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Abstract: Ultra-high-frequency ECG (UHF-ECG) in a range of 500–1,000 Hz has been tested as a new information 
source for analysis of left-ventricle dyssynchrony and other myocardial abnormalities. The power of UHF 
signals is extremely low, for which reason an averaging technique is used to improve signal-to-noise ratio. 
Since ventricle dyssynchrony is different for various QRS complex types, the detected QRS complexes must 
be clustered into morphology groups prior to averaging. Here, we present a fully-automated method for 
clustering. The first goal of the method is to separate previously detected QRS complexes into different 
morphology groups. The second goal is to precisely fit the QRS annotation marks to the exact same position 
against the QRS shape. The method is based on the Pearson correlation and is optimized for parallel 
processing. In our application with UHF-ECG data the number of detected groups was 3.24 ± 3.41 (mean 
and standard deviation over 1,030 records). The method can be used in other areas also where the clustering 
of repetitive signal formations is needed. For validation purposes, the method was tested on the MIT-BIH 
Arrhythmia and INCART databases from Physionet with results of purity of 98.24 % and 99.50 %. 

1 INTRODUCTION 

The electrocardiogram (Fig. 1A) is one of the most 
important sources of knowledge about heart 
function. The analyzed frequency band is mostly 
limited to 150 Hz. At higher frequencies the most 
limiting factor is the signal-to-noise ratio, which can 
be surpassed using the signal-averaged ECG 
(SAECG), suppressing noise thanks to averaging 
large number (over tens or more) of QRS 
complexes. Using SAECG, fetal QRSs were 
extracted from maternal ECG (Hon and Lee, 1963) 
and  weak signals in frequency range 40-300 Hz 
revealed high-frequency QRS potentials (Goldberger 
et al., 1981). Moreover, SAECG technique allowed 
further research in the fields of ventricular late 
potentials (Simson 1983; Haberl et al. 1988; Jarrett 
and Flowers, 1991) and atrial fibrillation (Fukunami 
et al., 1991). Several devices for SAECG were 
developed in the past as ART 1200 EPX, Corazonix 
Predictor or VCM-3000.  

But every step on this high-frequency road was 
laid into the range below 250-300 Hz, assuming that 
there is nothing useful above. It was correct for early 
times when bit-depth of common analog/digital 

converters allowed 12 bits, dislodging weak 
potentials of higher frequencies into quantization 
darkness. Detection of Reduced Area Zones (RAZ) 
also uses the frequency range of 150-250 Hz 
(Abboud et al., 1987). Accessibility of this technique 
(later implemented in Hyper-Q devices) gained new 
research in myocardial ischemia (Schlegel et al., 
2004), ECG during anesthesia (Spackman et al., 
2005) or in myocardial infarction (Amit et al., 2013). 

Even the spread of SAECG and continuously 
increased technical level of analog to digital 
converters both in sampling frequency and bit depth 
(note common 192 kHz and 24 bits in the field of 
digital audio recording), the clinical community still 
relies on well-proven frequency range of 0-150 Hz 
in classic ECG while only fearless specialists use 
RAZ analysis in high-frequency range 150-250 Hz 
(HF-ECG). 

Against those habits, our team has developed and 
tested an innovative method for ultra-high-frequency 
ECG (UHF-ECG; up to 2 kHz) analysis (Jurak et al., 
2013) that provides information about spatial and 
temporal distribution of depolarization phase of 
action potentials. Furthermore, it is able to reveal 
ventricle dyssynchrony with the common 12-lead 
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ECG that cardiology specialists are used to. As the 
preliminary results show, dyssynchrony can be 
derived from UHF signal envelopes in the QRS 
complex region in leads V1 and V6. A high-dynamic 
acquisition system must be used simultaneously with 
new processing methods to acquire UHF-ECG. 

We have used input data with a sampling rate of 
5 kHz and 24-bit dynamic range which allows us to 
analyze UHF envelopes in a frequency range of 
500–1,000 Hz (Fig. 1B), being high above currently 
accepted frequency range. The power in this range is 
very weak; the QRS amplitude in the UHF envelope 
is approximately 80 dB lower than the low-
frequency (up to 150 Hz) QRS complex amplitude 
(compare Figures 1A and B).  

 

 

Figure 1: A – ECG signal with P-wave, QRS complex and 
T-wave; B – signal envelope in the 500–1,000 Hz band;  
C – averaged envelope, smoothed (40 samples, rectangular 
window). 

Signal averaging (mentioned as SAECG before) 
is applied to increase the signal-to-noise ratio using 
QRS annotation marks as reference points. QRS 
complexes must be clustered into groups specified 
by QRS morphology due to the possible presence of 
more beat types within a single ECG record. 

Furthermore, QRS annotation marks must point 
to exactly the same sample (Rompelman and Ros, 
1986a; Rompelman and Ros, 1986b) inside the QRS 
shape (Fig. 1A). Envelopes in the range 500–
1,000 Hz (Fig. 1C) can then be averaged using tens 
to hundreds of beats depending on the signal quality. 
The electrical activity of the myocardium, expressed 
by UHF-ECG envelopes, carries specific temporal 
and spatial information that can be further analyzed 
(Jurak et al., 2013). 

The clustering process is, therefore, an essential 
step in UHF-ECG analysis as it is needed to assure 

that UHF envelopes belonging to different QRS 
types will not be mixed together during averaging. A 
similar need has been described in a study (Amit et 
al., 2013) before averaging the signal to obtain RAZ.  

Current clustering methods (Castro and Paulo, 
2014; Lagerholm and Peterson, 2000; Cuesta-Frau et 
al., 2003; Chang et al., 2005) aim to assign 
previously detected QRS to known beat types. This 
goal is not sufficient for our objective due to the fact 
that a specific beat type may have different 
morphologies (leading to different UHF-ECG 
envelopes) which have to be distinguished. Also, 
existing approaches do not correct the positions of 
QRS annotation marks which is an important step to 
maintain detail in averaged envelopes. 

We are, therefore, proposing a new clustering 
method that can be used in UHF-ECG analysis and 
works with multiple leads without human 
intervention, allowing full automation. 

2 METHOD 

2.1 Method Inputs and Preprocessing 

The mounted signals from ECG V–leads (V1 to V6) 
and a list of QRS annotations are inputs for the 
method. QRS annotations are acquired by a robust 
multi-lead detection method  (Plesinger et al., 2014) 
and cleared of pacemaker activity. Thus, only signal 
preprocessing steps are mounting and pacemaker 
activity removal, where areas influenced by 
pacemaker activity are replaced by the linear 
interpolation. 

2.2 Processing 

Processing is presented in a flowchart (Fig. 2). 

2.2.1 Primary Clustering  

At the beginning (Fig. 2A), the first QRS annotation 
is declared the first member of the first morphology 
group. Next, the segment around the first unassigned 
QRS annotation is compared by Pearson correlation 
to each of the QRS annotations already assigned. 
This is performed simultaneously (as a multi-thread 
process) in leads V1 to V6 within an area of ±120 
ms around the QRS annotation and six correlation 
coefficients are obtained. If the lowest correlation 
coefficient Cmin is higher than correlation threshold 
Ct, the unassigned QRS is linked to the group of 
correlating QRS annotation. If the tested QRS 
annotation cannot be assigned to any of the existing 
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morphology groups, a new group is created and the 
unassigned QRS is linked to it as its first member. 
This loop is repeated until none of the QRS 
annotations remains unassigned. 

 

Figure 2: Method flowchart. A – primary clustering, B – 
correlation threshold reduction, C – annotation jitter 
reduction, D – computation of averaged shapes, E – shift-
test, F – connecting small groups into a joined group, G – 
group reordering, H – group count check. Cmin is the 
lowest correlation from leads V1 to V6, Ct is the current 
corr. threshold (0.98 at the beginning of the process), Ctmin 
the minimal permitted correlation threshold (0.75), Cd the 
decrement of the correlation threshold, Ngp the maximum 
number of groups permitted after primary clustering, Ngmax 
the maximum number of groups. 

2.2.2 Annotation Jitter Reduction 

QRS annotations inside each morphology group 
must be exactly aligned with one another. The 
highest correlation between each QRS segment 
(leads V1 to V6) and the first member of each group 
is found by shifting the QRS annotation to the left 
and right (Fig. 1C). 

2.2.3 Group Average Multi-lead Shapes 

A group average multi-lead shape (GAMS) is 
created (Fig. 2D and Fig. 3C) for each morphology 
group by averaging corresponding samples from all 
QRS complexes from the specific group. Each 
GAMS contains six averaged shapes (leads V1-V6). 

2.2.4 Group Shift-test 

It is possible that two or more groups contain a 
similar type of QRS morphology, merely shifted to 
the left or right. To merge such groups together, the 
central part (a width of 120 ms) of each GAMS is 
correlated with the GAMS of other groups when 
shifted to the left and right (Fig. 2E). If the 
correlation maximum is higher than threshold Cts, 
the groups are joined together and the program 
jumps back to the jitter reduction (Fig. 2C). 

2.2.5 Joined Group 

Groups containing less than three QRS annotations 
are assigned to the “Joined Group” (Fig. 2F and Fig. 
3 – the last column). This usually contains 
misidentified QRS annotations and artefacts. A large 
Joined Group can be produced if the source is too 
noisy.  

2.2.6 Order Groups by Size 

Next, the shape groups are arranged by the number 
of related QRS annotations except the Joined Group 
(Fig. 2G). The shape group with the largest number 
of QRS is named Group 1, the second Group 2 etc.  

2.2.7 Check Groups Count 

If the number of groups is still too high (>50) and Ct 
is higher than Ctmin, correlation threshold Ct is 
decreased and the computation is restarted (Fig. 2H). 

2.3 Method Outputs 

The method produces a modified QRS annotations 
list, where each of the QRS annotations retains the 
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information identifying the morphology group to 
which a specific QRS belongs. Information about 
the location of each QRS is updated when the offset 
correction and group shift-test tasks (Fig. 2C and 
2E) are completed. Statistical properties providing 
information about the correlation between GAMS 
and each member of a specific group are also saved 
for statistical processing. 

3 RESULTS 

3.1 Application 

The source data for our method are records 8–15 
minutes long in a resting supine position; sampling 
rate 5 kHz and bit resolution 26 bits (25 kHz and 24 
bits before down-sampling). This dataset (UHF-
ECG) has been recorded at the International Clinical 
Research Center at St. Anne’s University Hospital, 
Brno, Czech Republic using a recording device from 
the company M&I, Prague. A total number of 1,030 
recordings have been made (262 ischemic heart 
disease, 36 hypertrophic cardiomyopathy, 302 
dilated cardiomyopathy, 261 heart transplant and 
169 healthy subjects).  

Using the presented method, all the available 
records were clustered into morphology groups with 
an average number of groups per record of 3.24 ± 
3.41. The average percentage of QRS assigned to the 
“Joined Group” (the group of QRS which did not 
correlate well enough with any of the other groups) 
was 0.99 % ± 2.09 and the average percentage of 
QRS in Group 1 was 95.42 % ± 9.85. The median 
correlation between each member of the majority 
group (Group 1) and the corresponding averaged 
shape was 0.997 ± 0.005 (over 1030 records). 
Overall results for UHF-ECG dataset are shown in 
Table 1. 

Table 1: UHF-ECG dataset results. G1 - amount of QRS 
in largest group, JG - amount of QRS in Joined Group, Ng 
– number of detected groups. 

 Med. Mean ± SD Min Max 

G1 [%] 99.51 95.37 ± 9.94 24.54 100.0 

JG [%] 0.25 0.99 ± 2.11 0.00 27.65 

Ng 2.00 3.27 ± 3.45 1.00 39.00 

 

The application is presented in Fig. 3 on a 
subject with dilated cardiomyopathy. QRS 
complexes were detected from a 12-lead UHF-ECG 
record (Fig. 3A) and clustered using leads V1 to V6 
into five morphology groups (Fig. 3B). The majority 

group – Group 1 – (Fig. 3B, the first column and 
Fig. 4A) contains 711 QRS. The second group (Fig. 
4B) contains 235 QRS. Group 3 and Group 4 (not 
displayed) contains only 27 and 4 QRS, for which 
reason it is not usable for averaging.  
 

 

Figure 3: Method application: A – raw ECG data, B – 
clustering method result (clusters in columns, leads in 
rows) with median correlation inside each cell,  
C – averaged QRS shapes for two largest groups, D – 
averaged envelopes in range 500–1,000 Hz for two largest 
QRS groups. UHF-ECG subject 0766. 

CARDIOTECHNIX 2015 - International Congress on Cardiovascular Technologies

14



 

 

Figure 4: Categorized QRS complexes, ECG V1 lead in 
240 ms window. A – Group 1 QRS complexes, B – Group 
2 QRS complexes. Vertical line in the middle shows QRS 
annotation mark (i.e. trigger). UHF-ECG subject 0766.  

The “Joined Group” (Fig. 3B, the last red 
column) contains 16 QRS which were not attached 
to any of the existing groups due to noise or 
artefacts. Each cell in the grid (Fig. 3B) contains a 
240-millisecond-long window and each drawn QRS 
is normalized to fill the predefined height of the cell 
(i.e. auto-scaled). Once QRS complexes are 
clustered into groups, it is possible to compute and 
average amplitude envelopes in a range of 500–
1,000 Hz using FFT and Hilbert transform. The 
averaged envelopes for Group 1 and Group 2 are 
shown in Fig. 3D. In comparison with the greatly 
magnified averaged QRS shape of Group 1 (Fig. 
3C), we can see large electrical dyssynchrony 
revealed between leads V1 and V6 (Fig. 3D). 

3.2 Method Validation using Physionet 
Annotated Databases 

The MIT-BIH Arrhythmia (Moody and Mark, 2001) 
and INCART databases from Physionet (Goldberger 
et al., 2000) were used with 47 and 75 records, 
respectively, for validation and comparison 
purposes. The data quality does not allow the use of 
these databases for UHF-ECG analysis (the 

sampling rate and bit resolution are insufficient), but 
they are carefully annotated by specialists and 
existing QRS annotations can be used to evaluate the 
purity of the clustered groups. 

Specificity and sensitivity values or confusion 
matrixes (usual ways to validate clustering method) 
could not be computed because the presented 
method does not aim to cluster QRS by any known 
pathological morphology. Instead, purity (P) values 
for both databases were computed to show the level 
of contamination of clustered groups by different 
QRS types (defined in Physionet beat annotations). 
P was computed over all subjects and groups (except 
for Joined Groups) as: 

 

ܲ ൌ 100 െ 100 ൈ
∑ ൫ ொܰோௌ െ ܰ௠௔௝௢௥൯௔௟௟ ௚௥௢௨௣௦

௧ܰ௢௧௔௟
 (1) 

 

where Nqrs is the number of all QRS complexes 
within the specific group, Nmajor is the maximal 
occurrence of any beat type (specified by Physionet 
annotations) in the specific group, and Ntotal is the 
sum of all QRS over all subjects and groups (except 
for Joined Groups). The overall purity of MIT-BIH 
was 96.69 % and 98.38 % for the INCART database. 
Purity can also be evaluated separately for each 
subject/record and Tables 2 and 3 show purity, 
group sizes and group count statistics for the MIT-
BIH and INCART databases. 

Table 2: Results for MIT-BIH arrhythmia database 
records. P – purity, G1 - amount of QRS in the largest 
group, JG - amount of QRS in Joined Group, Ng – number 
of detected groups. 

 Med. Mean ± SD Min. Max. 

P [%] 99.84 96.87 ± 8.26 51.15 100 

G1 [%] 79.41 79.23 ± 16.39 28.68 99.41 

JG [%] 4.13 9.09 ± 9.63 0.20 31.03 

Ng 18.00 23.77 ± 17.89 2.00 70.00 

Table 3: Results for INCART database records. 

 Med. Mean ± SD Min. Max. 

P [%] 99.95 98.47 ± 4.98 69.21 100 

G1 [%] 73.92 75.09 ± 17.01 35.24 99.59 

JG [%] 3.82 7.87 ± 8.68 0.00 33.48 

Ng 13.50 19.29 ± 15.38 2.00 71.00 

 

The overall purity of MIT-BIH was 96.69 % and 
98.38 % for the INCART database, meaning that the 
resultant groups are slightly contaminated by 
different beat types. Further insight into the 
contamination issue showed it is possibly caused by 
two reasons: 
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First, our method is not able to distinguish 
between premature and escape beats having the 
same shape as another QRS type (i.e. atrial 
premature beats – A – and normal sinus beats – N – 
in record 202 in MIT-BIH). Joining these beats 
together (which is acceptable for our goals) will 
increase average purity to 98.24 % (MIT-BIH) and 
99.50 % (INCART). 

Second, due to noise, individual shapes are not 
able to correlate enough with existing morphology 
groups and a large number of groups can be created. 
If the number of groups is too high, the correlation 
threshold can be decreased which may lead to the 
unwanted linking of different beat types into one 
group (as in the case of records 208 and 213 from 
MIT-BIH). 

Another issue can occur when the bottom limit to 
correlation threshold (0.75) is met, but it is not 
possible to create larger groups (NQRS>3). In this 
way, the majority of QRS are moved to the Joined 
Group (as in records 2, 3 and 58 from INCART). 

3.2.1 Results Comparison 

Specific results for validation records are presented 
by Table 4 (MIT-BIH), showing comparison values 
for groups detected by our method and an existing 
method (Castro and Paulo, 2014). 

 

 

Figure 5: Joined Group sizes for two Physionet databases 
and UHF-ECG dataset. Medians 4.13 (MIT-BIH), 3.82 
(INCART) and 0.26 (UHF-ECG). 

The number of QRS complexes in Joined Groups 
(Fig. 5) indicates how many QRS complexes are not 
(hypothetically) suitable for the following UHF-
ECG analysis. This value should be as low as 
possible. The number of groups generated by 
clustering (Fig. 6) is lowest for the UHF-ECG 

database, though it strongly depends on subject-
specific pathology as well as signal quality.  

Table 4: Results for MIT-BIH database records. P – 
purity, G1 – amount of QRS in Group 1, JG – amount of 
QRS in Joined Group, Ng – number of groups generated 
by our method, Ngc – number of groups generated by 
compared method (Castro and Paulo, 2014). 

Record P [%] G1 [%] JG [%] Ng  Ngc  
100 98.58 99.34 0.66 2 4 
101 99.86 68.47 23.43 52 4 
102 99.86 92.36 1.28 17 10 
103 100.00 85.94 7.20 29 10 
104 98.77 56.98 15.84 54 16 
105 100.00 68.23 26.87 28 10 
106 100.00 44.89 30.93 30 27 
107 100.00 96.40 0.94 10 11 
108 99.70 60.64 25.47 18 22 
109 100.00 97.08 1.70 7 13 
111 100.00 90.58 6.54 17 8 
112 99.96 82.63 8.00 39 4 
113 100.00 96.99 1.06 10 5 
114 99.58 66.58 11.66 70 8 
115 100.00 97.75 1.54 8 11 
116 99.96 92.91 2.99 13 10 
117 99.93 99.41 0.59 2 4 
118 95.84 93.81 3.86 13 3 
119 100.00 77.45 0.20 3 6 
121 99.94 95.60 4.13 4 5 
122 100.00 82.96 9.37 55 1 
123 100.00 99.41 0.26 4 3 
124 98.10 53.24 2.66 16 14 
200 96.99 28.68 31.03 48 20 
201 97.95 84.11 3.16 11 15 
202 98.62 96.77 1.45 9 9 
203 99.50 62.08 26.31 43 33 
205 99.92 79.07 6.81 49 14 
207 94.92 79.41 6.94 22 61 
208 51.15 67.11 29.48 32 28 
209 90.34 71.11 27.29 20 10 
210 100.00 79.70 11.32 39 27 
212 100.00 66.05 14.56 38 5 
213 81.83 98.40 1.32 5 17 
214 99.95 87.75 2.61 13 21 
215 99.96 76.06 17.45 38 16 
217 98.82 70.15 4.08 30 28 
219 99.63 96.75 0.56 7 14 
220 95.62 98.88 0.83 4 2 
221 100.00 61.27 18.34 34 14 
222 83.68 73.66 12.12 64 8 
223 96.57 79.31 3.72 21 23 
228 99.84 65.76 9.40 25 14 
230 100.00 58.07 1.68 8 3 
231 99.87 79.31 1.08 12 5 
232 77.76 92.47 5.79 15 4 
233 99.67 72.04 2.60 29 24 

 

A comparison of the results from the UHF-ECG 
dataset and MIT-BIH and INCART databases in 
Figure 5 shows that data quality greatly influences 
the number of unsuccessfully clustered beats. 
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Figure 6: Comparison of number of group count results for 
MIT-BIH (median 18), INCART (median 13.5), UHF-
ECG dataset (median 2) using the presented method and 
MIT-BIH results (median 10) acquired from (Castro & 
Paulo 2014) as the last bar - Ngc. 

4 DISCUSSION 

The proposed method is able to categorize QRS 
(Fig. 7) in high sampled data (5,000 Hz) and great 
bit-depth (26 bits), allowing to see ultra-high 
frequency potentials in individual morphology 
groups and able to reveal ventricle dyssynchrony as 
in Fig. 3. Thanks to the direct comparison among all 
of registered QRS this method is able to catch 
continuous changes in QRS morphology (which we 
encountered while detecting QRS from isolated 
hearts). 

This is in contrast to building of morphology 
template (Breithardt et al., 1991). On the other hand, 
due to this behavior the processing time increases to 
uncomfortable lengths while processing long (hours) 
UHF-ECG recordings. 

Figure 7 presents method results, showing 
temporal distribution of detected morphology groups 
in part of 15-minute record. Such technique may be 
used even for standard 6-12 leads ECG. 

The legitimacy of using frequencies above usual 
300 Hz is shown in Figure 8. Even the currently 
used HF frequency range of 150-250 Hz (Fig. 8B) 
shows dyssynchrony of specific QRS, it is obvious 
that frequency range of 500-1,000 Hz (Fig. 8C) 
provides more precise image of ventricles electrical 
activation with higher temporal resolution. On the 
other hand, range of 1,000-2,000 Hz (Fig. 8D) 
brings less evident activity due to significantly lower 

signal-to-noise ratio. 
 

 

Figure 7: Temporal distribution of QRS morphology 
groups during the measurement of heart-transplant subject  
(UHF-ECG subject 0086). A – RR intervals (beat-to-beat) 
excluding beats from Joined Group, B – morphology 
groups temporal distribution, where Group 1 (major 
occurrence) is a normal QRS, rarely interrupted with 
ventricle beats from Group 2. Unrecognized or false 
positive QRS complexes are in Joined Group. 
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Figure 8: Comparison of averaged QRS shape (N=1350) 
in different frequency ranges for leads V1 (orange) and V6 
(black). Only QRSs from Group 1 were taken into 
account. A – averaged QRS complex, B – amplitude 
envelopes in 150-250 Hz, C – amplitude envelopes in 500-
1,000 Hz, D – amplitude envelopes in 1,000-2,000 Hz 
(UHF-ECG subject 0086). 

Two Physionet databases (MIT-BIH and 
INCART) were processed to validate the presented 
clustering method and the purity of the clustered 
QRS groups was 98.24 % (MIT-BIH) and 99.50 % 
(INCART), respectively. This purity shows the level 

of correspondence between annotated QRS types 
and clustered groups. The median correlation within 
Group 1 for the UHF-ECG dataset was 0.997, 
showing extremely high overall morphology 
stability inside the majority group. In comparison 
with an existing clustering method (Castro and 
Paulo, 2014) in Fig. 6 and Table 4, our approach 
produces a larger number of groups (the median 
from the Ng column is 18, while the median from 
Ngc is 10). 

Although the method is designed to work with 
specific UHF-ECG data, it can be used in any other 
area where the clustering of repetitive signal 
formations according to shape is needed (as shown 
in figure 9 with P-wave example).  

5 CONCLUSIONS 

A multichannel clustering method has been 
presented as an essential part of UHF-ECG analysis. 
The method clusters a list of previously detected 
QRS complexes into groups by morphology and 
corrects QRS annotation mark positions inside each 
group to point to exactly the same location of QRS 
shape. This functionality allows averaging of UHF-
ECG envelopes with regard to specific QRS types 
and, thanks to annotation jitter reduction, the 
averaged UHF envelopes retain the highest possible 
amount of detail. Correctly averaged UHF-ECG 
envelopes are tested by a related study to reveal 
information on heart ventricle dyssynchrony. 

 

 

Figure 9: Presented clustering method used for clustering 
of P-wave. 538 P-waves total, 501 were clustered into 
Group 1 and 37 into Joined Group. UHF-ECG subject 
0616 with dilated cardiomyopathy. 

It is also evident that our method works 
significantly better with the UHF-ECG dataset (for 
which the method was originally designed) than with 
low-resolution data from the MIT-BIH and INCART 
databases. 
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The presented method is part of the software 
UHF Solver which is used for autonomous 
processing of UHF-ECG data to obtain information 
about heart ventricle dyssynchrony. Also, the 
method has been implemented as a plugin for 
SignalPlant, free signal-processing and visualization 
software. 
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