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Abstract: Most scientific applications tend to have a very resource demanding nature and the simulation of such 
scientific problems often requires a prohibitive amount of time to complete. Distributed computing offers a 
solution by segmenting the application into smaller processes and allocating them to a cluster of workers. 
This model was widely followed by Grid Computing. However, Cloud Computing emerges as a strong 
alternative by offering reliable solutions for resource demanding applications and workflows that are of 
scientific nature. In this paper we propose a Cloud Platform that supports the simulation of complex 
electromagnetic problems and incorporates classification (SVM) and resource allocation (Ant Colony 
Optimization) methods for the effective management of these simulations.

1 INTRODUCTION 

The simulation of complex electromagnetic problems 
was always a task that required both great amount of 
time and resources. Even with the advancement of 
conventional computer technology, the execution of 
complex algorithms such as Monte-Carlo simulations 
-especially when dealing with realistic scenarios (e.g. 
large amount of users) - creates a resource demanding 
process and even if the host environment has an 
adequate amount of resources to successfully execute 
it, it usually takes a prohibitive amount of time for the 
user to receive the results of his or her simulation. Of 
course modern programming languages (even the 
high level ones) nowadays provide sophisticated 
libraries that allow for parallel programming 
paradigms that take advantage of multicore 
computers. What is more, the solution of distributed 
computing allows a cluster of computers in a private 
network to share the load by executing different parts 
of the application code.   

Parallel and distributed computing has been a 
solution for complex scientific simulations. Public 
grid computing platforms offer to user communities 
from various scientific domains the opportunity to 

submit large resource-demanding simulations that 
promise to yield the desired results in an acceptable 
amount of time. However, grid computing platforms 
impose certain restrictions to users. That happens 
mainly because simulations are submitted directly to 
the physical machines for execution, and as a result 
the user code must be compatible with the host 
operating system. Physical machines might be in the 
situation of hosting processes for different 
simulations from different users. This creates a form 
of a single point of failure where an error (e.g. 
memory leak) might jeopardize the rest of executing 
processes.  

On the other hand over the last few years Cloud 
Computing has been a rapidly emerging alternative, 
as it can also provide a very solid solution when 
dealing with scientific applications. Cloud Platforms 
that utilize Cloud Infrastructures (IaaS tier) can easily 
allocate a cluster of Virtual Machines for the 
execution of simulations. Each Virtual Machine or 
cluster of Virtual Machines is dedicated to the 
execution of a specific user simulation at each given 
time. Moreover, because Virtual Machines are 
created by using images or snapshots of operating 
systems, the user has the opportunity to request an 
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environment specifically “tailored” for his needs; he 
doesn’t have to change his code in that case.  

Having the aforementioned –as well as many 
other significant advantages of Cloud Computing- in 
mind, in this paper we propose a platform that utilizes 
Cloud Infrastructures in order to provide a solution 
for complex resource demanding electromagnetic 
simulation problems. The platform accepts user 
simulation requests, decides the amount of resources 
that will be granted for the execution of the simulation 
application, creates the requested Virtual Machines, 
collects monitoring data and stores results in a 
persistent storage space. Two crucial features of the 
platform will be discussed in detail in later sections; 
the Machine Learning process which automatically 
figures the resource demand of a given simulation, 
and the process that allocates the newly-created 
Virtual Machines to hosts, which is targeted towards 
performance and energy efficiency. The rest of the 
paper is organized as follows; in Section 2 we present 
some notable related work, and in Section 3 we 
present the platform architecture. In Sections 4 and 5 
we describe the Machine Learning and VM 
Allocation strategies that are adopted in the platform. 
In Section 6 we describe the nature of the 
Electromagnetic Problems and finally in Section 7 we 
provide some useful conclusions and ideas for future 
work. 

2 RELATED WORK 

Autonomous Virtual Machine allocation is quite a 
new aspect. The idea of applying Machine Learning 
techniques in VM allocation over the cloud is 
investigated the last five years. This approach has the 
advantage of adapting the cloud services dynamically 
according to the Service Layer Agreement (SLA) 
between the client (user) and the provider (cloud).  

M. Macias et al. (2011 and 2012) classify the 
clients’ policies for SLA negotiation and allocation. 
The clients classification is based on the client’s 
affinity with the provider and the Quality of Service 
(QoS) the client are willing to acquire. Afterwards the 
provider applies Machine Learning techniques (G. 
Reig, 2010) to predict future jobs and confirm if the 
offered job can be executed. J.Rao et al. (2009) 
propose VCONF, a RL approach to automate the VM 
configuration process. VCONF is based on model-
based RL algorithms that generate policies learned 
from iterations with the environment. X. Dutreilh et 
al. (2011) propose a more sophisticated model free 
RL approach using appropriate initialization of the 
weights for the early stages and convergence 

speedups applied in order to avoid the slow 
convergence and optimal policy discovery in the early 
phases of learning. L. Chimakurthi et al. (2011) 
introduce an energy efficient mechanism capable of 
allocating the cloud resources according to the given 
SLA using the Ant Colony algorithm. 

Another approach (A. Quiroz, 2009) uses 
decentralized online clustering to categorize the 
incoming tasks and optimize the provisioning of the 
resources. They also present a model-based approach 
to calculate the application service time given the 
derived provisioning in order to tackle the inaccurate 
resource requirements. A rule-based approach is 
followed by M. Maurer et al. (2012) in an attempt to 
reduce the SLA violations by monitoring the 
workload itself. They introduce the notion of 
workload volatility (WV), determine a function to 
calculate it and dynamically classify workload into 
WV classes (LOW, MEDIUM, MEDIUM HIGH and 
HIGH WV). C.J. Huang et al. (2013) propose a 
system that optimizes the resource allocation in cloud 
computing. The two main components of their system 
is the application service prediction module that uses 
Support Vector Regression (SVR) to calculate the 
response time and the resource allocation 
optimization module that is based on Genetic 
Algorithm (GA) and redistributes the resources 
according to the current status of the installed VMs. 

3 PLATFORM ARCHITECTURE 

The architecture of the proposed platform is based on 
a multi-agent system. For each simulation request that 
is received by the platform a group of agents is 
created that handles the lifecycle of the simulation 
until its completion. The platform entry point is the 
Supervisor service that creates the aforementioned set 
of agents. There are four agents (Profiler, Planner, 
Client, and Monitor) that perform a distinct set of 
tasks during the simulation lifecycle. The system is 
event or message driven; each agent performs a task 
when it receives a message from a peer or supervising 
entity. Below we describe in detail the tasks that each 
entity of the platform is responsible for. Αn overview 
of the platform architecture is shown in fig. 1. 

3.1 Supervisor 

The Supervisor service is responsible for receiving 
simulation requests by the users. It performs some 
checks according to the user SLA and once it accepts 
the request, the Supervisor service communicates 
with the underlying agent system and requests for the 
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creation of four agents that will be dedicated to carry 
out the execution of the user simulation. 

3.2 Profiler 

The Profiler is responsible on making decisions based 
on historical data and user SLAs about the amount of 
resource that are to be allocated into a VM or VMs. 
The Profiler incorporates the SVM (Support Vector 
Machine) supervised machine learning method. The 
algorithm predicts the appropriate amount of 
resources that are necessary by the simulation in order 
to be executed in the required amount of time 
according to the user SLA and the infrastructure 
characteristics.  

3.3 Planner 

Another integral part of the platform is the agent that 
receives the decision output from the Profiles and is 
responsible for creating an allocation plan for the 
resources. For this the Planner agent uses an Ant 
Colony Optimization algorithm variant that is 
targeted towards energy efficiency. The ACO variant 
is described in detail in Section 5. 

3.4 Client 

The Client agent receives the allocation plan and its 
sole responsibility is to communicate with the service 
stack of the IaaS (Infrastructure as a Service) in order 
to create or destroy the requested VMs into the pre-
selected virtual hosts.  

3.5 Monitor 

Once the requested resources are created and are 
accessible, the Monitor agent performs periodic 
checks on the VMs that host the user’s simulation. 
The Monitor collects data regarding the resource 
utilization of each VM as well as the resource usage 
of the simulation process of each VM.  

3.6 Datastore 

The datastore may not be a part of the agent system, 
but it is a highly important part of the platform as it 
holds monitoring data that are used for profiling of 
user simulations. The datastore uses a NoSQL 
document database. Due to the unstructured and 
loosely coupled form of stored data NoSQL databases 
provide better write/read times especially when 
clients query for large chunks of data.     

3.7 User Dashboard 

The user dashboard is a Web UI that allows the user 
initiate new simulations as well as review his or hers 
on-going or completed ones. It displays status 
notifications on screen in real time fashion and 
provides also information logs regarding the 
simulations that have complete successfully or 
unsuccessfully. The user can also download the 
results of the simulation into his computer.  

 

Figure 1: Overview of the Platform Architecture. 

4 PROFILER 

In our approach we attempt to categorize the 
aforementioned computational tasks (Section 6) 
requested by the users into classes. Each 
computational task will be mapped to the generation 
of a finite number of VMs with the proper attributes 
(CPU and Memory) to handle the user’s request. As a 
result we propose a supervised machine learning 
classification approach to achieve the autonomous 
VM allocation in a cloud computing architecture. The 
most appropriate method for supervised classification 
for this is the Support Vector Machine (SVM) using 
the Gaussian Kernel. For a number of training 
examples	݉, the regularized SVM cost function 
ܦ of a data set (ሻߠሺܬ) =	 ൛൫ݔሺ௜ሻ, ,ሺ௜ሻ൯ݕ	 ݅ ∈ ݉ൟ	is 
given by: ܬሺߠሻ ሺ௜ሻݕ෍ൣܥ= log ݄ఏ൫ݔሺ௜ሻ൯ +	൫1 − ሺ௜ሻ൯ݕ log ݄ఏ൫ݔሺ௜ሻ൯൧	௠

௜ୀଵ  +	ଵଶ∑ ௝ଶ௡௜ୀଵߠ     (1) ݄ఏ൫ݔሺ௜ሻ൯ = 	 ଵଵା௘షഇ೹ೣሺ೔ሻ		   (2) 

where ݊  denotes the number of features, ߠ	denotes the 
weight of a feature, ݄ఏሺݔሻ depicts the hypothesis 
value that equals the sigmoid (logistic) function and ܥ depicts the regularization term. A huge advantage 
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of SVM is that it finds a hypothesis h that assures the 
lowest true error, Structural Risk Minimization 
principle (V. N. Vapnik, 1995). The Quality of 
Experience (QoE) is a major issue for the users and 
SVM provides a more “safe” distance (fig. 2) from 
the decision boundary for each example, which 
reduces the classification errors that other classifiers 
with “soft” margin produce. What is more, the 
Gaussian Kernel the ability to generate non-linear 
decision boundaries (fig. 3) using linear classification 
methods and Gaussian kernel function enables the 
classification of data that have no obvious fixed-
dimensional vector space representation  (A. Ben-
Hur, 2010). The Gaussian Kernel function on two 
samples (x, x’) is given by: ܭሺݔ, ᇱሻݔ = ݌ݔ݁	 ቀ− ‖௫ି௫ᇱ‖మଶఙమ ቁ  (3) 

where ‖ݔ −  ଶ denotes the squared Euclidean‖′ݔ
distance between two feature vectors and  ߪଶ depicts 
the variance. 

 
a)                                        b) 

Figure 2: a) Margin Classifier b) Non-linear decision 
boundary. 

5 PLANNER 

The proposed platform uses the output of the Machine 
Learning Classification process and performs the next 
crucial task which is the resource allocation (in the 
form of VMs) into physical hosts. The goal of the 
Planner agent is to pack VMs that are created for a 
specific simulation into the same host. That is 
profitable for two reasons; the first is that the 
simulation will experience lower network overhead 
especially when popular distributed computing 
frameworks (e.g. MPI, MapReduce) use ssh as their 
main communication protocol. The second reason is 
that the allocation should be also driven towards 
energy efficiency regarding the physical 
infrastructure, as inactive hosts can be put into energy 
saving mode. Given the fact that the allocation 
problem is of NP-Hard nature, we have chosen to use 
the meta-heuristic Ant-Colony Optimization 
algorithm (ACO). The ACO algorithm models a 
multi-agent system that imitates the behavior of real 

life ant colonies when searching for food sources. It 
was originally developed by Marco Dorigo et al. 
(1999). The ACO algorithm shows better results 
towards workload performance and energy efficiency 
than other greedy algorithms such as the First-Fit 
Decreasing (FFD) (Feller et al., 2011). Our approach 
regarding the implementation of the algorithm takes 
the following assumptions into account; a) the 
resource demand by the Virtual Machines is static and 
b) the resource vector contains the CPU cores and ram 
in GB. A full formalization and description of the 
ACO algorithm is provided in the work by Feller et 
al. (2011).   

In the proposed variant let ܤ denote the set of 
physical hosts with size	݊, and ܫ the set of VMs with 
size ݉ that the algorithm will try to allocate into 
hosts. Also, let ܥ௩ሬሬሬሬԦ denote the resource capacity vector 
(2-dimensional in our case) of a physical host	ݒ, ݒ  పሬሬԦ denote the resource demand vectorݎ Similarly, let .ܤ∋
of a VM	݅, ݅	 ∈  As mentioned earlier this ACO .ܫ
variant is targeted towards energy efficiency by trying 
to pack as many VMs to the same physical host. Thus, 
the objective function the algorithm tries to minimize 
is given by the following: 

݂ሺݕሻ = ෍ݕ௩௡ିଵ
௩ୀ଴  (4)

Where ݕ௩ is equal 1 if a physical host has 
allocated VMs, and 0 otherwise. The objective 
function is subject to the following constraints; a) 
each VM ݅ is allocated to exactly one physical host 
and b) the maximum resource capacity for each of the 
physical hosts is not exceeded. An integral 
characteristic of the ACO algorithm is the way each 
ant-agent is making decisions on which physical host 
will allocate a VM into. The probability to choose the ݅,  ,pair is a combination of the pheromone trail ݒ
which is a mechanism for encouraging other ants to 
follow the same path, and a heuristic information. The 
probability is given by the following: 

௜,௩݌ = ൣ߬௜,௩൧௔ × ∑௜,௩൧ఉݒൣ ൣ߬௨,௩൧௔ × ௨,௩൧ఉ௨∈ேೠݒൣ 	 (5)

Where ߬௜,௩ is the amount of pheromone trail for 
the specific VM - physical host pair,  ݒ௜,௩ is the 
heuristic information for that same pair and ௨ܰ is the 
set of all VMs that are not assigned into any host and 
ensure that the resource capacity constraint of the 
physical host is not violated when taking also into 
account the current load assigned to it. The above can 
be show in eq. 6: ௩ܰ ≔ ݅ (6)
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.ݏ ௜,௝௡ିଵݔ෍ ݐ
௝ୀ଴ = 0 (7)

		ܽ݊݀		ܾ௩ሬሬሬሬԦ + పሬሬԦݎ ≤ ௩ሬሬሬሬԦ (8)ܥ

Where ܾ௩ሬሬሬሬԦ denotes the current resource load for 
physical host ݒ. Another characteristic that is worth 
mentioning is the pheromone evaporation mechanism 
which is triggered after the end of each iteration of the 
algorithm and is given by the following: ߬௜,௩ ≔ ሺ1 − ሻ݌ × ߬௜,௩ +	∆ఛ೔,ೡ௕௘௦௧ (9)

Where ݌ is the pheromone evaporation rate and ∆ఛ೔,ೡ௕௘௦௧ is a bonus to the best VM – physical host pair 
of each iteration.  

6 ELECTROMAGNETIC 
PROBLEMS 

6.1 Principal Component Analysis in 
MIMO-WCDMA Networks 

The first electromagnetic problem performs the 
calculation of the appropriate transmission vectors in 
MIMO-WCDMA networks that improve Signal to 
Noise Ratio (SNR), where diversity combining 
transmission mode is assumed.  In order to reduce 
overall complexity, Principal Component Analysis 
(PCA) is employed at the reception, and only the 
terms that contribute to a predefined signal energy are 
taken into account. Even so, however, in cases of 
multiuser/multipath scenarios, computational load 
can be significantly increased.  

In particular, when deploying PCA in MIMO-
WCDMA networks, it is assumed that all received 
data for a specific user after processing can be stacked 
as an ݉ × ܵ matrix (denoted as ܺ throughout the rest 
of this section), where ݉ is the number of 
independent observations and S the number of 
samples per observation (Shlens, 2005). In our 
case,݉	 =  where is the number of multipath ܮ	
components. The covariance matrix of ܺ will be 
given by: ܥ௑ = 1ܵܺܺு (10)

and the primary eigenvalues and eigenvectors can be 
directly calculated from eigenvalue analysis of matrix ܥ௑. Afterwards, an iterative optimization approach is 
followed, and all transmit weight vectors can be 
calculated (Gkonis et al., 2015). Note however that as 

the number of active users increases, eigenvalue 
analysis should be performed at each user separately. 
Moreover, the dimensions of matrix ܺ are directly 
related to the number of active multipath components, 
while processing complexity also depends on the 
number of transmit and receive antennas.  

6.2 Eigenanalysis based on a 2-D FDFD 
Method 

The second case of electromagnetic problems is the 
eigenanalysis of open-periodic electromagnetic 
structures. The eigenanalysis of electromagnetic 
structures is used to enlighten all the hidden physical 
properties exhibited by each structure. The following 
eigenanalysis is exploiting a 2-D Curvilinear FDFD 
method, (Lavranos et al., 2009, Theofanopoulos et al. 
2014 and Lavranos et al., 2014). 

The eigenanalysis starts from Maxwell’s curl 
equations in the frequency domain and after some 
algebraic manipulations the following linear eigen	
problems occur: ൬ܣ௘௘ ௛௘ܣ௘௛ܣ ௛௛൰ܣ ൬ܧ௧ܪ௧൰ = ߚ݆ ൬ܧ௧ܪ௧൰ (11)ሺܥ௠ሻሺܨሻሺܥ௘ሻሺܰሻ ൤ܦ௧ܦଷ൨ = ߱ଶ ൤ܦ௧ܦଷ൨ (12)

The eigenproblem given in eq. 11 is called ‘β-
formulation’ and the independent variable is the 
eigenfrequency ω, while the eigenvalue is the complex 
propagation constant β. On the other hand, the 
eigenproblem of eq. 12 is called ‘ω-formulation’ and 
the independent variable is the propagation constant β 
and the eigenvalue is the eigenfrequency ω. So, in 
order to reveal all the modes exhibited by the 
structure, an independent eigenproblem has to be 
solved for every ω or β in a given range. The size of 
the eigenproblems depends on the level of meshing 
detail. 

The nature of the eigenproblems reveals the 
urgency towards a form of parallelization or 
distributed execution. The proposed parallelization 
technique relies on the independent nature of each 
eigenproblem. So, exploiting the independence of the 
eigenproblems, an assignment to different machines is 
expected. The estimated analysis time is reduced 
depending on the number of the machines-workers 
available.  

7 CONCLUSIONS AND FUTURE 
WORK 

In this paper we described a platform that takes 
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advantage of Cloud Computing Infrastructures in 
order to apply classification and resource 
management methods for complex and resource 
heavy electromagnetic simulations. The proposed 
platform requires no special configuration from the 
user regarding his or her application code. Also, 
depending on the selected simulation the platform can 
predict the required resource demand in order to 
allow it to complete in the desired user time, 
according of course the SLA. Also, the platform uses 
an energy-efficient ACO variant for the allocation of 
the VMs into physical hosts that can also achieve low 
network overhead. 

A series of next steps include the collection of test 
results against the proposed platform and the 
simulation of the described electromagnetic problems 
in various set ups. Furthermore, we would like to 
address the issue of dynamically reconfiguring the 
allocation plan according to the continuous changing 
resource demand of the electromagnetic simulations. 
Finally, we intend also to test a number of allocation 
algorithms and machine learning methods against the 
ones that are already being used in our platform.   
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