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Abstract: In the research field of time series analysis and mining, the nearest neighbour classifier (1NN) based on 
dynamic time warping distance (DTW) is well known for its high accuracy. However, the high 
computational complexity of DTW can lead to the expensive time consumption of classification. An 
effective solution is to compute DTW in the piecewise approximation space (PA-DTW), which transforms 
the raw data into the feature space based on segmentation, and extracts the discriminatory features for 
similarity measure. However, most of existing piecewise approximation methods need to fix the segment 
length, and focus on the simple statistical features, which would influence the precision of PA-DTW. To 
address this problem, we propose a novel piecewise factorization model for time series, which uses an 
adaptive segmentation method and factorizes the subsequences with the Chebyshev polynomials. The 
Chebyshev coefficients are extracted as features for PA-DTW measure (ChebyDTW), which are able to 
capture the fluctuation information of time series. The comprehensive experimental results show that 
ChebyDTW can support the accurate and fast 1NN classification. 

1 INTRODUCTION 

In the research field of time series analysis and 
mining, time series classification is an important 
task. A plethora of classifiers have been developed 
for this task (Esling et al, 2012; Fu, 2011), e.g., 
decision tree, nearest neighbor (1NN), naive Bayes, 
Bayesian network, random forest, support vector 
machine, etc. However, the recent empirical 
evidence (Ding et al, 2008; Hills et al, 2014; Serra et 
al, 2014) strongly suggests that, with the merits of 
robustness, high accuracy, and free parameter, the 
simple 1NN classifier employing generic time series 
similarity measure is exceptionally difficult to beat. 
Besides, due to the high precision of dynamic time 
warping distance (DTW), the 1NN classifier based 
on DTW has been found to outperform an 
exhaustive list of alternatives (Serra et al, 2014), 
including the decision trees, the multi-scale 
histograms, the multi-layer perception neural 
networks, the order logic rules with boosting, as well 
as the 1NN classifiers based on many other 
similarity measures. However, the computational 
complexity of DTW is quadratic to the time series 
length, i.e., O(n2), and the 1NN classifier has to 
search the entire dataset to classify an object. As a 

result, the 1NN classifier based on DTW is low 
efficient for the high-dimensional time series. To 
address this problem, researchers have proposed to 
compute DTW in the alternative piecewise 
approximation space (PA-DTW) (Keogh et al, 2001; 
Keogh et al, 2004; Chakrabarti et al, 2002; Gullo et 
al, 2009), which transforms the raw data into the 
feature space based on segmentation, and extracts 
the discriminatory and low-dimensional features for 
similarity measure. If the original time series with 
length n is segmented into N (N << n) subsequences, 
the computational complexity of PA-DTW will 
reduce to O(N2). 

Many piecewise approximation methods have 
been proposed so far, e.g., piecewise aggregation 
approximation (PAA) (Keogh et al, 2001), piecewise 
linear approximation (PLA) (Keogh et al, 2004; 
Keogh et al, 1999), adaptive piecewise constant 
approximation (APCA) (Chakrabarti et al, 2002), 
derivative time series segment approximation (DSA) 
(Gullo et al, 2009), piecewise cloud approximation 
(PWCA) (Li et al, 2011), etc. The most prominent 
merit of piecewise approximation is the ability of 
capturing the local characteristics of time series. 
However, most of the existing piecewise 
approximation methods need to fix the segment 
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length, which is hard to be predefined for the 
different kinds of time series, and focus on the 
simple statistical features, which only capture the 
aggregation characteristics of time series. For 
example, PAA and APCA extract the mean values, 
PLA extracts the linear fitting slopes, and DSA 
extracts the mean values of the derivative 
subsequences. If PA-DTW is computed on these 
methods, its precision would be influenced. 

In this paper, we propose a novel piecewise 
factorization model for time series, named piecewise 
Chebyshev approximation (PCHA), where a novel 
code-based segmentation method is proposed to 
adaptively segment time series. Rather than focusing 
on the statistical features, we factorize the 
subsequences with Chebyshev polynomials, and 
employ the Chebyshev coefficients as features to 
approximate the raw data. Besides, the PA-DTW 
based on PCHA (ChebyDTW) is proposed for the 
1NN classification. Since the Chebyshev 
polynomials with different degrees represent the 
fluctuation components of time series, the local 
fluctuation information can be captured from time 
series for the ChebyDTW measure. The 
comprehensive experimental results show that 
ChebyDTW can support the accurate and fast 1NN 
classification. 

2 RELATED WORK 

2.1 Data Representation 

In many application fields, the high dimensionality 
of time series has limited the performance of a 
myriad of algorithms. With this problem, a great 
number of data approximation methods have been 
proposed to reduce the dimensionality of time series 
(Esling et al, 2012; Fu, 2011). In these methods, the 
piecewise approximation methods are prevalent for 
their simplicity and effectiveness. The first attempt 
is the PAA representation (Keogh et al, 2001), 
which segments time series into the equal-length 
subsequences, and extracts the mean values of the 
subsequences as features to approximate the raw 
data. However, the extracted single sort of features 
only indicates the height of the subsequences, which 
may cause the local information loss. Consecutively, 
an adaptive version of PAA, named piecewise 
constant approximation (APCA) (Chakrabarti et al, 
2002), was proposed, which can segment time series 
into the subsequences with adaptive lengths and thus 
can approximate time series with less error. As well, 
a multi-resolution version of PAA, named MPAA 

(Lin et al, 2005), was proposed, which can 
iteratively segment time series into 2i subsequences. 
However, both of the variations inherit the poor 
expressivity of PAA. Another pioneer piecewise 
representation is the PLA (Keogh et al, 2004; Keogh 
et al, 1999), which extracts the linear fitting slopes 
of the subsequences as features to approximate the 
raw data. However, the fitting slopes only reflect the 
movement trends of the subsequences. For the time 
series fluctuating sharply with high frequency, the 
effect of PLA on dimension reduction is not 
prominent. In addition, two novel piecewise 
approximation methods were proposed recently. One 
is the DSA representation (Gullo et al, 2009), which 
takes the mean values of the derivative subsequences 
of time series as features. However, it is sensitive to 
the small fluctuation caused by the noise. The other 
is the PWCA representation (Li et al, 2011), which 
employs the cloud models to fit the data distribution 
of the subsequences. However, the extracted features 
only reflect the data distribution characteristics and 
cannot capture the fluctuation information of time 
series. 

2.2 Similarity Measure 

DTW (Esling et al, 2012; Fu, 2011; Serra et al, 
2014) is one of the most prevalent similarity 
measures for time series, which is computed by 
realigning the indices of time series. It is robust to 
the time warping and phase-shift, and has high 
measure precision. However, it is computed by the 
dynamic programming algorithm, and thus has the 
expensive O(n2) computational complexity, which 
largely limits its application to the high dimensional 
time series (Rakthanmanon et al, 2012). To 
overcome this shortcoming, the PA-DTW measures 
were proposed. The PAA representation based 
PDTW (Keogh et al, 2000) and the PLA 
representation based SDTW (Keogh et al, 1999) are 
the early pioneers, and the DSA representation based 
DSADTW (Gullo et al, 2009) is the state-of-the-art 
method. Rather than in the raw data space, they 
compute DTW in the PAA, PLA, and DSA spaces 
respectively. Since the segment numbers are much 
less than the original time series length, the PA-
DTW methods can greatly decrease the 
computational complexity of the original DTW. 
Nonetheless, the precision of PA-DTWs greatly 
depends on the used piecewise approximation 
methods, where both the segmentation method and 
the extracted features are crucial factors. As a result, 
with the weakness of the existing piecewise 
approximation methods, the PA-DTWs cannot 
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achieve the high precision. In our proposed 
ChebyDTW, a novel adaptive segmentation method 
and the Chebyshev factorization are used, which 
overcomes the drawback of the fixed segmentation, 
and can capture the fluctuation information of time 
series for similarity measure. 

3 PIECEWISE FACTORIZATION 

Without loss of generality, we first give the relevant 
definitions as follows. 

Definition 1. (Time Series): The sample 
sequence of a variable X over n contiguous time 
moments is called time series, denoted as T = {t1, t2, 
…, ti, …, tn}, where ti ∈ R denotes the sample value 
of X on the i-th moment, and n is the length of T. 

Definition 2. (Subsequence): Given a time series 
T = {t1, t2, …, ti, …, tn}, the subset S of T that 
consists of the continuous samples {ti+1, ti+2, …, ti+l}, 
where 0 ≤ i ≤ n-l and 0 ≤ l ≤ n, is called the 
subsequence of T. 

Definition 3. (Piecewise Approximation 
Representation): Given a time series T = {t1, t2, …, 
ti, …, tn}, which is segmented into the subsequence 
set S = {S1, S2, …, Sj, …, SN}, if ∃ f: Sj → Vj = [v1, ..., 
vm] ∈ Rm, then the set V = {V1, V2, …, Vj, …, VN} is 
called the piecewise approximation of T. 

Figure 1 shows the example of PLA 
representation (in red), for the stock price time series 
(in green) of Google Inc. (symbol: GOOG) from The 
NASDAQ Stock Market, which consists of the close 
prices at 800 consecutive trading days 
(2010/10/4~2013/12/5). As shown, PLA takes the 
linear fitting slopes and the spans of the 
subsequences as features to approximate the raw 
data, e.g., [0.5, 96] for the first subsequence. 

 

Figure 1: The PLA representation for the stock price time 
series. 

3.1 Adaptive Segmentation 

Inspired by the Marr's theory of vision (Ullman et al, 

1982), we regard the turning points, where the trend 
of time series changes, as a good choice to segment 
time series. However, the practical time series is 
mixed with a mass of noise, which results in many 
trivial turning points with small fluctuation. This 
problem can be simply solved by the efficient 
moving average (MA) smoothing method (Gao et al, 
2010). 

 

 
(a) 

 

 
(b)

Figure 2: Three adjacent samples with the cell codes of (a) 
basic relationships, and (b) specific relationships. 

 

 

 

Figure 3: The minimum turning patterns composed with 
two cell codes. 

In order to recognize the significant turning 
points, we first exhaustively enumerate the location 

001-110 011-100 

100-001

100-011

011-110 

110-001

0

0 

μ 

0 

0 0

1 1

011 

110 

1 

0 

010 

1 

0 

0 

1 

100 1 001

001 0 110 

0

1 

1

0
0 

1 

010 

0 

1 1 

0

1

010 

0

μ 

1 

0 

1 1

101

1 

0 101 

1 

0 

1

101 

101 

010 

KDIR 2015 - 7th International Conference on Knowledge Discovery and Information Retrieval

86



 

relationships of three adjacent samples t1-t3 with 
their mean μ in time series, as shown in Figure 2. Six 
basic cell codes can be defined as Figure 2(a), which 
is composed by the binary codes δ1-δ3 of t1-t3, and 
denoted as Φ(t1, t2, t3) = (δ1δ2δ3)b. Six special 
relationships that one of t1-t3 equals to μ are encoded 
as Figure 2(b). 

Based on the cell codes, all the minimum turning 
patterns (composed with two cell codes) at the 
turning points can be enumerated as Figure 3. Note 
that, the basic cell codes 010 and 101 per se are the 
turning patterns. Then, we employ a sliding window 
with length 3 to scan the time series, and encode the 
samples within each window by Figure 2. In this 
process, all the significant turning points can be 
found by matching Figure 3, with which time series 
can be segmented into the subsequences with the 
adaptive lengths. 

However, the above segmentation is not perfect. 
Although the trivial turning points can be removed 
with the MA, the "singular" turning patterns may 
exist, i.e., the turning patterns appearing very close. 
As shown in Figure 4, a Cricket time series from the 
UCR time series archive (Keogh et al, 2011) is 
segmented by the turning patterns (dash line), where 
the raw data is first smoothed with the smooth 
degree 10 (sd = 10). 

 

Figure 4: Segmentation for the Cricket time series. 

Obviously, the dash lines can significantly 
segment the time series, but the two black dash lines 
are so close that the segment between them can be 
ignored. In view of this, we introduce the segment 
threshold ρ that stipulates the minimum segment 
length. This parameter can be set as the ratio to the 
time series length. Since the time series from a 
specific filed exhibit the same fluctuation 
characteristics, ρ is data-adaptive and can be learned 
from the labeled dataset. Nevertheless, the 
segmentation is still primarily established on the 
recognition of turning patterns, which determines the 
segment number or lengths adaptively, and is 
essentially different from the principles of the 

existing segmentation methods. 

3.2 Chebyshev Factorization 

At the beginning, it is necessary to z-normalize the 
obtained subsequences as a pre-processing step. 
Rather than focusing on the statistical features, 
PCHA will factorize each subsequence with the first 
kind of Chebyshev polynomials, and take the 
Chebyshev coefficients as features. Since the 
Chebyshev polynomials with different degrees 
represent the fluctuation components, the local 
fluctuation information of time series can be 
captured in PCHA. 

The first kind of Chebyshev polynomials are 
derived from the trigonometric identity Tn(cos(θ)) = 
cos(nθ), which can be rewritten as a polynomial of 
variable t with degree n, as Formula (1). 
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For the sake of consistent approximation, we 
only employ the first sub-expression to factorize the 
subsequences, which is defined over the interval [-1, 
1]. With the Chebyshev polynomials, a function F(t) 
can be factorized as Formula (2). 


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The approximation is exact if F(t) is a 
polynomial with the degree of less than or equal to 
n. The coefficients ci can be calculated from the 
Gauss-Chebyshev Formula (3), where k is 1 for c0 
and 2 for the other ci, and tj is one of the n roots of 
Tn(t), which can be get from the formula tj = cos[(j-
0.5)π/n]. 
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However, the employed Chebyshev polynomials 
are defined over the interval [-1, 1]. If the 
subsequences are factorized with this "interval 
function", they must be scaled into the time interval 
[-1, 1]. Besides, the Chebyshev polynomials are 
defined everywhere in the interval, but time series is 
a discrete function, whose values are defined only at 
the sample moments. To compute the Chebyshev 
coefficients, we would process each subsequence 
with the method proposed in (Cai et al, 2004), which 
can extend time series into an interval function. 
Given a scaled subsequence S = {(v1, t1), ..., (vm, tm)}, 

ρ 
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where -1 ≤ t1 < ... < tm ≤ 1, we first divide the 
interval [-1, 1] into m disjoint subintervals as follows: 
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Then, the original subsequence can be extended 
into a step function as Formula (4), where each 
subinterval [ti, ti+1] is divided by the mid-point 
(ti+ti+1)/2. The first half takes the value vi, and the 
second half takes vi+1. 

miItvtF ii ≤≤∈= 1  ,  ,)(       (4) 

After the above processing, the Chebyshev 
coefficients ci can be computed. For the sake of 
dimension reduction, we only take the first several 
coefficients to approximate the raw data, which can 
reflect the principal fluctuation components of time 
series. 

In the entire procedure, the time series needs to 
be scanned only once for the adaptive segmentation 
and factorization. Thus, the computational 
complexity of piecewise factorization is O(kn), 
where k is the extracted Chebyshev coefficient 
number and much less than the time series length n. 

4 SIMILARITY MEASURE 

DTW is one of the most prevalent similarity 
measures for time series (Serra et al, 2014), which 
can find the optimal alignment between time series 
by the dynamic programming algorithm. Given a 
sample space F, time series T = {t1, t2, …, ti, …, tm} 
and Q = {q1, q2, …, qj, …, qn}, ti, qj ∈ F, a local 
distance measure d: (x, y) → R+ should be first set in 
DTW for measuring two samples. Then, a distance 
matrix C ∈ Rm×n is computed, where each cell 
records the distance between each pair of samples 
from T and Q respectively, i.e., C(i, j) = d(ti, qj). 
There is an optimal warping path in C, which has the 
minimal sum of the cells. 

Definition 4. (Warping Path): Given the distance 
matrix C ∈ Rm×n, if the sequence p = {c1, ..., cl, ..., 
cL}, where cl = (al, bl) ∈ [1 : n] × [1 : m] for l ∈ [1 : 
L], satisfies the conditions that: 

i) c1 = (1, 1) and cL = (m, n); 
ii) cl+1 − cl ∈ {(1, 0), (0, 1), (1, 1)} for l ∈ [1 : 

L−1]; 

iii) a1 ≤ a2 ≤ ... ≤ aL and b1 ≤ b2 ≤ ... ≤ bL; 
Then, p is called warping path. The sum of cells 

in p is defined as Formula (5). 

)()()( 21 Lp cccΦ CCC +++=            (5) 

Definition 5. (Dynamic Time Warping Distance): 
Given the distance matrix C ∈ Rm×n over time series 
T and Q, and its warping path set P = {p1, …, pi, …, 
px}, i, x ∈ R+, the minimal sum of the cells in the 
warping paths Φmin = {Φξ |Φξ ≤ Φλ, ξ, λ ∈ P} is 
defined as the DTW distance between T and Q. 

Based on PCHA, we propose a novel PA-DTW 
measure, named ChebyDTW. The algorithm of 
ChebyDTW contains two layers: subsequence 
matching and dynamic programming computation. 
Figure 5(a) shows the dynamic programming table 
with the optimal-aligned path (red shadow) of 
ChebyDTW, against that of the original DTW in 
Figure 5(b). In Figure 5(a), each cell of the table 
records the subsequence matching result over the 
Chebyshev coefficients. By the intuitive comparison, 
ChebyDTW would have much lower computational 
complexity than the original DTW. 

With high computational efficiency, the squared 
Euclidean distance is a proper measure for the 
subsequence matching. Given d Chebyshev 
coefficients are employed in PCHA, for 
subsequences S1 and S2, respectively approximated 
as C = [c1, ..., cd] and Ĉ =[ĉ1, ..., ĉd], the squared 
Euclidean distance between them can be computed 
as Formula (6). 
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Over the subsequence matching, the dynamic 
programming computation performs. Given that 
time series T with length m is segmented into M 
subsequences, and time series Q with length n is 
segmented into N subsequences, ChebyDTW can be 
computed as Formula (7). CT and CQ are the PCHA 
representations of T and Q respectively; C1

T and C1
Q 

are the first coefficient vectors of CT and CQ 
respectively; rest(CT) means the rest coefficient 
vectors of CT except for C1

T; the same meaning is 
taken for rest(CQ). 
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(b) 

Figure 5: (a) The dynamic programming table with the 
optimal-aligned path (red shadow) of ChebyDTW, (b) 
against that of the original DTW. 

5 EXPERIMENTS 

We evaluate the 1NN classifier based on 
ChebyDTW from the aspects of accuracy and 
efficiency respectively. 12 real-world datasets 
 

provided by the UCR time series archive (Keogh et 
al, 2011) are employed, as shown in Table 1, which 
come from various application domains and are 
characterized by different series profiles and 
dimensionality. All datasets have been z-normalized 
and partitioned into training and testing sets by the 
provider. Besides, we take the 1NN classifiers 
respectively based on four prevalent PA-DTWs as 
baselines, i.e., PDTW, SDTW, APCADTW, and 
DSADTW. All parameters in the measures are 
learned on the training datasets by the DIRECT 
global optimization algorithm (Björkman et al, 
1999), which is used to seek for the global minimum 
of multivariate function within a constraint domain. 
The experiment environment is Intel(R) Core(TM) 
i5-2400 CPU @ 3.10GHz; 8G Memory; Windows 7 
64-bit OS; MATLAB 8.0_R2012b. 

5.1 Accuracy 

Table 1 shows the 1NN classification accuracy (acc.) 
based on the above PA-DTWs. The best result on 
each dataset is highlighted in bold. The learned 
parameters are also presented, which could make 
each classifier achieve the highest accuracy on each 
training dataset, including the segment threshold (ρ), 
the smooth degree (sd), and the extracted Chebyshev 
coefficient number (θ). For the sake of 
dimensionality reduction, we learn the parameter θ 
in the range of [1, 10] for ChebyDTW. 

It is clear that, the 1NN classifier based on 
ChebyDTW wins all datasets and has the highest 
accuracy. Its superiority mainly derives from the 
distinctive features extracted in ChebyDTW, which 
can capture the fluctuation information for similarity 
measure. Whereas the statistical features extracted in 
the baselines only focus on the aggregation 
characteristics of time series, which would result in 
much fluctuation information loss. 

Table 1: 1NN classification accuracy results based on five PA-DTWs. 

Dataset ρ sd θ ChebyDTW PDTW SDTW APCADTW DSADTW 

Adiac 0.21 22 9 0.72 0.61 0.34 0.28 0.38 
Beef 0.18 17 5 0.57 0.50 0.57 0.57 0.47 
CBF 0.98 8 10 0.98 0.98 0.95 0.91 0.50 
ChlorineConcentration 0.73 25 8 0.65 0.60 0.55 0.56 0.62 
CinC_ECG_torso 0.29 4 9 0.81 0.65 0.63 0.61 0.63 
Coffee 0.51 14 9 0.89 0.79 0.75 0.82 0.61 
ECG200 0.80 7 9 0.89 0.80 0.83 0.77 0.81 
ECGFiveDays  0.73 17 9 0.91 0.79 0.68 0.68 0.57 
FaceAll 0.51 29 10 0.73 0.63 0.50 0.63 0.71 
FacesUCR 0.51 4 6 0.80 0.60 0.57 0.72 0.70 
ItalyPowerDemand 0.51 7 5 0.94 0.93 0.80 0.90 0.87 
SonyAIBORobotSurface 0.95 25 6 0.80 0.76 0.73 0.76 0.70 
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Table 2: The DCR results of five PA-DTWs. 

Dataset n 
ChebyDTW PDTW SDTW APCADTW DSADTW 
w DCR w DCR w DCR w DCR w DCR 

Adiac 176 3.99 44.13 36 4.89 13 13.54 43 4.10 70.00 2.51 
Beef 470 5.18 90.68 61 7.70 10 47.00 61 7.70 192.32 2.44 
CBF 128 1.00 128.0 30 4.27 27 4.74 15 8.53 46.19 2.77 
ChlorineConcentration 166 2.00 83.00 36 4.61 29 5.72 34 4.88 64.77 2.56 
CinC_ECG_torso 1639 4.00 409.9 103 15.91 94 17.44 84 19.51 655.49 2.50 
Coffee 286 2.00 143.0 60 4.77 33 8.67 40 7.15 117.34 2.44 
ECG200 96 1.93 49.74 14 6.86 19 5.05 23 4.17 35.84 2.68 
ECGFiveDays  136 1.61 84.43 9 15.11 9 15.11 5 27.20 48.24 2.82 
FaceAll 131 2.00 65.50 32 4.09 32 4.09 32 4.09 53.96 2.43 
FacesUCR 131 2.00 65.50 24 5.46 32 4.09 31 4.23 54.43 2.41 
ItalyPowerDemand 24 1.98 12.13 5 4.80 6 4.00 6 4.00 10.61 2.26 
SonyAIBORobotSurface 70 1.00 70.00 13 5.38 9 7.78 8 8.75 27.41 2.55 

 

5.2 Efficiency 

Since the efficiency of 1NN classifier is determined 
by the used similarity measure, we perform the 
efficiency evaluation by comparing the 
computational efficiency of ChebyDTW against the 
baseline PA-DTWs. The speedup of computational 
complexity gained by PA-DTW over the original 
DTW is O(n2/w2), where n is the time series length, 
and w is the segment number. It is positively 
correlated with the data compression rate (DCR = 
n/w) of piecewise approximation over the raw data. 
In Table 2, we present the DCRs of five PA-DTWs 
on all datasets, as well as n and w. Since 
ChebyDTW and DSADTW both employ the 
adaptive segmentation method, the average segment 
numbers on each dataset are computed for them. 

As shown by the results, the DCRs of 
ChebyDTW are not only much larger than the 
baselines on all datasets, but also robust to the time 
series length. Thus, it has the highest computational 
efficiency among the five PA-DTWs. The efficiency 
superiority of ChebyDTW mainly derives from the 
precise approximation of PCHA over the raw data, 
and the data-adaptive segmentation method, which 
can segment time series into the less number of 
subsequences with the adaptive lengths. 

6 CONCLUSIONS 

We proposed a novel piecewise factorization model 
for time series, i.e., PCHA, where a novel adaptive 
segmentation method was proposed, and the 
subsequences were factorized with the Chebyshev 
polynomials. We employed the Chebyshev 
coefficients as features for PA-DTW measure, and 

thus proposed the ChebyDTW for 1NN 
classification. The comprehensive experimental 
results show that ChebyDTW can support the 
accurate and fast 1NN classification. 
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