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Abstract: Affective Computing and Brain Computer Interface (BCI) are two innovative and rapidly growing fields of 
research. Affective Computing aims at equipping machines with the human capabilities of observe, 
understand and express affecting features; BCI aims at discovering novel communication channels and 
protocols, through the monitoring of the brain activity. Emotion recognition plays a central role in both 
these research fields. In this work we present an EEG poll based classification algorithm for self-induced 
emotional states used for BCI. We tested the approach using three emotions: the disgust produced by 
remembering an unpleasant odor (a stink), the pleasantness induced by the memory of a fragrance and a 
relaxing state. Preliminary experimental results are also reported. 

1 INTRODUCTION 

Recent years have been characterized by an 
exponential evolution of the interaction and 
communication protocols between humans and 
computer. Until a short time ago a keyboard 
represented the only input channel to the computer: 
nowadays, digital devices can understand body 
gestures, speech, facial expressions, etc. An 
emerging branch of the Human Computer 
Interaction (HCI) is the Affective Computing 
(Picard, 2000). 

Since emotions play a lead role in the daily life, 
machines equipped with empathic capabilities 
represent, at the same time, a necessary step and a 
fascinating challenge. Emotions can be recognized 
from different sources: tone of voice, facial 
expressions, gestures and physiological responses 
such as the heart rate and/or the cerebral activity. 
The latter, especially monitored by means of 
electroencephalography (EEG), has been widely 
investigated in order to classify emotional states 
(Choppin, 2000; Chanel et al., 2006; Bos, 2006; 
Zhang and Lee, 2009; Wang et al., 2014). In these 
studies, typically emotions were elicited by external 
stimuli such as video or images.  

The analysis of the brain activity due to the 
emotions can be applied also to the design of a BCI. 
A BCI offers the user an alternative communication 

toward the external environment, based on analyzing 
the brain activity (Wolpaw and Wolpaw, 2012), and 
can be an essential tool for people who have lost the 
standard modalities for communication due to severe 
disabilities.  

Besides the classical types of stimulation, in 
particular sensory-motor (Bin He, 2014), visual 
(Xiaorong et al., 2003), or auditory (Furdea et al., 
2009), a BCI can be also implemented by using 
emotions as stimulation tasks. Though to use 
emotions could appear strange, for some patients 
this stimulation is the only usable, due to the fact 
that other modalities have proven to be ineffective or 
are not recommended (for example, rapidly-varying 
visual stimulation could produce seizures). 

Understanding the effect on the brain activity 
generated by an emotional state can be used both to 
adapt the system response to the emotional 
variations, e.g. to detecting and/or to removing the 
emotional bias, and to allow the user to drive the 
BCI through emotion modulation (Molina et al., 
2009).  

The latter situation can be obtained in two ways: 
1) by eliciting the emotions through an external 

input (Bos, 2006); 
2) by using a self-inducing strategy. 

Obviously, the second strategy is preferable since it 
does not require any additional equipment, leaving 
the user free to choose how and when activate a 
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given emotional state. On the other side, this 
strategy often produces low-amplitude (noisy) 
signals that could lead to blurry interclass 
boundaries. 

For this reason, efficient classification strategies 
have to be explored (Liu et al., 2010; Placidi et al., 
2015a; Placidi et al., 2015b, Iacoviello et al., 2015). 
Placidi et al., (2015a) described an algorithm 
tailored to detect the disgust produced by 
remembering unpleasant odors (self-induced 
disgust). In the present work, an extension of that 
classification method, by introducing a poll-based, 
was proposed. 

We tested the proposed approach in two ways: 
by trying to detect, separately, two different 
emotions (the disgust caused by remembering an 
unpleasant odor and the pleasantness due to the 
memory of a fragrance, with respect to a relaxing 
situation); by classifying EEG signals searching the 
three emotional states at the same time (including 
relax).  

The paper is structured as follows: Section 2 
details the acquisition set up and proposes the new 
poll system approach; Section 3 describes the data 
analysis and reports the classification results; 
Section 4 concludes the paper and indicates future 
developments. 

2 MATERIALS AND METHODS 

The acquisition set up along with the experimental 
protocol used to acquire the EEG signals is 
presented herein. After a brief summary of the 
emotion detection algorithm presented by Placidi et 
al., (2015a), the proposed poll system approach is 
outlined. 

2.1 Acquisition Set Up and 
Experimental Protocol 

In the experimental step, we aimed at classifying 
three different emotional states: the disgust 
associated to remembering an unpleasant odor, the 
pleasant sensation evoked by remembering a good 
fragrance and a relaxing state (the absence of 
previous states). In terms of Valence-Arousal model 
(Russell, 1979), the two olfactory emotions have 
different level of arousal (the disgust is stronger) and 
opposite valence. 

The emotional tasks that we aimed to detect had 
to be suitable to drive a BCI and self-inducible. 

Preliminary experiments consisted in the 
collection of EEG data from two healthy, male and 

right-handed subjects (29 and 32 years old, 
respectively).  

The experiments took place in a quiet, lighted 
room and the examined subjects were sat on a 
comfortable armchair. The experiments consisted in 
showing a sequence of symbols on a pc monitor, 
each presented for 3.66 seconds. Three symbols 
were used: a cross, indicating that the subject had to 
relax; a down arrow, meaning that the subject had to 
concentrate himself on the memory of a stink; an up 
arrow, meaning that the subject had to remember a 
fragrance. 

Three acquisition sessions were performed for 
each subject. In the first session, S1, a sequence of 
108 symbols, composed by 54 crosses (relax) and 54 
down arrows (disgust), was presented in a random 
order. In the second session, S2, 54 crosses (relax) 
and 54 up arrows (pleasure due to remembering a 
fragrance) composed the sequence. The last session, 
S3, consisted in the display of a sequence made of 25 
occurrences for each of the three symbols, for a total 
of 75 symbols. 

We used the EnobioNE system (Neuroelectrics, 
2015), an 8-channels wireless EEG equipment, to 
record the subjects’ brain activity. This hardware 
collects signals at 500 Hz, 24 bit in amplitude 
resolution (corresponding to 0.05 uV). The 
electrodes were placed in the positions T8, C4, F4, 
F8 and their symmetrical T7, C3, F4, F8 of the 10-
20 international positioning system (Figure 1). 

 

Figure 1: Electrodes montage locations respect to the 10-
20 international system. 

Sequences visualization and data collection were 
performed by using the BCI2000 framework 
(Schalklab, 2015); data analysis was performed by 
using Matlab® (Mathworks, 2015) scripts 
implementing the proposed classification technique 
described below.  

2.2 Brief Review of the Adopted Binary 
Classification Algorithm 

In the original binary classification algorithm, the 
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signals were filtered with a band-pass filter to 
maintain just the bands of frequencies 8-12 Hz and 
30-42 Hz. These two bands mainly contain the 
cerebral activity due to concentration, the former, 
and that due to emotions, the latter (Li and Lu, 
2009). Moreover, being the algorithm designed for a 
negative emotion classification, the set of channels 
considered for the classification were P4, C4, T8 and 
P8 (Niemic and Warren 2002; Henkin and Levy 
2001). 

The method consisted of two phases, Calibration 
and Classification (Figure 2). The Calibration started 
from a set of trials (signals) belonging to two known 
classes (i.e. activation, by imagining a disgusting 
odor, and non-activation, or relaxing), used to train 
the system. The Classification guessed the class of 
an incoming unknown signal. 

 

Figure 2: Flow-chart of the binary classification algorithm. 
The output of the Calibration Phase characterizes the 
Classifier. 

In both phases the trials followed a preprocessing 
step in which the Short-Time Fourier Transform was 
applied to split each signal into a set of partially 
overlapping segments (or sub-trials) and to obtain 
their frequency coefficients. Then, the mutual 

similarity between sub-trials was evaluated by 
means of the r2 computation (Draper and Smith 
1998). From a comparison of the power spectrum of 
each sub-trial, the more similar were averaged 
together, the others were discarded.  

After the pre-processing step, an r2 based 
selection and synthesis was performed again 
between each trial belonging to the same class. In 
this way, the information of a synthetized trial was 
obtained for both classes. The r2 evaluation was used 
to identify the frequencies where the differences 
between activation and non-activation trials were 
larger.  

The Classification phase analyzed a signal of an 
unknown class. First, the pre-processing phase used 
also for the Calibration, was applied. Then, the 
resulting spectrum was compared, in terms of r2, 
with those synthetized in the Calibration phase for 
the activation and the non-activation stages. The 
values assumed in the chosen frequencies were 
compared with the defined thresholds to obtain the 
Classification output for the current signal. The 
present method had the advantage of giving a very 
good accuracy level (more than 90%), despite the 
quality of the signals, and made robust the 
classification process. 

However it had the following drawbacks: the 
considered channels were predetermined as well as 
the considered frequencies bands and, more 
important, the contributions of the channels were 
averaged together, thus reducing the spatial 
resolution. 

2.3 Emotion Detector Generalization 

To generalize the binary classification algorithm it 
has been observed that since the power spectra of all 
analyzed channels were averaged together, only 
channels exhibiting synchronous activation were 
suitable for this approach. Conversely, if two or 
more channels had different behavior 
(synchronization at different frequencies or bands), 
this approach could weaken their contributions. 

For this reason, we designed our approach by 
managing both these situations. The main idea was 
that, by testing different combinations of frequency 
bands and subsets of channels with the original 
algorithm, it could be possible to find the more 
distinctive with respect to the target emotions and to 
perform a classification that could take advantage 
from all contributes. 

To this aim, we modified the hypothesis of the 
original algorithm as follows: 

1) the considered bands of frequencies remained
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Figure 3: Flow-chart of the poll based algorithm. 

two, but the couple of frequencies could be 
chosen into a larger intervals (frequency 
resolution was 1 Hz); 

1) the measured channels were analyzed separately 
in order to ensure that only the most significant 
were considered. 

The proposed poll-based algorithm consisted of two 
phases, Training and Classification, (Figure 3).  

The Training phase took as input a set of known, 
labelled, trials (Calibration Signals) and a group of n 
Configurations (c1,…,cn), each specifying the 
frequency bands and the set of channels that had to 
be analyzed. The first step consisted in the 
application of the Calibration phase of the original 
algorithm n times (one for each Configuration), 
resulting in n Classifiers (each characterized by the 
Classification Parameters reported in Figure 2).  

Then, another set of labelled trials was used 
(Validation Signals) as input for the Classifiers. In 
this way, it was possible to compute the resulting 
poll weight of the k-th Classifier, as follows: 

߱	 	ൌ 	 ൝
0

ሺߙ െ 	߬ሻ
1 െ 	߬

ߙ	݂݅ 	൏ 	߬
ߙ	݂݅ 	 	߬

 (1)

where αk ∈ [0,1] was the accuracy of the k-th 
Classifier, evaluated on the validation set (Fig.3) and 

τ ∈ [0,1] was a minimum accuracy threshold whose 
value depended on the cardinality of the dataset used 
for the classifier validation.  

In the Classification Phase, a new unclassified 
trial was processed by the Inner-classification step, 
(i.e. the Classification phase of the original 
algorithm), for each of the m Classifiers that had 
weights (Eq.1) greater than 0. Considering the Inner-
classification binary output µk (0 corresponded to the 
absence of the target emotion, 1 to its presence), it 
was possible to compute the whole Classification 
confidence value ν: 

ݒ ൌ
∑ ߱ߤ

ୀଵ

∑ ߱

ୀଵ

 (2)

and the corresponding Classification output: 

ߤ ൌ ൜
0 ݂݅ ݒ ൏ 0.5
1 ݒ݂݅  0.5  (3)

2.4 Three Classes Poll System 
Approach 

In order to classify two emotions (with three 
possible classes: (EA) first emotion, (EB) second 
emotion or (EC) absence of both the previous 
emotions), it was possible to build a Classifier that
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Figure 4: Flow-chart of the poll based algorithm extended to the three classes case. 

was the composition of two emotions’ detectors. The 
underlying process, based on a higher order polling 
system, is reported in Figure 4. 

First, two distinct poll based classifiers were 
trained and validated as described for the single 
emotion case (subsection 2.2), in order to obtain a 
set of Weighted Classifiers for both the emotions. 
When an unknown trial had to be classified, it was 
analyzed by both. Let A and B be the classifiers for 
two emotions; four possible cases could occur: 

 neither A nor B detected their target emotions 
(µA=0, µB=0): this case had output Ec  

 A detected its emotion but B did not (µA=1, 
µB=0): this case had output EA (first emotion) 

 B detected its emotion but A did not (µA=0, 
µB=1): this case had output EB (second emotion) 

both A and B detected their emotions (µA=1, µB=1): 
in this case the confidence values νA and νB were 
compared. The chosen emotion was the one having 
greater confidence value. If both classifiers gave the 
same confidence value, the classifier was unable to 
choose (very improbable). 

3 NUMERICAL RESULTS AND 
DATA ANALYSIS 

By using the acquired data, three studies were 

carried out, one for each session. In the first two, the 
aim was to train and test the emotion detector for the 
memory related to disgust (E1) and to the pleasant 
sensation induced by fragrance imagination (E2), 
respectively, with respect to the relax (E3).  

In the last, the three states were classified at the 
same time, using the approach of the composite poll 
system. 

The configurations used in the training phases 
were the following: each trial, whose duration was 
3.66 seconds (1830 samples), was divided in four 
segments of 0.96 seconds (480 samples), with an 
overlap of 0.06 seconds (30 samples). After the r2 
mutual computation, the best two segments were 
maintained. Eight configuration sets (c1,…c8), each 
composed by a single channel (respectively T8, C4, 
F4, F8, T7, C3, F3, F7), were used. All 
configurations considered the 30-42 Hz and the 8-12 
Hz bands. 

For the current number of trials composing a 
sequence, we set τ = 0.67 (a value which was 
significantly higher than the chance value of 0.5 for 
a binary choice). 

3.1 Study 1 – Unpleasant Odor 
Recognition 

From S1, a set made of 8 trials (corresponding to 4 
crosses and 4 down arrows) was used for 
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Calibration. The Validation phase was performed on 
a set of 50 trials equally distributed between the 
unpleasant odor (E1) and to relax (E2). As shown in 
Figure 5, the validation phase, in both subjects, 
found 4 channels whose accuracy was higher than τ. 
For the first subject, T8 (with accuracy value α = 
0.68), F4 (α = 0.76), F8 (α = 0.68) and F3 (α = 0.72) 
were the best, while, for the second subject, T8 (α = 
0.72), F4 (α = 0.82), C3 (α = 0.7) and F3 (α = 0.78) 
overcome τ. 

 

Figure 5: Validation accuracy for disgust/relax detection. 
Configurations with red borders had an accuracy value 
greater than the threshold and were chosen for the poll 
phase. 

The Test phase, performed on the set composed 
by the remaining 50 trials from the first sequence, 
exhibited an accuracy value of 0.82 and 0.84 for the 
first and the second subject, respectively. Both 
significantly above the chance (0.5). The errors, 
reported in Table 1, were equally balanced between 
the two classes for the first subject and more 
concentrated in E2 for the second subject. 

Table 1: Classification results for the disgust/relax 
detector. 

Subject 
E1  
hits 

E1  
errors 

E2  
hits 

E2  
errors 

E1 
acc. 

E2 
acc. 

1 20 5 21 4 0.8 0.84 
2 23 2 19 6 0.92 0.76 

The classification results confirmed that this 
approach had accuracy values similar to that 
obtained by Placidi et al., (2015a). 

3.2 Study 2 – Pleasant Odor 
Recognition 

In the second study we repeated the same process on 
the S2 dataset, in order to train a detector for the 
pleasant sensation (trials E2) with respect to the 
relax (trials E3), The division between classes 
performed in Study 1 was assumed. 

Data reported in Figure 6 show that E2 was more 
difficult to be detected than E1. Only two 

configurations for each subject presented accuracy 
above the threshold: C4 (α = 0.72) and C3 (α = 0.68) 
for the first subject, F4 (α = 0.7) and T7 (α = 0.68) 
for the second subject.  

Also the total accuracy assessed during the test 
phase was lower than that related to the disgust: 0.72 
for the first subject 1 and 0.7 for the second subject. 
However it was yet well above the chance level. In 
this study, misclassifications were equally divided 
between the two classes, as shown in Table 2. 

This was a particular case of the algorithm 
application: for both subjects, only two channels had 
accuracy values above the threshold and one channel 
was significantly better than the other. This implied 
that the best channel acquired the “majority share” 
of the detector. On a binary detection problem, this 
channel drove the whole process. However, the 
output of the channel with smaller weight was not 
completely ignored: during the polling process of a 
composite classifier, it could affect the classification 
result. 

 

Figure 6: Validation accuracy for pleasantness/relax 
detection. Configurations with red borders had an 
accuracy value greater than the threshold and were chosen 
for the poll phase. 

These results suggest a correspondence between 
the arousal of an emotion and its effect over the 
signals: the disgust, a strong emotion (also in terms 
of side effects, such as vomit or increasing 
sweating), seems to be associated with stronger 
signals compared to the pleasantness. Moreover, the 
disgust is a sensation farther than the pleasantness, 
with respect to the environment in which the 
experiments took place. In some sense, the room’s 
“odor” had more in common with a fragrance than 
with a stink. 

Table 2: Classification results for the pleasantness/relax 
detector. 

Subjects 
E2 
hits 

E2  
errors 

E3  
hits 

E3  
errors 

E2  
acc. 

E3 
acc. 

1 18 7 18 7 0.72 0.72 
2 17 8 18 7 0.68 0.72 
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3.3 Study 3 – Three Class 
Classification 

The last study regarded the classification of the data 
allowing to S3 through the composite classifier 
described in Figure 3. The Calibration parameters 
were the same of the previous studies. Results 
showed accuracy values of 0.64 for the first subject 
and 0.63 for the second.  

Also in this case, the first subject exhibited more 
balanced accuracy between the three classes than the 
second subject (Table 3).  

It is important to note that, in case of a three 
classes classification problem, like this, the chance 
level was 0.33. Also in this case, therefore, the 
classifier accuracy was significantly greater than this 
value.  

Table 3: Classification results for the composed classifier. 

Sub. 
E1  
hit 

E1  
err 

E2  
hit 

E2  
err 

E3  
hit 

E3  
err 

E1  
acc. 

E2 
acc. 

E3
acc. 

1 16 9 15 10 17 8 0.64 0.6 0.68 
2 15 10 14 11 18 7 0.6 0.56 0.72 

4 CONCLUSIONS 

A poll based emotion classification strategy was 
presented. This approach was based on a frequency 
similarity research through selectable frequency 
bands and channels sets. The strategy was suitable 
for two emotional states detection or, extending the 
underlying poll process, for multiple emotional 
states classification and channels selection. The 
more informative channels were selected through the 
proposed poll method. 

The proposed approach was tested in different 
scenarios: detection of the disgust produced by the 
memory of a stink with respect to relax; detection of 
the pleasantness elicited by remembering a fragrance 
with respect to relax; classification of all the 
previously tested emotional states at the same time. 

For the last classification problem, the obtained 
classification accuracy (about 63%) was acceptable 
by considering that all the emotional states were 
self-induced and not externally elicited and that the 
considered emotional states shared a significant 
brain region of activation (Rolls et al., 2003). 

The stepping from two recognized emotional 
states to three emotional states could allow to obtain 
a faster BCI system (larger is the alphabet, smaller is 
the number of symbols necessary to compose the 
same message). 

Future developments will be dedicated to: 

1) test the proposed classification strategy in real 
time; 

2) extend the proposed algorithm in a multi-states 
classification (more than three between those 
that can be self-induced); 

3) implement an emotional BCI based on the 
proposed protocol. 
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