tof iff the transformation preservesf ,
i.e., f (x) = f (x′).

Let F be a set of partial mappings from a setX
to a setY. Givenx,x′ ∈ X, transformation ofx into
x′ is calledequivalent transformation(ET) with re-
spect toF iff there exists f ∈ F such that the trans-
formation preservesf . A sequence[x0,x1, . . . ,xn] of
elements inX is called anequivalent transformation
sequence(ET sequence) with respect toF iff for any
i ∈ {0,1, . . . ,n− 1}, transformation ofxi into xi+1 is
ET with respect toF. When emphasis is placed on
the initial elementx0 and the final elementxn, this se-
quence is also referred to as an ET sequencefrom x0
to xn.

3.2 Target Mappings

Given a MI problem〈Cs,ϕ〉, sinceansMI (Cs,ϕ) =
ϕ(

⋂
Models(Cs)), the answer to this MI problem is

determined uniquely byModels(Cs) andϕ. As a re-
sult, we can equivalently consider a new MI prob-
lem with the same answer by switching fromCs to
another clause setCs′ if Models(Cs) = Models(Cs′).
According to the general terminologies defined
in Section 3.1, on condition thatModels(Cs) =
Models(Cs′), transformation fromx = Cs into x′ =
Cs′ preservesf = Modelsand is called ET with re-
spect tof = Models, where (i)x,x′ ∈ pow(CLS) and
(ii) Models(x),Models(x′) ∈ pow(pow(G)). We can
also consider an ET sequence[Cs0,Cs1, . . . ,Csn] of
elements inpow(CLS) with respect to a singleton set
{Models}. MI problems can be transformed into sim-
pler forms by ET preservingModels.

In order to use more partial mappings for simpli-
fication of MI problems, we extend our consideration
from the specific mappingModelsto a class of partial
mappings, called GSETMAP, defined below.

Definition 2. GSETMAP is the set of all partial map-
pings frompow(CLS) to pow(pow(G)).

As defined in Section 2.4,Models(Cs) is the set of
all models ofCs for anyCs⊆ CLS. Since a model is
a subset ofG , Modelsis regarded as a total mapping
from pow(CLS) to pow(pow(G)). Since a total map-
ping is also a partial mapping, the mappingModelsis
a partial mapping frompow(CLS) to pow(pow(G)),
i.e., it is an element of GSETMAP.

A partial mappingM in GSETMAP is of par-
ticular interest if

⋂
M(Cs) =

⋂
Models(Cs) for any

Cs∈ dom(M). Such a partial mapping is called atar-
get mapping.

Definition 3. A partial mappingM ∈ GSETMAP is a
target mappingiff for any Cs∈ dom(M),

⋂
M(Cs) =⋂

Models(Cs).

It is obvious that:

Theorem 4. The mapping Models is a target map-
ping.

Transformation preserving target mappings and
computation of a target mapping constitute a method
for solving MI problems in this paper.

For more general consideration, we introduce a bi-
nary relation� on GSETMAP as follows:

Definition 4. Let M1,M2 ∈ GSETMAP. M1 �M2 iff
the following conditions are satisfied:

1. dom(M1)⊆ dom(M2).

2. For anyCs in dom(M1),
⋂

M1(Cs) =
⋂

M2(Cs).

Obviously,� is reflexive and transitive. It is also
obvious that:

Proposition 1. For any M∈GSETMAP, M is a target
mapping iff M�Models.

By its definition, a target mappingM satisfies the
following two conditions: (i) the domain ofM is a
subset ofpow(CLS), and (ii) for any clause setCs in
the domain ofM, the intersection of all ground-atom
sets inM(Cs) is equal to the intersection of all mod-
els ofCs. By the first condition, since the domain of
M can be smaller than that of the mappingModels,
we can expect a more efficient program for comput-
ing M(Cs) for Cs in the domain ofM. By the second
condition, the correctness of transformation and com-
putation is guaranteed (Theorems 5 and 8).

Let 〈Cs,ϕ〉 be a MI problem. IfM is a target map-
ping such thatM(Cs) is defined, thenM can be used
for computing the answer to〈Cs,ϕ〉. More precisely:

Theorem 5. Let 〈Cs,ϕ〉 be a MI problem and M∈
GSETMAP. If M is a target mapping and Cs∈
dom(M), then ansMI (Cs,ϕ) = ϕ(

⋂
M(Cs)).

Proof: Assume thatM is a target mapping
andCs∈ dom(M). Then

⋂
M(Cs) =

⋂
Models(Cs).

Consequently,ansMI (Cs,ϕ) = ϕ(
⋂

Models(Cs)) =
ϕ(

⋂
M(Cs)).
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3.3 Representative Mappings

The relations “smaller than” and “finer than” on
GSETMAP are introduced below.

Definition 5. LetM1,M2∈GSETMAP. M1 issmaller
thanM2 iff the following conditions are satisfied:

1. dom(M1)⊆ dom(M2).
2. For anyCs∈ dom(M1), M1(Cs)⊆M2(Cs).

Definition 6. Let M1,M2 ∈ GSETMAP. M1 is finer
thanM2 iff the following conditions are satisfied:

1. dom(M1)⊆ dom(M2).
2. For anyCs∈ dom(M1) and anym2 ∈ M2(Cs),

there existsm1 ∈M1(Cs) such thatm1⊆m2.

A smaller target mapping is basically preferable
in order to reduce the cost of computing an answer.
The concept of representative mapping defined below
is useful for constructing small target mappings.

Definition 7. Let M1,M2 ∈ GSETMAP. M1 is a rep-
resentative mappingof M2 iff the following condi-
tions are satisfied:

1. M1 is smaller thanM2.
2. M1 is finer thanM2.

Theorem 6. Let M1,M2 ∈GSETMAP. If M1 is a rep-
resentative mapping of M2, then M1 �M2.

Proof: Suppose thatM1 is a representative map-
ping of M2. Let Cs∈ dom(M1). SinceM1 is smaller
than M2, M1(Cs) ⊆ M2(Cs). Thus

⋂
M1(Cs) ⊇⋂

M2(Cs). We show that
⋂

M1(Cs) ⊆ ⋂
M2(Cs)

as follows: Assume thatg ∈ ⋂
M1(Cs). Let m2 ∈

M2(Cs). Since M1 is finer thanM2, there exists
m1∈M1(Cs) such thatm1⊆m2. Sinceg∈⋂

M1(Cs),
g belongs tom1. Sog∈m2, and thus,g∈ ⋂

M2(Cs).
It follows that

⋂
M1(Cs) =

⋂
M2(Cs). HenceM1 �

M2.

3.4 Solving MI Problems by Equivalent
Transformation

Next, a schema for solving MI problems based
on equivalent transformation (ET) preserving target
mappings is formulated. The notions of preservation
of target mappings, ET with respect to target map-
pings, and an ET sequence are obtained by specializ-
ing the general definitions in Section 3.1.

Let π be a mapping, calledstate mapping, from a
given set STATE to the set of all MI problems. Ele-
ments of STATE are calledstates.

Definition 8. Let 〈S,S′〉 ∈ STATE×STATE. 〈S,S′〉 is
an ET stepwith π iff if π(S) = 〈Cs,ϕ〉 andπ(S′) =
〈Cs′,ϕ′〉, thenansMI (Cs,ϕ) = ansMI (Cs′,ϕ′).

Definition 9. A sequence[S0,S1, . . . ,Sn] of elements
of STATE is an ET sequencewith π iff for any i ∈
{0,1, . . . ,n−1}, 〈Si ,Si+1〉 is an ET step withπ.

We can construct an ET step by using transfor-
mation preserving a target mapping. ET steps used
for solving MI problems are mainly realized based on
target mappings.

Theorem 7. Let S,S′ ∈ STATE. Assume thatπ(S) =
〈Cs,ϕ〉, π(S′) = 〈Cs′,ϕ〉, and M is a target mapping
such that M(Cs) = M(Cs′). Then〈S,S′〉 is an ET step
with π.

Proof:

ansMI (Cs,ϕ)
= ϕ(

⋂
Models(Cs))

= (sinceM is a target mapping)
= ϕ(

⋂
M(Cs))

= (sinceM(Cs) = M(Cs′))
= ϕ(

⋂
M(Cs′))

= (sinceM is a target mapping)
= ϕ(

⋂
Models(Cs′))

= ansMI (Cs′,ϕ)

As shown below, we can solve MI problems by
constructing ET sequences.

Theorem 8. Assume that:

• 〈Cs,ϕ〉 is a MI problem.
• [S0,S1, . . . ,Sn] is an ET sequence withπ.
• π(S0) = 〈Cs,ϕ〉 andπ(Sn) = 〈Csn,ϕn〉.
• M is a target mapping such that Csn ∈ dom(M).

Then ansMI (Cs,ϕ) = ϕn(
⋂

M(Csn)).

Proof:

ansMI (Cs,ϕ)
= ϕ(

⋂
Models(Cs))

= (since[S0,S1, . . . ,Sn] is an ET sequence)
= ϕn(

⋂
Models(Csn))

= (sinceM is a target mapping)
= ϕn(

⋂
M(Csn)).

4 TARGET MAPPINGS FOR
CLAUSES AND COMPUTATION

Next, three target mappings are introduced, i.e.,τ1
for sets of positive unit clauses,τ2 for sets of defi-
nite clauses, andMM for sets of arbitrary clauses in
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CLS. Based on these target mappings, an ET solution
for MI problems on clauses is given according to the
general schema of Section 3.

4.1 A Target Mapping for Sets of
Positive Unit Clauses

A positive unit clauseis a clause of the form(a←),
wherea is a user-defined atom. Let PUCL denote the
set of all positive unit clauses. For any user-defined
atom a, let rep(a) denote the set of all ground in-
stances ofa.

A partial mappingτ1 ∈ GSETMAP is defined as
follows:

1. For anyF ⊆ PUCL, τ1(F) is the singleton set

{⋃{rep(a) | (a←) ∈ F}}.

2. For anyCs⊆ CLS such thatCs 6⊆ PUCL, τ1(Cs)
is undefined.

Theorem 9. τ1 is a representative mapping of Models
and is a target mapping.

Proof: Assume thatF ⊆ PUCL. Let mF =⋃{rep(a) | (a←) ∈ F}. Obviously,mF is a model
of F , i.e., mF ∈ Models(F). So τ1 is smaller than
Models. Now letm∈Models(F). For any(a←) ∈ F
and anyg ∈ rep(a), g is true with respect tom, i.e.,
g∈m. ThenmF ⊆m. Soτ1 is also finer thanModels,
whenceτ1 is a representative mapping ofModels. By
Theorem 6 and Proposition 1,τ1 is a target map-
ping.

4.2 A Target Mapping for Sets of
Definite Clauses

A definite clauseis a clause whose left-hand side con-
tains exactly one user-defined atom and no constraint
atom. Let DCL denote the set of all definite clauses.
Given a definite clauseC, the atom in the left-hand
side ofC is called theheadof C, denoted byhead(C),
and the set of all user-defined atoms and constraint
atoms in the right-hand side ofC is called thebody
of C, denoted bybody(C). Assume thatD is a set of
definite clauses in DCL. Themeaningof D, denoted
by M (D), is defined as follows:

1. A mappingTD on pow(G) is defined by: for any
setG⊆ G , TD(G) is the set

{head(Cθ) | (C∈ D) & (θ ∈ S) &
(each user-defined atom inbody(Cθ) is in G) &
(each constraint atom inbody(Cθ) is true)}.

2. M (D) is then defined as the set
⋃∞

n=1Tn
D(∅),

whereT1
D(∅) = TD(∅) and for eachn> 1, Tn

D(∅)

= TD(T
n−1
D (∅)).

Then a partial mappingτ2 ∈GSETMAP is defined
below.

1. For anyD ⊆ DCL, τ2(D) is the singleton set
{M (D)}.

2. For anyCs⊆ CLS such thatCs 6⊆ DCL, τ2(Cs) is
undefined.

Theorem 10. τ2 is a representative mapping of
Models and is a target mapping.

Proof: Let D ⊆ DCL. SinceM (D) is a model
of D, {M (D)} ⊆ Models(D). So τ2 is smaller than
Models. Let m∈Models(D). SinceM (D) is the least
model ofD, M (D) ⊆m. Soτ2 is finer thanModels.
Thenτ2 is a representative mapping ofModels, and
thus, by Theorem 6 and Proposition 1, it is a target
mapping.

Theorem 11. For any F⊆ PUCL, τ2(F) = τ1(F).

Proof: For anyF ⊆ PUCL, τ2(F) = {M (F)} =
{⋃{rep(a) | (a←) ∈ F}}= τ1(F).

4.3 A Target Mapping for Clause Sets

Given a clauseC, the set of all user-defined atoms and
constraint atoms in the left-hand side ofC is denoted
by lhs(C) and the set of all those in the right-hand
side ofC is denoted byrhs(C). A clauseC is said
to bepositiveif lhs(C) is not empty; it is said to be
negativeotherwise.

It is assumed henceforth that (i) for any constraint
atomc, not(c) is a constraint atom; (ii) for any con-
straint atomc and any specializationθ, not(c)θ =
not(cθ); and (iii) for any ground constraint atomc,
c is true iff not(c) is not true.

The following notation is used for defining a tar-
get mappingMM for arbitrary clauses in CLS (Defi-
nition 10).

1. Let Cs be a set of clauses possibly with con-
straint atoms.MV RHS(Cs) is defined as the set
{MV RHS(C) |C ∈ Cs}, where for any clauseC∈
Cs, MV RHS(C) is the clause obtained fromC as
follows: For each constraint atomc in lhs(C), re-
movec from lhs(C) and addnot(c) to rhs(C).

2. Let Cs be a set of clauses with no constraint
atom in their left-hand sides. For anyG ⊆ G ,
GINST(Cs,G) is defined as the set

{RMCON(Cθ) | (C∈ Cs) & (θ ∈ S) &
(each user-defined atom inCθ is in G) &
(each constraint atom inrhs(Cθ) is true)},
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where for any clauseC′, RMCON(C′) is the clause
obtained fromC′ by removing all constraint atoms
from it.

3. LetCsbe a set of clauses possibly with constraint
atoms. For anyG⊆ G , INST(Cs,G) is defined by

INST(Cs,G) = GINST(MV RHS(Cs),G).

4. Let Cs be a set of ground clauses with no con-
straint atom. We can construct a set of defi-
nite clauses fromCs as follows: For each clause
C∈ Cs,

• if lhs(C) = ∅, then construct a definite clause
the head of which is⊥ and the body of which
is rhs(C), where⊥ is a special symbol not oc-
curring inCs;

• if lhs(C) 6=∅, then (i) select one arbitrary atom
a from lhs(C), and (ii) construct a definite
clause the head of which isa and the body of
which isrhs(C).

Let DC(Cs) denote the set of all definite-clause
sets possibly constructed fromCs in the above
way.

Proposition 2. Let Cs⊆ CLS. For any m⊆ G , m is a
model of Cs iff m is a model ofINST(Cs,G).

Proof: INST(Cs,G) is obtained fromCs by (i)
moving constraint atoms in the left-hand sides of
clauses into their right-hand sides, (ii) instantiation of
variables into ground terms, (iii) removal of clauses
containing false constraint atoms in their right-hand
sides, and (iv) removal of true constraint atoms from
the remaining clauses. Each of the operations (i), (ii),
(iii), and (iv) preserves models.

A mappingMM is defined below.

Definition 10. A mappingMM ∈ GSETMAP is de-
fined by

MM(Cs) = {M (D) | (D ∈ DC(INST(Cs,G))) &
(⊥ /∈M (D))}

for anyCs⊆ CLS.

Theorem 12. MM is a representative mapping of
Models and is a target mapping.

Proof: First, we show thatMM is smaller than
Models. Let Cs⊆ CLS. Suppose thatm∈MM(Cs).
Let Cs′ = INST(Cs,G). Then there existsD such that
m= M (D), D ∈ DC(Cs′), and⊥ /∈M (D). We show
thatm is a model ofCs′ as follows:

• Let CP be a positive clause inCs′. SinceD ∈
DC(Cs′), there existsC ∈ D such thathead(C) ∈
lhs(CP) and body(C) = rhs(CP). Sincem satis-
fiesC, malso satisfiesCP. Hencemsatisfies every
positive clause inCs′.

• Let CN be a negative clause inCs′. SinceD ∈
DC(Cs′), there existsC′ ∈D such thathead(C′) =
⊥ and body(C′) = rhs(CN). Since⊥ /∈ M (D),
m does not includebody(C′). So rhs(CN) 6⊆ m,
whencem satisfiesCN. Hencem satisfies every
negative clause inCs′.

Som is a model ofCs′. By Proposition 2,m is a model
of Cs, i.e.,m∈Models(Cs).

Next, we show thatMM is finer thanModels. Let
Cs⊆ CLS. Suppose thatm′ ∈Models(Cs), i.e.,m′ is
a model ofCs. Let Cs′ = INST(Cs,G). By Propo-
sition 2, m′ is also a model ofCs′. Let D be a set
of definite clauses obtained fromCs′ by constructing
from each positive clauseC in Cs′ a definite clauseC′

as follows:

1. Select an atoma from lhs(C) as follows:

(a) If rhs(C)⊆m′, then select an atoma∈ lhs(C)∩
m′.

(b) If rhs(C) 6⊆m′, then select an arbitrary atoma∈
lhs(C).

2. Construct C′ as a definite clause such that
head(C′) = a andbody(C′) = rhs(C).

It is obvious thatm′ is a model ofD. Letm′′ = M (D).
Sincem′′ is the least model ofD, m′′ ⊆ m′. Since
m′ is a model ofCs′, m′ satisfies all negative clauses
in Cs′. Sincem′′ ⊆ m′, m′′ also satisfies all negative
clauses inCs′. It follows that⊥ /∈M (D). Hencem′′ ∈
MM(Cs).

So MM is a representative mapping ofModels.
By Theorem 6 and Proposition 1,MM is a target map-
ping.

Theorem 13. For any D⊆ DCL, MM(D) = τ2(D).

Proof: Let D ⊆ DCL. Then DC(INST(D,G)) is
the singleton set{INST(D,G)}. Obviously,M (D) =
M (INST(D,G)) and⊥ /∈M (INST(D,G)). It follows
that

MM(D) = {M (D′) | (D′ ∈ DC(INST(D,G))) &
(⊥ /∈M (D′))}

= {M (INST(D,G))}
= {M (D)}
= τ2(D).
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Figure 1: Target mappings and ET computation paths.

4.4 Computation Cost for Solving MI
Problems

Given a setCsof clauses, a user-defined atoma, and
an exit mappingϕ, the answer to the MI problem
〈Cs,ϕ〉, i.e.,ansMI (Cs,ϕ) = ϕ(

⋂
Models(Cs)), can be

directly obtained by the computation shown in the
leftmost path in Fig. 1.

By Theorems 4, 9, and 12, each ofModels, τ1, and
MM is a target mapping. By Theorem 8, withM = τ1,
ansMI (Cs,ϕ) can be obtained as follows:

1. ConstructS0 = 〈Cs,ϕ〉.
2. Construct an ET sequence based onModelsand

MM starting with S0 and ending withSn =
〈Csn,ϕn〉 such thatCsn ∈ dom(τ1).

3. ansMI (Cs,ϕ) = ϕn(
⋂

τ1(Csn)).

For the discussion below, the following notation is
assumed:

• For anyS, S′ ∈ STATE, let trans(S,S′) denote the
transformation ofS into S′, andtime(trans(S,S′))
denote the computation time required for this
transformation step.

• Let π be a state mapping. For any target mapping
τ andS∈ STATE, let comp(τ,S) denote the com-
putation ofϕ(

⋂
τ(Cs)), whereπ(S)= 〈Cs,ϕ〉, and

let time(comp(τ,S)) denote the amount of time re-
quired for this computation.

Using this notation, the time of the above solution by
the ET sequence[S0,S1, . . . ,Sn] with τ1 above is eval-
uated by

Tτ1 = Σn
i=1time(trans(Si−1,Si))+ time(comp(τ1,Sn)).

By the definition ofτ1, time(comp(τ1,Sn)) is very
small. Assuming each transformation step in the ET

C1: FM(x)← FP(x)
C2: FP(john)←
C3: FP(mary)←
C4: teach(john,ai)←
C5: St(paul)←
C6: AC(ai)←
C7: Tp(kr)←
C8: Tp(lp)←
C9: curr(x,z)← exam(x,y),subject(y,z),St(x),

Co(y),Tp(z)
C10: mayDoThesis(x,y)← curr(x,z),expert(y,z),

St(x),Tp(z),FP(y),
AC(w), teach(y,w)

C11: mayDoThesis(x,y)← St(x),NFP(y)
C12: exam(paul,ai)←
C13: subject(ai,kr)←
C14: subject(ai, lp)←
C15: expert(john,kr)←
C16: expert(mary, lp)←
C17: AC(x)← teach(mary,x)
C18: ← AC(x),BC(x)
C19: AC(x),BC(x)← Co(x)
C20: Co(x)← AC(x)
C21: Co(x)← BC(x)
C22: FP(x)← NFP(x)
C23: ←NFP(x), teach(x,y),Co(y)
C24: teach(y,x),NFP(y)← FP(y), funcf0(y,x)
C25: Co(x),NFP(y)← FP(y), funcf0(y,x)
C26: funcf0(john,ai)←
C27: ← funcf0(mary,ai)

Figure 2: Clauses representing the background knowledge
of the modifiedmayDoThesisproblem.

sequence fromS0 to Sn is also very small, the value
Tτ1 is small enough and the solution by this ET se-
quence withτ1 can be efficient. This is a basic strat-
egy to obtain an efficient solution for a MI problem.

In order to useτ1 after repeated equivalent
transformation, the clause setCsn determined by
π(Sn), where Sn is the final state obtained from
the ET sequence[S0,S1, . . . ,Sn], must be inside
dom(τ1). In other words, the role of the ET sequence
[S0,S1, . . . ,Sn] is to constructCsn that entersdom(τ1)
starting fromS0.

5 EXAMPLE

Usual first-order atoms are used for illustration be-
low. To apply the proposed theory in this section,
a specialization system〈Au,Gu,S ,µu〉 corresponding
to the usual first-order space is used, whereAu is the
set of all first-order atoms,Gu is the set of all ground
first-order atoms,S is the set of all substitutions on
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Au, andµu provides the specialization operation cor-
responding to the usual application of substitutions in
S to atoms inAu.

5.1 Problem Description

Let Cs be the set consisting of the clausesC1–
C27 in Fig. 2. These clauses are obtained from
the mayDoThesisproblem given in (Donini et al.,
1998) with some modification.2 All atoms ap-
pearing in Fig. 2 belong toAu. The unary pred-
icates NFP, FP, FM, Co, AC, BC, St, and Tp
denote “non-teaching full professor,” “full profes-
sor,” “faculty member,” “course,” “advanced course,”
“basic course,” “student,” and “topic,” respectively.
The clausesC9–C11 together provide the conditions
for a student to do his/her thesis with a profes-
sor, wheremayDoThesis(s, p), curr(s, t), expert(p, t),
exam(s,c), andsubject(c, t) are intended to mean “s
may do his/her thesis withp,” “ s studiedt in his/her
curriculum,” “p is an expert int,” “ s passed the exam
of c,” and “c coverst,” respectively, for any students,
any professorp, any topict, and any coursec.

Let a be the atommayDoThesis(paul,x). We con-
sider the QA problem〈Cs,a〉, which is to find all stu-
dents who may do their theses withpaul. Let ϕ be
defined by: for anyG⊆ Gu,

ϕ(G) = {mayDoThesis(paul,x) | ans(x) ∈G},
where ans is a unary predicate denoting “answer.”
The QA problem〈Cs,a〉 above can then be trans-
formed into a MI problem〈Cs∪ {C0},ϕ〉, whereC0
is the clause given by:

C0: ans(x)←mayDoThesis(paul,x)

Using rules for transformation of clauses given
in Sections 5.2–5.4, how to compute the answer to
the MI problem〈Cs∪ {C0},ϕ〉 is illustrated in Sec-
tion 5.5.

5.2 Unfolding Operation

Assume that:

• Cs⊆ CLS.

• D is a set of definite clauses in CLS.

• occis an occurrence of an atomb in the right-hand
side of a clauseC in Cs.

2To represent the originalmayDoThesisproblem in a
clausal form, extended clauses with function variables are
used. To change atoms with function variables into user-
defined atoms, thefuncf0 predicate is used in the clauses
C24–C27.

By unfolding Cs using D at occ, Cs is transformed
into

(Cs−{C})∪ (
⋃
{resolvent(C,C′,b) |C′ ∈ D}),

where for eachC′ ∈ D, resolvent(C,C′,b) is defined
as follows, assuming thatρ is a renaming substitution
for usual variables such thatC andC′ρ have no usual
variable in common:

1. If b andhead(C′ρ) are not unifiable, then

resolvent(C,C′,b) =∅.

2. If they are unifiable, then

resolvent(C,C′,b) = {C′′},
whereC′′ is the clause obtained fromC andC′ρ
as follows, assuming thatθ is the most general
unifier ofb andhead(C′ρ):

(a) lhs(C′′) = lhs(Cθ)
(b) rhs(C′′) = (rhs(Cθ)−{bθ})∪body(C′ρθ)

The resulting clause set is denoted by UNFOLD(Cs,
D,occ).

5.3 ET by Unfolding and Definite-clause
Removal

For any predicatep, let Atoms(p) denote the set of
all atoms having the predicatep. Equivalent trans-
formation (ET) of clauses using unfolding and using
definite-clause removal are formulated below.

Theorem 14. Let Cs⊆CLS and a∈Au. Assume that:

1. q is the predicate of the query atom a.
2. p is a predicate such that p6= q.
3. D is a set of definite clauses in Cs that satisfies the

following conditions:
(a) For any definite clause C∈ D,

head(C) ∈ Atoms(p).

(b) For any clause C′ ∈ Cs−D,

lhs(C′)∩Atoms(p) =∅.

4. occ is an occurrence of an atom in Atoms(p) in
the right-hand side of a clause in Cs−D.

Then the following two sets are equal:

• (
⋂

Models(Cs))∩ rep(a)
• (

⋂
Models(UNFOLD(Cs,D,occ)))∩ rep(a).

Theorem 15. Let Cs⊆CLS and a∈Au. Assume that:

1. q is the predicate of the query atom a.
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2. p is a predicate such that p6= q.
3. D is a set of definite clauses in Cs that satisfies the

following conditions:
(a) For any definite clause C∈ D,

head(C) ∈ Atoms(p).

(b) For any clause C′ ∈ Cs−D,

lhs(C′)∩Atoms(p) =∅.

4. For any clause C′ ∈ Cs−D,

rhs(C′)∩Atoms(p) =∅.

Then the following two sets are equal:

• (
⋂

Models(Cs))∩ rep(a)
• (

⋂
Models(Cs−D))∩ rep(a)

5.4 Other Transformations

5.4.1 Elimination of Subsumed Clauses and
Elimination of Valid Clauses

A clauseC1 is said tosubsumea clauseC2 iff there
exists a substitutionθ for usual variables such that
lhs(C1)θ ⊆ lhs(C2) and rhs(C1)θ ⊆ rhs(C2). If a
clause setCs contains clausesC1 andC2 such that
C1 subsumesC2, then Cs can be transformed into
Cs−{C2}.

A clause isvalid iff all of its ground instances are
true. Given a clauseC, if some atom inrhs(C) be-
longs tolhs(C), thenC is valid. A valid clause can be
removed.

5.4.2 Side-change Transformation

Assume thatp is a predicate occurring in a clause
setCs and p does not appear in a query atom under
consideration. The clause setCs can be transformed
by changing the clause sides ofp-atoms as follows:
First, determine a new predicatenot p for p. Next,
move allp-atoms in each clause to their opposite side
in the same clause (i.e., from the left-hand side to the
right-hand side and vice versa) with their predicates
being changed fromp to not p. Side-change transfor-
mation is useful for decreasing the number of atoms
in a multi-head clause (i.e., a clause whose left-hand
side contains more than one atom) inCswhen (i) ev-
ery negative clause inCs has at most onep-atom in
its right-hand side and (ii) every non-negative clause
in Cshas morep-atoms in its left-hand side than those
in its right-hand side.

C28: teach(john,ai)←
C29: AC(ai)←
C30: AC(x)← teach(mary,x)
C31: ← AC(x),BC(x)
C32: AC(x),BC(x)← Co(x)
C33: Co(x)← AC(x)
C34: Co(x)← BC(x)
C35: ← NFP(x), teach(x,y),Co(y)
C36: ans(y)← NFP(x)
C37: ans(john)← AC(x), teach(john,x),Co(ai)
C38: ans(mary)← AC(x), teach(mary,x),Co(ai)
C39: ans(john)← AC(x), teach(john,x),

NFP(john),Co(ai)
C40: ans(mary)← AC(x), teach(mary,x),

NFP(mary),Co(ai)
C41: teach(john,ai),NFP(john)←
C42: Co(ai),NFP(john)←

Figure 3: Clauses obtained by application of unfolding and
application of basic transformation rules.

C43: ans(x),notNFP(x)←
C44: notNFP(john)←
C45: ans(john)←
C46: ← BC(ai)

Figure 4: Clauses obtained by further application of trans-
formation rules.

5.5 ET Computation

The clause setCs∪{C0}, consisting ofC0–C27, given
in Section 5.1 is transformed using ET rules provided
by Sections 5.2–5.4 as follows:

• By (i) unfolding using the definitions of the predi-
catesmayDoThesis, FP, Tp, curr, subject, expert,
St, exam, funcf0, andFM, (ii) removing these def-
initions using definite-clause removal, and (iii) re-
moval of valid clauses, the clausesC0–C27 are
transformed into the clausesC28–C42 in Fig. 3.

• Side-change transformation forNFP enables (i)
unfolding using the definitions ofteach, Co,
and AC, (ii) elimination of these definitions us-
ing definite-clause removal, (iii) removal of valid
clauses, and (iv) elimination of subsumed clauses.
By such side-change transformation followed by
transformation of these four types,C28–C42 are
transformed into the clausesC43–C46 in Fig. 4.

• Side-change transformation fornotNFP enables
unfolding using the definitions ofBC and NFP.
By unfolding and definite-clause removal,C43–
C46 are transformed intoC45, i.e.,(ans(john)←).

As a result, the MI problem〈Cs∪{C0},ϕ〉 in Sec-
tion 5.1 is transformed equivalently into the MI prob-
lem 〈{(ans(john)←)},ϕ〉. Hence
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ansMI (Cs∪{C0},ϕ)
= ansMI ({(ans(john)←)},ϕ)
= ϕ(

⋂
Models({(ans(john)←)}))

= {mayDoThesis(paul, john)}.

6 CONCLUSIONS

A model-intersection problem (MI problem) is a pair
〈Cs,ϕ〉, whereCs is a set of clauses andϕ is an exit
mapping used for constructing the output answer from
the intersection of all models ofCs. The proposed
ET-based solution for MI problems consists of the fol-
lowing steps: (i) formalize a given problem as an MI
problem on some specialization system, (ii) prepare
ET rules from clauses, (iii) construct an ET sequence,
(iv) compute a set of models using a target mapping,
(v) apply the set-intersection operation to the result-
ing set of models, and (vi) apply an exit mapping to
the intersection result to obtain a solution.

The class of MI problems considered in this pa-
per has many parameters, such as abstract atoms, spe-
cializations, restriction on forms of clauses, etc. By
instantiating these parameters, we can obtain theories
for subclasses of QA and proof problems correspond-
ing to conventional clause-based theories, such as dat-
alog, Prolog, and many other extensions of Prolog.

We introduced the concept of target mapping and
proposed three target mappings, i.e.,τ1 for sets of
positive unit clauses,τ2 for sets of definite clauses,
andMM for arbitrary sets of clauses. These target
mappings provide a strong foundation for inventing
many ET rules for solving MI problems on clauses.
Most kinds of ET rules, including the resolution and
factoring ET rules, are realized by transformations
that preserve these target mappings. For instance,
a proof based on the resolution principle can be re-
garded as ET computation using the resolution and
factoring ET rules. By introducing new ET rules, we
can devise a new proof method (Akama and Nantajee-
warawat, 2013). By inventing additional ET rules, we
have been successful in solving a large class of QA
problems (Akama and Nantajeewarawat, 2014).

By instantiation, the class of MI problems on spe-
cialization systems produces, among others, one of
the largest classes of logical problems with first-order
atoms and substitutions. The ET solution has been
proved to be very general and fundamental since its
correctness for such a large class of problems has
been shown in this paper. By its generality, the theory
developed in this paper makes clear the fundamental
and central structure of representation and computa-
tion for logical problem solving.
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