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Abstract: A metamodel is an important aspect of defining a modeling language. It specifies the language’s syntax 
through a set of constructs as well as how the language models are ought to be composed. Modeling 
languages, and thus their metamodels, are subject of constant evolution due to changing language 
requirements as consequence of business changes. Therefore, perceiving the essential aspects responsible 
for altering the structure of metamodels when a change requirement arises can become an issue. The 
Enterprise Ontology theory and its methodology (DEMO) provide ontological knowledge about 
organizations resulting in organizational self-awareness. Applying this methodology to the context of 
metamodeling can be a starting point for uncovering the essential aspects, i.e., the ontological knowledge 
regarding metamodel evolution. For that purpose, we modeled two diagrams using the DEMO 
methodology. The input for both diagrams was a set of coupled operations defined in Herrmannsdörfer’s 
evolutionary metamodeling research. In the end we stated the main conclusions of our work and themes for 
future work. 

1 INTRODUCTION 

Model-based development provides an increase in 
the abstraction level of today’s software 
development through the use of models (France and 
Rumpe, 2007; Pretschner et al., 2007). These models 
are built through the use of adequate modeling 
languages (Bézivin and Heckel 2006) that help users 
to directly express the abstractions from their 
problem domain (Guizzardi 2005).  

A modeling language is defined through its 
abstract syntax, concrete syntax and semantics. The 
abstract syntax defines the set of valid models and is 
placed in the center of a modeling language 
definition (Kleppe 2008) from which both the 
concrete syntax and semantics are defined. 
Metamodeling is therefore the act of modeling the 
abstract syntax of modeling languages. For that 
purpose, innumerous languages for defining abstract 
syntax were defined such as the Meta Object Facility 
(MOF) from OMG (Object Management Group 
2013), Kernel Metametamodel (KM3) from INRIA 
(Jouault and Bézivin, 2006), amongst others. The 
metamodel defines the constructs that the modeling 
language provides as well as how to compose them 
to models. 

Like software changes over time (due to new 
requirements), also modeling languages are prone to 
change when new requirements arise (Favre 2005). 
These changes are usually a consequence of one or 
more business changes and reasons such as 
Perfective Maintenance, Corrective Maintenance, 
etc. are the main drivers of these changing 
requirements. Therefore, the language engineers 
evolve the modeling language to a new version by 
first adapting its metamodel to the additional 
requirements. However, metamodel adaptation may 
invalidate existing artifacts that depend on the 
metamodel (Sprinkle, 2003). Most importantly, 
existing models may no longer conform to the 
adapted metamodels. The existing artifacts need to 
be migrated to conform to the metamodel again, so 
that they can be used with the evolved modeling 
language. This can become a difficult task when the 
language engineers do not possess any ontological 
knowledge nor self-awareness regarding the 
metamodel and its core structural elements. 

In this paper we propose to use DEMO, namely 
the ATD and OFD diagrams, to illustrate how a 
metamodel is structured in terms of its elements, 
which are the actor roles behind each metamodel 
structural change, what are the core transactions 
types responsible for altering the metamodel 
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structure, and what kind of relationship constraints 
exist between metamodel elements, thus obtaining 
an ontological awareness regarding metamodel 
evolution. The provided input for each diagram was 
based on Herrmannsdörfer coupled operations 
(Herrmannsdoerfer, 2011). 

DEMO (Design & Engineering Methodology for 
Organizations) is a methodology for modeling, 
(re)designing and (re)engineering organizations and 
networks of organizations. The theory used as 
foundation for this methodology is called Enterprise 
Ontology (EO) (Dietz, 2006) that, by itself, is based 
on the speech act theory. DEMO is composed of 
four aspect models that express the ontological 
knowledge of an enterprise in an easily accessible 
and manageable way (Dietz, 2006). 

The remainder of this paper is structured into 
three main sections. The Theoretical Background 
section describes some important theoretical aspects 
concerning the topic of metamodel evolution, and 
Dietz Enterprise Ontology theory as well as the 
DEMO methodology. The Metamodels and DEMO 
section illustrates and explains the reasoning behind 
each of the two proposed DEMO diagrams. Finally, 
the Conclusions section states the main conclusions 
of our work and some future work topics. 

2 THEORETICAL 
BACKGROUND 

This section is divided into two sub-sections. The 
first one considers some of the relevant aspects 
behind the concept of metamodels and their 
evolution (metamodeling, reasons for evolution of 
modeling languages, and coupled operations). The 
second describes the theory behind Enterprise 
Ontology (a branch of the Enterprise Engineering 
field) and the methodology that supports it called 
DEMO. 

2.1 Metamodel Evolution 

In this section we describe important aspects of 
metamodel evolution concerning modeling 
languages such as the metamodeling process, i.e., 
the metamodeling languages and constructs for 
creating and changing metamodels, and the required 
operations for performing a metamodel change 
covered by Herrmannsdörfer (Herrmannsdoerfer, 
2011). 

A modeling language is not a static, immutable 
thing. It may evolve due to a multitude of reasons. 

Those can be Perfective Maintenance, Corrective 
Maintenance, Preventive Maintenance, and Adaptive 
Maintenance (Herrmannsdoerfer 2011). All these 
reasons are valid for evolving the abstract syntax of 
a modeling language, i.e., for evolving the 
language’s metamodel. 

2.1.1 Metamodeling – Languages and 
Constructs 

A modeling language is defined through its abstract 
syntax, concrete syntax and semantics. The abstract 
syntax is what defines the set of valid models and is 
placed in the center of a modeling language 
definition (Kleppe, 2008) from which both the 
concrete syntax and semantics are defined.  

Metamodeling is the act of modeling the abstract 
syntax of a modeling language. For that purpose, 
innumerous languages for defining abstract syntax 
were defined (Meta Object Facility – MOF – from 
OMG (Object Management Group, 2013), Kernel 
Metametamodel – KM3 – from INRIA (Jouault and 
Bézivin, 2006), amongst others. 

MOF is the most widely applied metamodeling 
language. This is due to MOF being a standard, 
therefore not being proprietary to a certain 
metamodeling tool, and because all metamodeling 
languages are conceptually similar (all represent 
models as graphs) with the only difference being the 
provided metamodeling constructs. 

The E-MOF (being one of MOF’s compliance 
point) is based on the object-oriented paradigm and 
defines a hierarchy of models grouped into layers 
called meta hierarchy (Bézivin, 2005). The model 
layer is the bottom layer containing all the models 
that are specified according to a modeling language. 
All models from this layer conform to a metamodel 
defined in the next upper layer. The metamodel 
layer is the middle layer that contains all the 
metamodels defining the abstract syntax of modeling 
languages. Each metamodel in this layer conforms to 
the metametamodel in the next upper layer. Finally, 
the metametamodel layer (being the upmost layer) 
contains the metametamodel that defines the abstract 
syntax of a metamodeling language. The 
metametamodel in this layer conforms to itself. 

The E-MOF metametamodel provides a set of 
constructs for defining metamodels. A Package 
consists of a number of types and sub packages. In 
order to distinguish a package from other, each one 
uses a name feature. The name of a sub package 
needs to be unique among all packages belonging to 
a super package and so on. Type is a common 
abstract super class of Class and PrimitiveType. In 
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the complete E-MOF metametamodel, all nodes 
must be instances of Types. In order to distinguish 
types, they also use a name. The name of a type has 
to be unique among all types associated to the same 
package.  

A Feature is a common abstract super class of 
Reference and Attribute. To be able to distinguish 
features from each other, a Feature has a name. Like 
with the Package and Type constructs, the name of 
the feature needs to be unique within all features of 
the class (including the ones inherited from the super 
types).  An Attribute can be similar to a Reference 
since both are represented as edges in the graph. 
However, when one compares both, Attributes have 
a PrimitiveType as type. As a consequence, edges 
representing instances of Attributes target nodes 
representing instances of primitive types. The same 
analogy can be applied to PrimitiveType and Class. 
Both represent nodes in the graph, however, when 
compared to Classes, PrimitiveTypes do not define 
references. Hence, nodes that are instances of 
PrimitiveType do not possess outgoing edges, thus 
being the terminal nodes in graphs. Each 
PrimitiveType can be specialized into DataTypes or 
Enumerations.  

A DataType represents predefined primitive 
types such as Boolean, Integer and String. Data 
types may define an infinite number of possible 
literals, e.g. String. However, a model can only use a 
finite number of literals of a data type, since the set 
of nodes is finite. An Enumeration can define a 
finite set of literals. Each Literal that is used in the 
model is represented by exactly one node in the 
model and has a name to be able to distinguish it 
from the other literals. 

2.1.2 Coupled Operations for Metamodel 
Evolution 

Herrmannsdörfer (Herrmannsdoerfer, 2011) defined 
a library of 61-coupled operations for metamodel 
evolution. A coupled operation combines 
metamodel adaptations with model migrations. It 
allows information attachments about how to 
migrate corresponding models in response to a 
metamodel adaptation. Formally, it corresponds to a 
tuple (adm, mig) with a metamodel adaptation adm, 
and a model migration mig. Each operation was 
grouped into two major groups and respective sub-
groups.  

The first major group is the primitive operations 
group, which perform an atomic metamodel 
evolution step. Within these primitive operations we 
can distinguish between structural and non-structural 

primitives. Structural primitives create and delete 
metamodel elements whereas non-structural 
primitives modify existing metamodel elements 
(Herrmannsdoerfer, 2011). Then, we have composite 
operations. These can be decomposed into a 
sequence of primitive operations. These operations 
are grouped according to the metamodeling 
techniques they address as well as their semantics. 

 

Figure 1: Structural primitives table (Herrmannsdoerfer 
2011). 

Those are operations of specialization/ 
generalization, inheritance, delegation, replacement, 
and merge/split (Herrmannsdoerfer, 2011). Figure 1 
illustrates a table providing an overview of all 
operations concerning the Primitive->Structural 
group.  

Each coupled operation can be classified 
according to language preservation into refactoring 
(r), constructor (c) and destructor (d), as well as 
according to model preservation into model-
preserving (p), safely (s) and unsafely (u) model-
migrating (Herrmannsdoerfer, 2011). 

The creation of non-mandatory metamodel 
elements, such as packages, classes, optional 
features, enumerations, literals and data types is 
model-preserving. Creation of mandatory features is 
safely model migrating. On the other hand, the 
deletion of metamodel elements requires deleting 
instantiating model elements, such as objects and 
links, by the migration. This poses the risk of 
migration to inconsistent models. Therefore, deletion 
operations are bound to metamodel level restrictions 
(e.g., packages may only be deleted, when they are 
empty. Classes may only be deleted, when they are 
outside inheritance hierarchies and are targeted 
neither by non-composite references nor by 
mandatory composite references. References may 
only be deleted, when they are neither composite, 
nor have an opposite. Enumerations and data types 
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may only be deleted, when they are not used in the 
metamodel and thus obsolete) (Herrmannsdoerfer, 
2011). 

In this paper, we only address the structural 
primitives operations. These coupled operations 
focus on structural changes of a metamodel, i.e., 
they focus on creating new things as well as deleting 
existing ones. The ontological act expressed by the 
Enterprise Ontology theory (described in the next 
section) refers to the creation of new original things, 
and DEMO provides the ontological knowledge 
regarding the structure, composition and 
environment of organizations which is precisely 
what we are trying to model with respect to 
metamodels. 

2.2 Enterprise Ontology 

The Enterprise Ontology (EO) theory proposed by 
Dietz (Dietz 2006) is based on four axioms – 
operation, transaction, composition and distinction – 
and the organization theorem. Each of these axioms 
and the organization theorem are supported by a set 
of foundations covered within seven EE theories 
ranging from four domains - philosophical, 
ontological, ideological and technological.  

The φ -theory and τ -theory are put in the class 
of philosophical theories for two reasons: their 
concern is about conception and perception and the 
majority of papers and books in these fields are 
published in philosophical journals or book series. 
The ψ-theory and the δ-theory are put in the class of 
ontological theories because they are about the 
nature of things, in particular the nature of systems. 
Then, the β-theory is a technological theory. The μ-
theory (model theory) is also put in this class 
because its main practical use is to bridge ontology 
to technology. Lastly, the σ-theory is undoubtedly an 
ideological theory (Dietz et al., 2013). All these 
theories provide the foundations for each of the four 
EO theory axioms described below. 

The operation axiom states that the operation of 
an enterprise is constituted by the activities of actor 
roles being elementary chunks of authority and 
responsibility, fulfilled by subjects.  

These subjects perform two kinds of acts: 
production acts (P-acts) and coordination acts (C-
acts) and each these acts have definite results: 
production facts (P-facts) and coordination facts (C-
facts), respectively.  By performing production acts 
the subjects contribute to bringing about the goods 
and/or services that are delivered to the environment 
of the enterprise. By performing coordination acts 
subjects enter into, and comply with, commitments 

towards each other regarding the performance of 
production acts. 

Competence is the collective knowledge, know-
how and experience that is necessary and sufficient 
for a subject to perform production acts of a 
particular kind. Competence is related to a subject’s 
profession (e.g. teacher). Authority is defined as the 
being authorized of a subject by an institution, e.g., 
by a company (employee) or by a society (client), to 
perform particular production acts and/or 
coordination acts (e.g. engineer of Company X). 
Responsibility is the socially felt need by a subject 
to perform the coordination acts for which it is 
authorized, in an accountable and self-aware 
manner.  

The transaction axiom states that coordination 
acts are performed as steps in universal patterns. 
These patterns, also called transactions, always 
involve two actor roles (initiator and executor) and 
are aimed at achieving a particular result. 

The composition axiom establishes the 
relationships between transactions. This axiom states 
that every transaction is enclosed in another 
transaction, or is a customer transaction of another 
transaction, or even a self-activation transaction. 

Finally, the distinction axiom states that there 
are three distinct human abilities playing a role in 
the operation of actors, called performa, informa, 
and forma.  

The EO theory highest point is the organization 
theorem. This theorem states that the organization 
of an enterprise is perceived as a heterogeneous 
system constituted by the layered integration of three 
homogeneous systems: the B-organization (from 
Business), the I-organization (from Intellect), and 
the D-organization (from Document).  

Their relationships are that the D-organization 
supports the I-organization, and the I-organization 
supports the B-organization. The integration is 
established through the cohesive unity of the human 
being. Next we describe the methodology behind the 
EO theory (DEMO) with respect to the B-
organization layer. 

2.2.1 Demo 

DEMO (Design & Engineering Methodology for 
Organizations) (Dietz 2006) is a methodology for 
modeling, (re)designing and (re)engineering 
organizations and networks of organizations. DEMO 
consists of four aspect models (Construction Model 
– CM, Process Model – PM, Action Model – AM, 
and the State Model - SM) in which the ontological 
knowledge of (the organization of) an enterprise is 
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expressed in an easily accessible and manageable 
way. Each of these models is represented by a set of 
diagrams, tables and lists (Dietz, 2006).  

The 4 aspect models constitute the complete 
ontological model of the B-organization and 
subsequently represent the ontological model of the 
corresponding enterprise. The Actor Transaction 
Diagram (ATD) and the Transaction Result Table 
(TRT) express the Construction Model (CM). The 
Process Structure Diagram (PSD) and the 
Information Use Table (IUT) express the Process 
Model (PM). The Action Model (AM) is expressed 
by action rules specifications. The Object Fact 
Diagram (OFD), TRT, and IUT express the State 
Model (SM). 

Concerning the scope of our research, the 
models that best describe the structure and the 
ontological rules and constraints of metamodel 
evolution are the CM and the SM respectively. The 
CM, provides useful practical applications such as 
showing the boundary of the organization, as well as 
the interface transactions with actor roles in the 
environment. The CM also shows the ontological 
units of competence, authorization and 
responsibility. Applying the CM to the scope of 
metamodel evolution can provide valuable insights 
on how metamodel changes can be seen from an 
‘organizational’ perspective where actors (whether 
being humans or informational entities) can be 
identified in a set of transactions representing a 
specific metamodel change. 

The SM is the source of ontological knowledge 
about the production world. This can be very 
suitable in practice since it can not only provide the 
concepts that are essential for the enterprise, but also 
help in conceiving the best concepts. It also 
simplifies the identification of business components 
(software components), based on the chunks of fact 
types around categories. This model can help us 
obtaining the knowledge regarding the core concepts 
of a metamodel and how these concepts interact with 
each other through their respective coexistence rules. 

In the next section we will present, through 
means of an ATD and OFD diagrams, both the CM 
and the SM respectively within the scope of 
metamodel evolution, i.e., considering the coupled 
operations (structural primitives) described by 
Herrmannsdörfer. 

3 METAMODEL EVOLUTION 
AND DEMO 

In order to perceive, from an ontological perspective, 

how metamodels adapt to new language require-
ments we used DEMO as a way of expressing the 
ontological acts, i.e., the creation of new original 
facts. DEMO provides a set of models that produce 
insight on the ontological knowledge with respect to 
the structure, composition and the environment of an 
organization. Therefore, we had to adjust the system 
of interest from organizations to metamodels. So, the 
models we present below focus not on the essential 
aspects describing an organization, but rather on 
those describing metamodels.  

With this approach, one can understand who are 
the main actors and transactions that support a 
metamodel change, how these actors relate with 
each other as well as the elements composing the 
metamodel. Furthermore, one can identify the 
cardinality and existence constraints that influence 
the relationship between elements of the metamodel. 
We used as input for each diagram Herrmannsdörfer 
coupled operations that create and delete metamodel 
elements (structural primitives) since those are the 
ones that directly influence the structure of a 
metamodel. The reasons for choosing the CM and 
the SM in particular are described at the end of 
section 2.3. 

3.1 The Metamodel Evolution 
Construction Model 

The Construction Model (CM) specifies the 
composition, environment, and structure of an 
organization, in this case, of a metamodel. The 
composition and environment are both a set of actor 
roles. The interaction structure consists of the 
transaction types in which the identified actor roles 
participate as initiator or executor. The Interaction 
Model (IAM) is therefore a sub-model of the CM 
and represents the execution of transactions between 
actor roles. All of this is expressed in an Actor 
Transaction Diagram (ATD) and a Transaction 
Result Table (TRT). 

For expressing the main transactions concerning 
a metamodel structural change, we consider each 
coupled operation in Figure 1 to be a transaction 
since each operation, from a transaction perspective, 
creates a different fact. 

Each transaction has the purpose of either 
creating or deleting a metamodel element. For 
example, if one considers the transaction type T03 
(create class), the transaction result of initiating and 
executing this transaction type is R03 (class C has 
been created). The same line of thought is 
applicable to the remaining transaction types. The 
transaction type T16 (create feature) is not a  
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Figure 2: Actor Transaction Diagram (ATD) for metamodel evolution. 

coupled operation from Figure 1; however its 
existence did not happened by chance. After 
explaining the ATD in more detail it will become 
clearer why we had the need to create this 
transaction type. 

Figure 2 illustrates the global ATD with respect 
to a metamodel. All the actor roles within the 
metamodel boundary are the internal metamodel 
entities (e.g., informational objects managing the 
creation and/or deletion of metamodel elements such 
as classes, data types, etc.) responsible for executing 
a specific transaction type.  

The metamodel organization is divided into 
several sub-organizations each one corresponding to 
one of the metamodels elements, such as Package, 
Class, Data Type, etc. 

Within each sub-organization, there is a 
composite actor role managing all the execution part 
of creating and/or deleting the metamodel element 
for which the actor role is responsible (e.g., the 
Package Manager has the responsibility of executing 
the transaction type T01 - create package and T02 - 
delete package). These composite actor roles are 
divided into elementary actor roles. However, we 
abstracted those in order to simplify the diagram. 
The CA01 is out the metamodel boundary, meaning 
that this composite actor role is responsible for 

making a metamodel adaptation due to new 
language change requirements, whether is adding an 
element to the metamodel or removing one.  

The need for the Metamodel Owner (CA01) to 
create or delete a Data Type or any other element 
from the metamodel is implicit in the ATD. When 
the Metamodel Owner wishes to create or delete a 
package, it triggers a sequence of transactions 
among the actor roles within the metamodel 
organization where new elements will be created or 
deleted from a package. This can be seen as a 
hierarchized delegation of responsibility. The only 
issue here had to do with the Class Manager not 
being able to delegate the Feature Manager the 
responsibility of creating a new feature, i.e., making 
a transaction request for the Feature Manager to 
create a new feature. Since a feature is a 
generalizations for both attribute and reference, the 
coupled operations specialize, at creation time, 
which feature will be created (if an attribute or a 
reference) therefore being unnecessary to have 
couple operation for creating a feature. However, not 
having the create feature transaction type breaks the 
‘chain of delegation’ thus rendering the Feature 
Manager unable of executing the transaction type 
T05 (create attribute) and T06 (create reference).  
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Figure 3: Object Fact Diagram (OFD) for metamodel evolution. 

This is the reason why we created this new 
transaction type T16 (create feature). 

Hence, the ATD proves to be useful in 
understanding the interaction structure, environment 
and composition of a metamodel. It expresses all the 
relevant transaction types that are involved in a 
metamodel adaptation from a structure perspective 
(i.e., either the creation or the removal of metamodel 
elements). With this diagram one can observe how 
the actor roles responsible for changing the 
metamodel structure interact, which ones are 
responsible for creating new production facts (i.e., 
new things), and which ones request the creation of 
those facts. In the next section we will describe the 
metamodel state model composed of the Object Fact 
Diagram (OFD). 

3.2 The Metamodel Evolution State 
Model 

The state model (SM) of an organization (in this 
case, of a metamodel) is the specification of the state 
space of the P-world consisting of specifying the 
object classes, fact types, and the result types, as 
well as the existential laws that hold (Dietz 2006). 
The SM is expressed through an Object Fact 
Diagram (OFD) and an Object Property List (OPL), 
although the latest will not be considered for the 
scope of our work. The OFD is fully based on the 
WOSL language (Dietz 2006). Figure 3 illustrates 
the OFD for the metamodel evolution. 

Each category (rounded rectangle) presented in 
the OFD corresponds to each metamodel element 

that was created and/or deleted as a result of 
performing a specific transaction type. Associated to 
each category are the transaction results related to 
the metamodel element represented by the category. 
This diagram shows the relations among categories 
through the use of binary facts (the two box 
rectangle) representing the instances of each 
category. For example, a package instance P relates 
to a class instance C through the binary fact “the 
class of P is C”. Some of these binary facts have 
unicity laws (lines above the facts) that act as 
cardinality constraints, i.e., in the case of the 
relationship between Package and Class, a package 
P can have many classes C, however a class C can 
only be related to one package, and so on for the 
remaining facts. The dependency laws (dots) 
illustrated in some of the categories demand that, for 
a specific category instance to exist, a binary fact 
relationship between that category and another must 
also exist. For example, in order for a Data Type DT 
to exist, a relationship between DT and a package P 
must also exist. Another aspect of this diagram 
worth mentioning is the generalization of the Feature 
category. A generalization type in WOSL language 
is the union of two or more categories. An example 
of a generalization is VEHICLE, defined as the 
union of CAR, AIRCRAFT, and SHIP. This means 
that, in order to identify a vehicle, one must not use 
a vehicle registration number but a car, an aircraft or 
a ship registration number. In this specific case, in 
order to identify a feature, one must use either the 
attribute or the reference identification. 
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Using this diagram, it is possible to identify the 
main constraints with respect to the existence and 
relationships of metamodel elements. By combining 
both the ATD and the OFD, it is possible to 
understand the restrictions and the consequences of 
creating or deleting metamodel elements by 
requesting and executing transactions. Also, a 
contribution of this diagram is the explicit 
representation of the relationships between 
metamodel entities and respective cardinality and 
dependency constraints that are not approached by 
Herrmannsdörfer in his research, thus giving a more 
comprehensive overview of the interaction amongst 
the metamodel elements that define and compose the 
metamodel structure. 

4 CONCLUSIONS 

In this paper we presented the modeling of the 
ontological aspects surrounding the evolution of 
metamodels according to new language specific 
requirements. The presented Actor Transaction 
Diagram (ATD), and Object Fact Diagram (OFD) 
provide the essential aspects and knowledge with 
respect to the main actors and transactions involved 
in a metamodel adaptation. For that we used 
Herrmannsdörfer coupled operations, more 
specifically the structural primitive operations, on 
account of being the ones that directly influence a 
metamodel structure when a structural adaptation is 
required.  Also, the diagrams (in particular the OFD) 
present the main constraints associated to the 
existence of certain metamodel elements and their 
relationships with other elements.  

These insights concerning the cardinality and 
existence constraints of these elements and their 
relationships are not explicitly covered in 
Herrmannsdörfer work, thus being a contribution for 
understanding, from an ontological perspective, how 
the structural elements of a metamodel interact 
amongst them and what are the respective 
dependencies. However, the main contribution of 
this work was objectifying Herrmannsdörfer 
metamodel evolution approach by using DEMO 
white-box models. The models used provide a set of 
advantages such as showing the composing 
boundaries of a metamodel, the interface 
transactions with actor roles in the environment, 
presenting the interface units of collaboration, 
showing the ontological units of competence, 
authorization, and responsibility, providing a holistic 
metamodel map, and identifying the essential 
concepts of a metamodel. 

Nevertheless, this work lacks a practical 
validation, therefore being a limitation of our 
research. A field study with real practical examples 
could reinforce this research and would add a sound 
validation. For future work, and to provide a more 
thorough analysis of the ontology behind the 
evolution of metamodels, other DEMO models can 
be applied to this context, such as the Process Model 
(PM) or even the Action Model (AM). Also, 
applying a practical validation in the future would 
consolidate this research. 
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