
Using DEMO to Objectify Metamodel Evolution

Nuno Silva1, José Tribolet1, Miguel Mira da Silva1 and Carlos Mendes2
1Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, Lisboa, Portugal

2INOV Inesc Inovação, Rua Alves Redol 9, Lisboa, Portugal

Keywords: Metamodel Evolution, Coupled Operations, EO, DEMO, ATD, OFD.

Abstract: A metamodel is an important aspect of defining a modeling language. It specifies the language’s syntax
through a set of constructs as well as how the language models are ought to be composed. Modeling
languages, and thus their metamodels, are subject of constant evolution due to changing language
requirements as consequence of business changes. Therefore, perceiving the essential aspects responsible
for altering the structure of metamodels when a change requirement arises can become an issue. The
Enterprise Ontology theory and its methodology (DEMO) provide ontological knowledge about
organizations resulting in organizational self-awareness. Applying this methodology to the context of
metamodeling can be a starting point for uncovering the essential aspects, i.e., the ontological knowledge
regarding metamodel evolution. For that purpose, we modeled two diagrams using the DEMO
methodology. The input for both diagrams was a set of coupled operations defined in Herrmannsdörfer’s
evolutionary metamodeling research. In the end we stated the main conclusions of our work and themes for
future work.

1 INTRODUCTION

Model-based development provides an increase in
the abstraction level of today’s software
development through the use of models (France and
Rumpe, 2007; Pretschner et al., 2007). These models
are built through the use of adequate modeling
languages (Bézivin and Heckel 2006) that help users
to directly express the abstractions from their
problem domain (Guizzardi 2005).

A modeling language is defined through its
abstract syntax, concrete syntax and semantics. The
abstract syntax defines the set of valid models and is
placed in the center of a modeling language
definition (Kleppe 2008) from which both the
concrete syntax and semantics are defined.
Metamodeling is therefore the act of modeling the
abstract syntax of modeling languages. For that
purpose, innumerous languages for defining abstract
syntax were defined such as the Meta Object Facility
(MOF) from OMG (Object Management Group
2013), Kernel Metametamodel (KM3) from INRIA
(Jouault and Bézivin, 2006), amongst others. The
metamodel defines the constructs that the modeling
language provides as well as how to compose them
to models.

Like software changes over time (due to new
requirements), also modeling languages are prone to
change when new requirements arise (Favre 2005).
These changes are usually a consequence of one or
more business changes and reasons such as
Perfective Maintenance, Corrective Maintenance,
etc. are the main drivers of these changing
requirements. Therefore, the language engineers
evolve the modeling language to a new version by
first adapting its metamodel to the additional
requirements. However, metamodel adaptation may
invalidate existing artifacts that depend on the
metamodel (Sprinkle, 2003). Most importantly,
existing models may no longer conform to the
adapted metamodels. The existing artifacts need to
be migrated to conform to the metamodel again, so
that they can be used with the evolved modeling
language. This can become a difficult task when the
language engineers do not possess any ontological
knowledge nor self-awareness regarding the
metamodel and its core structural elements.

In this paper we propose to use DEMO, namely
the ATD and OFD diagrams, to illustrate how a
metamodel is structured in terms of its elements,
which are the actor roles behind each metamodel
structural change, what are the core transactions
types responsible for altering the metamodel

Silva, N., Tribolet, J., Silva, M. and Mendes, C..
Using DEMO to Objectify Metamodel Evolution.
In Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2015) - Volume 2: KEOD, pages 493-500
ISBN: 978-989-758-158-8
Copyright c© 2015 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

493

structure, and what kind of relationship constraints
exist between metamodel elements, thus obtaining
an ontological awareness regarding metamodel
evolution. The provided input for each diagram was
based on Herrmannsdörfer coupled operations
(Herrmannsdoerfer, 2011).

DEMO (Design & Engineering Methodology for
Organizations) is a methodology for modeling,
(re)designing and (re)engineering organizations and
networks of organizations. The theory used as
foundation for this methodology is called Enterprise
Ontology (EO) (Dietz, 2006) that, by itself, is based
on the speech act theory. DEMO is composed of
four aspect models that express the ontological
knowledge of an enterprise in an easily accessible
and manageable way (Dietz, 2006).

The remainder of this paper is structured into
three main sections. The Theoretical Background
section describes some important theoretical aspects
concerning the topic of metamodel evolution, and
Dietz Enterprise Ontology theory as well as the
DEMO methodology. The Metamodels and DEMO
section illustrates and explains the reasoning behind
each of the two proposed DEMO diagrams. Finally,
the Conclusions section states the main conclusions
of our work and some future work topics.

2 THEORETICAL
BACKGROUND

This section is divided into two sub-sections. The
first one considers some of the relevant aspects
behind the concept of metamodels and their
evolution (metamodeling, reasons for evolution of
modeling languages, and coupled operations). The
second describes the theory behind Enterprise
Ontology (a branch of the Enterprise Engineering
field) and the methodology that supports it called
DEMO.

2.1 Metamodel Evolution

In this section we describe important aspects of
metamodel evolution concerning modeling
languages such as the metamodeling process, i.e.,
the metamodeling languages and constructs for
creating and changing metamodels, and the required
operations for performing a metamodel change
covered by Herrmannsdörfer (Herrmannsdoerfer,
2011).

A modeling language is not a static, immutable
thing. It may evolve due to a multitude of reasons.

Those can be Perfective Maintenance, Corrective
Maintenance, Preventive Maintenance, and Adaptive
Maintenance (Herrmannsdoerfer 2011). All these
reasons are valid for evolving the abstract syntax of
a modeling language, i.e., for evolving the
language’s metamodel.

2.1.1 Metamodeling – Languages and
Constructs

A modeling language is defined through its abstract
syntax, concrete syntax and semantics. The abstract
syntax is what defines the set of valid models and is
placed in the center of a modeling language
definition (Kleppe, 2008) from which both the
concrete syntax and semantics are defined.

Metamodeling is the act of modeling the abstract
syntax of a modeling language. For that purpose,
innumerous languages for defining abstract syntax
were defined (Meta Object Facility – MOF – from
OMG (Object Management Group, 2013), Kernel
Metametamodel – KM3 – from INRIA (Jouault and
Bézivin, 2006), amongst others.

MOF is the most widely applied metamodeling
language. This is due to MOF being a standard,
therefore not being proprietary to a certain
metamodeling tool, and because all metamodeling
languages are conceptually similar (all represent
models as graphs) with the only difference being the
provided metamodeling constructs.

The E-MOF (being one of MOF’s compliance
point) is based on the object-oriented paradigm and
defines a hierarchy of models grouped into layers
called meta hierarchy (Bézivin, 2005). The model
layer is the bottom layer containing all the models
that are specified according to a modeling language.
All models from this layer conform to a metamodel
defined in the next upper layer. The metamodel
layer is the middle layer that contains all the
metamodels defining the abstract syntax of modeling
languages. Each metamodel in this layer conforms to
the metametamodel in the next upper layer. Finally,
the metametamodel layer (being the upmost layer)
contains the metametamodel that defines the abstract
syntax of a metamodeling language. The
metametamodel in this layer conforms to itself.

The E-MOF metametamodel provides a set of
constructs for defining metamodels. A Package
consists of a number of types and sub packages. In
order to distinguish a package from other, each one
uses a name feature. The name of a sub package
needs to be unique among all packages belonging to
a super package and so on. Type is a common
abstract super class of Class and PrimitiveType. In

SSEO 2015 - Special Session on Enterprise Ontology

494

the complete E-MOF metametamodel, all nodes
must be instances of Types. In order to distinguish
types, they also use a name. The name of a type has
to be unique among all types associated to the same
package.

A Feature is a common abstract super class of
Reference and Attribute. To be able to distinguish
features from each other, a Feature has a name. Like
with the Package and Type constructs, the name of
the feature needs to be unique within all features of
the class (including the ones inherited from the super
types). An Attribute can be similar to a Reference
since both are represented as edges in the graph.
However, when one compares both, Attributes have
a PrimitiveType as type. As a consequence, edges
representing instances of Attributes target nodes
representing instances of primitive types. The same
analogy can be applied to PrimitiveType and Class.
Both represent nodes in the graph, however, when
compared to Classes, PrimitiveTypes do not define
references. Hence, nodes that are instances of
PrimitiveType do not possess outgoing edges, thus
being the terminal nodes in graphs. Each
PrimitiveType can be specialized into DataTypes or
Enumerations.

A DataType represents predefined primitive
types such as Boolean, Integer and String. Data
types may define an infinite number of possible
literals, e.g. String. However, a model can only use a
finite number of literals of a data type, since the set
of nodes is finite. An Enumeration can define a
finite set of literals. Each Literal that is used in the
model is represented by exactly one node in the
model and has a name to be able to distinguish it
from the other literals.

2.1.2 Coupled Operations for Metamodel
Evolution

Herrmannsdörfer (Herrmannsdoerfer, 2011) defined
a library of 61-coupled operations for metamodel
evolution. A coupled operation combines
metamodel adaptations with model migrations. It
allows information attachments about how to
migrate corresponding models in response to a
metamodel adaptation. Formally, it corresponds to a
tuple (adm, mig) with a metamodel adaptation adm,
and a model migration mig. Each operation was
grouped into two major groups and respective sub-
groups.

The first major group is the primitive operations
group, which perform an atomic metamodel
evolution step. Within these primitive operations we
can distinguish between structural and non-structural

primitives. Structural primitives create and delete
metamodel elements whereas non-structural
primitives modify existing metamodel elements
(Herrmannsdoerfer, 2011). Then, we have composite
operations. These can be decomposed into a
sequence of primitive operations. These operations
are grouped according to the metamodeling
techniques they address as well as their semantics.

Figure 1: Structural primitives table (Herrmannsdoerfer
2011).

Those are operations of specialization/
generalization, inheritance, delegation, replacement,
and merge/split (Herrmannsdoerfer, 2011). Figure 1
illustrates a table providing an overview of all
operations concerning the Primitive->Structural
group.

Each coupled operation can be classified
according to language preservation into refactoring
(r), constructor (c) and destructor (d), as well as
according to model preservation into model-
preserving (p), safely (s) and unsafely (u) model-
migrating (Herrmannsdoerfer, 2011).

The creation of non-mandatory metamodel
elements, such as packages, classes, optional
features, enumerations, literals and data types is
model-preserving. Creation of mandatory features is
safely model migrating. On the other hand, the
deletion of metamodel elements requires deleting
instantiating model elements, such as objects and
links, by the migration. This poses the risk of
migration to inconsistent models. Therefore, deletion
operations are bound to metamodel level restrictions
(e.g., packages may only be deleted, when they are
empty. Classes may only be deleted, when they are
outside inheritance hierarchies and are targeted
neither by non-composite references nor by
mandatory composite references. References may
only be deleted, when they are neither composite,
nor have an opposite. Enumerations and data types

Using DEMO to Objectify Metamodel Evolution

495

may only be deleted, when they are not used in the
metamodel and thus obsolete) (Herrmannsdoerfer,
2011).

In this paper, we only address the structural
primitives operations. These coupled operations
focus on structural changes of a metamodel, i.e.,
they focus on creating new things as well as deleting
existing ones. The ontological act expressed by the
Enterprise Ontology theory (described in the next
section) refers to the creation of new original things,
and DEMO provides the ontological knowledge
regarding the structure, composition and
environment of organizations which is precisely
what we are trying to model with respect to
metamodels.

2.2 Enterprise Ontology

The Enterprise Ontology (EO) theory proposed by
Dietz (Dietz 2006) is based on four axioms –
operation, transaction, composition and distinction –
and the organization theorem. Each of these axioms
and the organization theorem are supported by a set
of foundations covered within seven EE theories
ranging from four domains - philosophical,
ontological, ideological and technological.

The φ -theory and τ -theory are put in the class
of philosophical theories for two reasons: their
concern is about conception and perception and the
majority of papers and books in these fields are
published in philosophical journals or book series.
The ψ-theory and the δ-theory are put in the class of
ontological theories because they are about the
nature of things, in particular the nature of systems.
Then, the β-theory is a technological theory. The μ-
theory (model theory) is also put in this class
because its main practical use is to bridge ontology
to technology. Lastly, the σ-theory is undoubtedly an
ideological theory (Dietz et al., 2013). All these
theories provide the foundations for each of the four
EO theory axioms described below.

The operation axiom states that the operation of
an enterprise is constituted by the activities of actor
roles being elementary chunks of authority and
responsibility, fulfilled by subjects.

These subjects perform two kinds of acts:
production acts (P-acts) and coordination acts (C-
acts) and each these acts have definite results:
production facts (P-facts) and coordination facts (C-
facts), respectively. By performing production acts
the subjects contribute to bringing about the goods
and/or services that are delivered to the environment
of the enterprise. By performing coordination acts
subjects enter into, and comply with, commitments

towards each other regarding the performance of
production acts.

Competence is the collective knowledge, know-
how and experience that is necessary and sufficient
for a subject to perform production acts of a
particular kind. Competence is related to a subject’s
profession (e.g. teacher). Authority is defined as the
being authorized of a subject by an institution, e.g.,
by a company (employee) or by a society (client), to
perform particular production acts and/or
coordination acts (e.g. engineer of Company X).
Responsibility is the socially felt need by a subject
to perform the coordination acts for which it is
authorized, in an accountable and self-aware
manner.

The transaction axiom states that coordination
acts are performed as steps in universal patterns.
These patterns, also called transactions, always
involve two actor roles (initiator and executor) and
are aimed at achieving a particular result.

The composition axiom establishes the
relationships between transactions. This axiom states
that every transaction is enclosed in another
transaction, or is a customer transaction of another
transaction, or even a self-activation transaction.

Finally, the distinction axiom states that there
are three distinct human abilities playing a role in
the operation of actors, called performa, informa,
and forma.

The EO theory highest point is the organization
theorem. This theorem states that the organization
of an enterprise is perceived as a heterogeneous
system constituted by the layered integration of three
homogeneous systems: the B-organization (from
Business), the I-organization (from Intellect), and
the D-organization (from Document).

Their relationships are that the D-organization
supports the I-organization, and the I-organization
supports the B-organization. The integration is
established through the cohesive unity of the human
being. Next we describe the methodology behind the
EO theory (DEMO) with respect to the B-
organization layer.

2.2.1 Demo

DEMO (Design & Engineering Methodology for
Organizations) (Dietz 2006) is a methodology for
modeling, (re)designing and (re)engineering
organizations and networks of organizations. DEMO
consists of four aspect models (Construction Model
– CM, Process Model – PM, Action Model – AM,
and the State Model - SM) in which the ontological
knowledge of (the organization of) an enterprise is

SSEO 2015 - Special Session on Enterprise Ontology

496

expressed in an easily accessible and manageable
way. Each of these models is represented by a set of
diagrams, tables and lists (Dietz, 2006).

The 4 aspect models constitute the complete
ontological model of the B-organization and
subsequently represent the ontological model of the
corresponding enterprise. The Actor Transaction
Diagram (ATD) and the Transaction Result Table
(TRT) express the Construction Model (CM). The
Process Structure Diagram (PSD) and the
Information Use Table (IUT) express the Process
Model (PM). The Action Model (AM) is expressed
by action rules specifications. The Object Fact
Diagram (OFD), TRT, and IUT express the State
Model (SM).

Concerning the scope of our research, the
models that best describe the structure and the
ontological rules and constraints of metamodel
evolution are the CM and the SM respectively. The
CM, provides useful practical applications such as
showing the boundary of the organization, as well as
the interface transactions with actor roles in the
environment. The CM also shows the ontological
units of competence, authorization and
responsibility. Applying the CM to the scope of
metamodel evolution can provide valuable insights
on how metamodel changes can be seen from an
‘organizational’ perspective where actors (whether
being humans or informational entities) can be
identified in a set of transactions representing a
specific metamodel change.

The SM is the source of ontological knowledge
about the production world. This can be very
suitable in practice since it can not only provide the
concepts that are essential for the enterprise, but also
help in conceiving the best concepts. It also
simplifies the identification of business components
(software components), based on the chunks of fact
types around categories. This model can help us
obtaining the knowledge regarding the core concepts
of a metamodel and how these concepts interact with
each other through their respective coexistence rules.

In the next section we will present, through
means of an ATD and OFD diagrams, both the CM
and the SM respectively within the scope of
metamodel evolution, i.e., considering the coupled
operations (structural primitives) described by
Herrmannsdörfer.

3 METAMODEL EVOLUTION
AND DEMO

In order to perceive, from an ontological perspective,

how metamodels adapt to new language require-
ments we used DEMO as a way of expressing the
ontological acts, i.e., the creation of new original
facts. DEMO provides a set of models that produce
insight on the ontological knowledge with respect to
the structure, composition and the environment of an
organization. Therefore, we had to adjust the system
of interest from organizations to metamodels. So, the
models we present below focus not on the essential
aspects describing an organization, but rather on
those describing metamodels.

With this approach, one can understand who are
the main actors and transactions that support a
metamodel change, how these actors relate with
each other as well as the elements composing the
metamodel. Furthermore, one can identify the
cardinality and existence constraints that influence
the relationship between elements of the metamodel.
We used as input for each diagram Herrmannsdörfer
coupled operations that create and delete metamodel
elements (structural primitives) since those are the
ones that directly influence the structure of a
metamodel. The reasons for choosing the CM and
the SM in particular are described at the end of
section 2.3.

3.1 The Metamodel Evolution
Construction Model

The Construction Model (CM) specifies the
composition, environment, and structure of an
organization, in this case, of a metamodel. The
composition and environment are both a set of actor
roles. The interaction structure consists of the
transaction types in which the identified actor roles
participate as initiator or executor. The Interaction
Model (IAM) is therefore a sub-model of the CM
and represents the execution of transactions between
actor roles. All of this is expressed in an Actor
Transaction Diagram (ATD) and a Transaction
Result Table (TRT).

For expressing the main transactions concerning
a metamodel structural change, we consider each
coupled operation in Figure 1 to be a transaction
since each operation, from a transaction perspective,
creates a different fact.

Each transaction has the purpose of either
creating or deleting a metamodel element. For
example, if one considers the transaction type T03
(create class), the transaction result of initiating and
executing this transaction type is R03 (class C has
been created). The same line of thought is
applicable to the remaining transaction types. The
transaction type T16 (create feature) is not a

Using DEMO to Objectify Metamodel Evolution

497

Figure 2: Actor Transaction Diagram (ATD) for metamodel evolution.

coupled operation from Figure 1; however its
existence did not happened by chance. After
explaining the ATD in more detail it will become
clearer why we had the need to create this
transaction type.

Figure 2 illustrates the global ATD with respect
to a metamodel. All the actor roles within the
metamodel boundary are the internal metamodel
entities (e.g., informational objects managing the
creation and/or deletion of metamodel elements such
as classes, data types, etc.) responsible for executing
a specific transaction type.

The metamodel organization is divided into
several sub-organizations each one corresponding to
one of the metamodels elements, such as Package,
Class, Data Type, etc.

Within each sub-organization, there is a
composite actor role managing all the execution part
of creating and/or deleting the metamodel element
for which the actor role is responsible (e.g., the
Package Manager has the responsibility of executing
the transaction type T01 - create package and T02 -
delete package). These composite actor roles are
divided into elementary actor roles. However, we
abstracted those in order to simplify the diagram.
The CA01 is out the metamodel boundary, meaning
that this composite actor role is responsible for

making a metamodel adaptation due to new
language change requirements, whether is adding an
element to the metamodel or removing one.

The need for the Metamodel Owner (CA01) to
create or delete a Data Type or any other element
from the metamodel is implicit in the ATD. When
the Metamodel Owner wishes to create or delete a
package, it triggers a sequence of transactions
among the actor roles within the metamodel
organization where new elements will be created or
deleted from a package. This can be seen as a
hierarchized delegation of responsibility. The only
issue here had to do with the Class Manager not
being able to delegate the Feature Manager the
responsibility of creating a new feature, i.e., making
a transaction request for the Feature Manager to
create a new feature. Since a feature is a
generalizations for both attribute and reference, the
coupled operations specialize, at creation time,
which feature will be created (if an attribute or a
reference) therefore being unnecessary to have
couple operation for creating a feature. However, not
having the create feature transaction type breaks the
‘chain of delegation’ thus rendering the Feature
Manager unable of executing the transaction type
T05 (create attribute) and T06 (create reference).

SSEO 2015 - Special Session on Enterprise Ontology

498

Figure 3: Object Fact Diagram (OFD) for metamodel evolution.

This is the reason why we created this new
transaction type T16 (create feature).

Hence, the ATD proves to be useful in
understanding the interaction structure, environment
and composition of a metamodel. It expresses all the
relevant transaction types that are involved in a
metamodel adaptation from a structure perspective
(i.e., either the creation or the removal of metamodel
elements). With this diagram one can observe how
the actor roles responsible for changing the
metamodel structure interact, which ones are
responsible for creating new production facts (i.e.,
new things), and which ones request the creation of
those facts. In the next section we will describe the
metamodel state model composed of the Object Fact
Diagram (OFD).

3.2 The Metamodel Evolution State
Model

The state model (SM) of an organization (in this
case, of a metamodel) is the specification of the state
space of the P-world consisting of specifying the
object classes, fact types, and the result types, as
well as the existential laws that hold (Dietz 2006).
The SM is expressed through an Object Fact
Diagram (OFD) and an Object Property List (OPL),
although the latest will not be considered for the
scope of our work. The OFD is fully based on the
WOSL language (Dietz 2006). Figure 3 illustrates
the OFD for the metamodel evolution.

Each category (rounded rectangle) presented in
the OFD corresponds to each metamodel element

that was created and/or deleted as a result of
performing a specific transaction type. Associated to
each category are the transaction results related to
the metamodel element represented by the category.
This diagram shows the relations among categories
through the use of binary facts (the two box
rectangle) representing the instances of each
category. For example, a package instance P relates
to a class instance C through the binary fact “the
class of P is C”. Some of these binary facts have
unicity laws (lines above the facts) that act as
cardinality constraints, i.e., in the case of the
relationship between Package and Class, a package
P can have many classes C, however a class C can
only be related to one package, and so on for the
remaining facts. The dependency laws (dots)
illustrated in some of the categories demand that, for
a specific category instance to exist, a binary fact
relationship between that category and another must
also exist. For example, in order for a Data Type DT
to exist, a relationship between DT and a package P
must also exist. Another aspect of this diagram
worth mentioning is the generalization of the Feature
category. A generalization type in WOSL language
is the union of two or more categories. An example
of a generalization is VEHICLE, defined as the
union of CAR, AIRCRAFT, and SHIP. This means
that, in order to identify a vehicle, one must not use
a vehicle registration number but a car, an aircraft or
a ship registration number. In this specific case, in
order to identify a feature, one must use either the
attribute or the reference identification.

Using DEMO to Objectify Metamodel Evolution

499

Using this diagram, it is possible to identify the
main constraints with respect to the existence and
relationships of metamodel elements. By combining
both the ATD and the OFD, it is possible to
understand the restrictions and the consequences of
creating or deleting metamodel elements by
requesting and executing transactions. Also, a
contribution of this diagram is the explicit
representation of the relationships between
metamodel entities and respective cardinality and
dependency constraints that are not approached by
Herrmannsdörfer in his research, thus giving a more
comprehensive overview of the interaction amongst
the metamodel elements that define and compose the
metamodel structure.

4 CONCLUSIONS

In this paper we presented the modeling of the
ontological aspects surrounding the evolution of
metamodels according to new language specific
requirements. The presented Actor Transaction
Diagram (ATD), and Object Fact Diagram (OFD)
provide the essential aspects and knowledge with
respect to the main actors and transactions involved
in a metamodel adaptation. For that we used
Herrmannsdörfer coupled operations, more
specifically the structural primitive operations, on
account of being the ones that directly influence a
metamodel structure when a structural adaptation is
required. Also, the diagrams (in particular the OFD)
present the main constraints associated to the
existence of certain metamodel elements and their
relationships with other elements.

These insights concerning the cardinality and
existence constraints of these elements and their
relationships are not explicitly covered in
Herrmannsdörfer work, thus being a contribution for
understanding, from an ontological perspective, how
the structural elements of a metamodel interact
amongst them and what are the respective
dependencies. However, the main contribution of
this work was objectifying Herrmannsdörfer
metamodel evolution approach by using DEMO
white-box models. The models used provide a set of
advantages such as showing the composing
boundaries of a metamodel, the interface
transactions with actor roles in the environment,
presenting the interface units of collaboration,
showing the ontological units of competence,
authorization, and responsibility, providing a holistic
metamodel map, and identifying the essential
concepts of a metamodel.

Nevertheless, this work lacks a practical
validation, therefore being a limitation of our
research. A field study with real practical examples
could reinforce this research and would add a sound
validation. For future work, and to provide a more
thorough analysis of the ontology behind the
evolution of metamodels, other DEMO models can
be applied to this context, such as the Process Model
(PM) or even the Action Model (AM). Also,
applying a practical validation in the future would
consolidate this research.

REFERENCES

Bézivin, J., 2005. On the unification power of models.
Software and Systems Modeling, 4(2), pp.171–188.

Bézivin, J. & Heckel, R., 2006. Guest editorial to the
special issue on language engineering for model-
driven software development. Software and Systems
Modeling, 5(3), pp.231–232.

Dietz, J. L. G., 2006. Enterprise ontology: Theory and
methodology,

Dietz, J. L. G. et al., 2013. The discipline of enterprise
engineering. International Journal of Organisational
Design and Engineering, 3(1), pp.86–114.

Favre, J.-M., 2005. Languages evolve too! Changing the
software time scale. In Principles of Software
Evolution, Eighth International Workshop on. IEEE,
pp. 33–42.

France, R. & Rumpe, B., 2007. Model-driven
Development of Complex Software: A Research
Roadmap. In Future of Software Engineering (FOSE
’07). pp. 37–54. Available at: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=4221611\n
http://dl.acm.org/citation.cfm?id=1254709.

Guizzardi, G., 2005. Ontological Foundations for
Structural Conceptual Model, Available at: http://doc.
utwente.nl/50826.

Herrmannsdoerfer, M., 2011. Evolutionary Metamodeling.
Technische Universität München.

Jouault, F. & Bézivin, J., 2006. KM3: A DSL for
metamodel specification. In Lecture Notes in
Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in
Bioinformatics). pp. 171–185.

Kleppe, A., 2008. Software Language Engineering:
Creating Domain-Specific Languages Using
Metamodels, Addison-Wesley Professional.

Object Management Group, 2013. OMG Meta Object Faci-
lity (MOF) Core Specification, Version2.1.4, 2(April)

Pretschner, A. et al., 2007. Software engineering for
automotive systems: A roadmap. In FoSE 2007:
Future of Software Engineering. pp. 55–71.

Sprinkle, J.M., 2003. Metamodel driven model migration.
Vanderbilt University, Nashville, TN, USA.

SSEO 2015 - Special Session on Enterprise Ontology

500

