
Towards Constructive Abduction
Solving Abductive Problems with Constraint Programming

Antoni Ligęza
AGH - University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland

Keywords: Abduction, Constraint Programming, Model-based Diagnosis, Consistency-based Reasoning.

Abstract: Abduction can be considered as a principal way of reasoning for problem solving. Abductive inference consists
in generation of hypotheses which explain — or logically imply — the phenomenon under investigation in
view of accessible background knowledge and are consistent with all other observations. Looking for such
hypotheses is typically performed with a spectrum of trial-and-error or search methods and tools. In case
of purely logical statements the hypotheses take the form of a set of facts, both positive and negative ones.
For example, in case of model based diagnostic reasoning, such diagnostic hypotheses can be generated by
consistency based reasoning with minimal search effort. In more complex cases, where values of certain
variables are to be found, pure backtracking search becomes inefficient. In this paper we attempt to put
forward such abductive inference into a formal framework of Constraint Programming in order to enable the
use of constraint propagation techniques. The main idea behind this approach is to make abduction more
constructive. The discussion is illustrated with a diagnostic example of a multiplier-adder system.

1 INTRODUCTION

Abduction can be considered as one of principal ways
of reasoning for problem solving. Abductive infer-
ence consists in search for hypotheses which satisfy
some required conditions. For example, in case of
diagnostic reasoning they should explain — or logi-
cally imply — the phenomenon under investigation,
i.e. the observed failure. Note that accessible back-
ground knowledge must be taken into account and our
hypotheses must be consistent with all the knowledge
and observations.

Looking for such abductive hypotheses is typi-
cally performed with a spectrum of trial-and-error or
search methods and tools. In case of purely logi-
cal statements the hypotheses take the form of a set
of facts, both positive and negative ones. In case of
Model-Based Diagnostic Reasoning (MBDR) (Ham-
scher et al., 1992) such diagnostic hypotheses can
be generated by Consistency-Based Reasoning (CBR)
(Reiter, 1987) with reasonable search effort. In more
complex cases, where values of certain variables are
to be found as well, a pure search (.e.g. Backtrack-
ing depth-first search or search on AND-OR graphs)
becomes inefficient.

In this paper we attempt to put such abductive in-
ference into a formal framework of Constraint Pro-

gramming in order to enable the use of constraint
propagation techniques. The main aim is to make
abduction more constructive; this means that (i) the
hypotheses found should be more precise, and (ii) in-
consistent hypotheses should be eliminated in a more
efficient way. The ideas are illustrated with a diagnos-
tic example of multiplier-adder system.

Existing methods of formal description of diag-
nostic inference are diversified. There are algebraic,
graph-based, and logical expert-like or model-based
diagnostic approaches. Some of the popular models
include Consistency-Based Reasoning (Reiter, 1987;
Hamscher et al., 1992; Ligęza, 2004), logical causal
graphs (Ligęza and Fuster-Parra, 1997; Ligęza, 2004),
and many other (Davis and Hamscher, 1992; Kor-
bicz et al., 2004). A recent survey of various ap-
proaches is given by (Travé-Massuyès, 2014). Fol-
lowing classical CBR, this paper explores mainly the
abductive approach and it is focused on employing
Constraint Programming for developing constructive
abduction, where purely logical abductive hypotheses
are enriched with exact numerical solutions.

The main point of interest in this work is the
role of Constraint Programming in abductive problem
solving, and mainly in diagnosis of technical systems.
An in-depth analysis of applying Constraint Program-
ming in modeling diagnostic reasoning is carried out.

352
Ligęza, A..
Towards Constructive Abduction - Solving Abductive Problems with Constraint Programming.
In Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2015) - Volume 2: KEOD, pages 352-357
ISBN: 978-989-758-158-8
Copyright c© 2015 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Moreover, a kind of Constraint Problem Solving ap-
proach is investigated with the ultimate goal of prun-
ing inconsistent behaviors.

The paper is organized as follows. In Section 2
we explain the nature of abduction from logical point
of view. In Section 3 a simple motivation example
is presented in detail. Section 4 covers some mini-
mal information on Constraint Programming. Finally,
Section 5 presents the main proposal of this paper, i.e.
constructive solution to abduction.

2 ABDUCTION

Abduction can be considered as a principal way of
reasoning for problem solving. Roughly speaking,
abduction consists in stating hypotheses that possibly
imply the facts observed to be true. Hence, the so-
called abductive inference consists in generation of
hypotheses which explain — or logically imply — the
phenomenon under investigation taking into account
all accessible background knowledge. The generated
hypotheses must also be consistent with all other ob-
servations.

Looking for such hypotheses in abductive reason-
ing is typically performed with a spectrum of trial-
and-error or search methods and tools. In case of
purely logical statements the hypotheses take the form
of a set of facts, both positive and negative ones. For
example, in case of Model-Based Diagnostic Reason-
ing (MBDR) such diagnostic hypotheses can be gen-
erated by Consistency-Based Reasoning (CBR) with
reasonable search effort.

Consider the following rule:
α =⇒ β,β

α
. (1)

In fact, this is a basic scheme for abductive inference.
Knowing that α =⇒ β, and observing that β holds, a
possible explanation of it is α.

Note that abduction is not a legal inference rule,
i.e. one preserving logical consequence. In our case,
α is not the logical consequence of the antecedents.
However, it is still a kind of production rule, often
used in practice. The main use of abduction is the
search for hypotheses explaining the current observa-
tions.

A general scheme of abductive reasoning is as fol-
lows. Consider a theory SD (System Description;
this is a set of logical formulas describing in a for-
mal way behavior of the system under discourse i.e.
background knowledge) and a set OBS of some cur-
rent observations to be explained. Abduction consists
in finding a set EXP of explanatory hypotheses, such
that:

• SD∪EXP |= OBS, i.e. the hypotheses fully ex-
plain current observations taking into account
knowledge about the system SD,

• SD∪EXP must be consistent.
Typically, it is also required that EXP is minimal, i.e.
only the absolutely necessary hypotheses are speci-
fied within EXP. Further, if several competitive hy-
potheses are available, the most likely ones may be
selected with some auxiliary tests, heuristics or statis-
tical information.

Note that, abductive reasoning, although might
provide invalid conclusions, constitutes a useful,
practical way of guessing potential solutions to prob-
lem stated by system description, current observa-
tions, and question for the reasons for them. It is
a natural way of diagnostic inference (both medical
and technical), and can be applied in puzzle solving,
constraint problem solving, and crime mystery solv-
ing1. Abduction, in order to be efficient, must be com-
bined with reasonable search procedure and elimina-
tion method for incorrect solutions.

In case of diagnostic reasoning, abduction is of-
ten performed by detection and elimination of in-
consistencies, i.e the so-called Consistency-Based
Reasoning (CBR). The main idea of Model-Based
Consistency-Based Diagnosis was presented in the
seminal paper (Reiter, 1987), and widely explored in
(Reiter, 1987; Hamscher et al., 1992; Ligęza, 2004;
Davis and Hamscher, 1992; Korbicz et al., 2004). It
rests in generation of diagnostic hypotheses stating
which components of the system may be faulty (ab-
duction), so that assuming them faulty explains the
current observations with the model in mind in a con-
sistent way (deduction).

More precisely, taking into account the back-
ground knowledge, i.e. System Description SD and
the current observations OBS one looks for the so-
called conflict sets — these are sets of components
such that assuming all of them working correct is in-
consistent with the observations. In fact, we look for
such minimal sets and there may be several such sets.
Now, by assuming that at least one of the elements of
each minimal conflict set is faulty leads to regaining
consistency. Simultaneously, a set containing one ele-
ment from any minimal conflict set (the so-called hit-
ting set (Reiter, 1987)) form a hypothetical diagnosis
— a possible explanation of the observed misbehav-
ior.

In the next section we analyze such an approach
in a more detailed way.

1Note that, contrary to what was stated in the books, it
was abduction — not deduction — as the principal way of
reasoning applied by Sherlock Holmes (Ligęza, 2006), p.
31.

Towards Constructive Abduction - Solving Abductive Problems with Constraint Programming

353

3 MOTIVATION EXAMPLE

In this section we briefly recall a classical diagnostic
example of a feed-forward arithmetic circuit. This is
the multiplier-adder example presented in the seminal
paper by R. Reiter (Reiter, 1987). This example was
further re-explored in numerous papers, including se-
lected readings (Hamscher et al., 1992) and diagnos-
tic handbook (Chapter (Ligęza, 2004)). It was further
explored in the discussion carried out in domain liter-
ature concerning comparative analysis of diagnostic
approaches (Cordier and et al., 2000b; Cordier and
et al., 2000a; Travé-Massuyès, 2014). Here we shall
base on an in-depth analysis presented in (Ligęza
and Kościelny, 2008), and also explored in (Ligęza,
2009).

The basic, intuitive schema of the system is pre-
sented in Figure 1.

A

B

D

C

E

3

2

2

3

Y

X

3 Z

12

10

G

F

m3

m2

m1

a1

a2

Figure 1.

The system is composed of two layers. The first
one contains three multipliers m1, m2, and m3, and
receiving the input signals A, B, C, D and E. The sec-
ond layer is composed of two adders, namely a1 and
a2, producing the output values of F and G. Only in-
puts (of the first layer) and outputs of the system (of
the second layer) are directly observable. The inter-
mediate variables, namely X, Y and Z, are hidden and
cannot be observed.

Observe that the current state of the system is de-
fined by the input values; they are: A=3, B=2, C=2,
D=3 and E=3. It is easy to check — under the as-
sumption of correct work of all the system elements
— that the outputs should be F=12 and G=12. Note
also that they should be equal to each other, which is
due to the symmetry of the system and the symmetry
of the input vales; this observation will be important
for the analysis and we shall see later on why.

Now, since the current value of F is incorrect,
namely F=10, the system is faulty. At least one of
its components must be faulty2. At this stage, for

2In Model-Based Diagnosis it is typically assumed that
faulty behavior is caused by a fault of a named component
or a simultaneous fault of a set of such components; no
faults caused by faulty links, parameter setting or the in-
ternal structure are considered.

simplicity, we consider only correct components and
faulty ones; no details about the type of fault are taken
into consideration so far.

In order to perform diagnostic reasoning let us
start with abduction (Ligęza, 2004), (Ligęza and Koś-
cielny, 2008); we shall try to build a conflict set speci-
fying hypothetical faulty elements; in other words we
search for a Disjunctive Conceptual Faults; DCF for
short (Ligęza and Kościelny, 2008).

Note that the value of F is influenced by the inputs
(observed) and the work of elements m1, m2 and a1
all of them are located in the signal path having direct
influence on the value of F. In other words, one can
say that there is direct causal dependency of influence
of m1, m2 and a1 on F. If all the three elements work
correctly, then the output would be correct. Since it
is not, we can conclude that a DCF1 is observed: at
least one of the elements {m1,m2,a1}must be faulty.
Formally, we have

DCF1 = {m1,m2,a1} (2)

Note that, at this stage of reasoning only m1 and a1
are satisfactory explanations for the observed fault;
m2 alone is not a good explanation, because it is not
consistent with the observation G=12.

A further analysis leads to detection of DCF2
(Ligęza and Kościelny, 2008): under the assumed
manifestations one of the elements {m1,a1,a2,m3}
must also be faulty.

In order to explain the origin of DCF2 let us notice
that if all the four elements were correct, then Z=C*E
calculated by m3 must be equal to 6, and since G is
observed to be 12, Y (calculated backwards and un-
der the assumption that a2 works correctly) must also
equal 6; hence, if m1 is correct, then X must be 6
as well, and if a1 is correct F would be equal to 12.
Since it is not the case, at least one of the mentioned
components must be faulty. So we have the following
disjunctive conceptual fault:

DCF2 = {m1,a1,a2,m3} (3)

Note that the type of DCF1 and DCF2 are different;
this is due to their origin (or character). DCF1 is of
causal type — all the elements directly influence the
conflicting variable. On the other hand, DCF2 is of
constraint type; this is a kind of mathematical con-
straint which must be satisfied, but there is not neces-
sary causal dependency between the components and
the value of the faulty variable (F). This observation
(and fault classification) will be used later on, when
we pass to qualitative analysis.

Note that if both the outputs were incorrect (e.g.
F=10 and G=14), then, in general case one can ob-
serve DCF1, DCF2 and DCF3, where:

DCF3 = {m2,m3,a2}. (4)

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

354

The DCF3 is a causal type conflict.
Note also, that whether the constraint-type DCF2

is a valid conflict may depend on the observed out-
puts. For example, if F=10 and G=10 (both out-
puts are incorrect but equal), then the structure and
equations describing the work of the system does not
lead to a conceptual fault (Cordier and et al., 2000a;
Cordier and et al., 2000b).

The composition of the three disjunctive concep-
tual faults can be presented with use of an OR-matrix
for the diagnosed system (see Table 1): It defines the

Table 1: An OR binary diagnostic matrix for the adder sys-
tem (the lower level).

DCF m1 m2 m3 a1 a2
DCF1 1 1 1
DCF2 1 1 1 1
DCF3 1 1 1

component elements for particular DCF-s for DCF1,
DCF2, and DCF3.

In the analyzed case, i.e. F being faulty and
G correct, the final diagnoses for the considered
case are calculated as reduced elements of the Carte-
sian product of DCF1 = {m1,m2,a1} and DCF2 =
{m1,m3,a1,a2} (Ligęza and Kościelny, 2008). There
are the following potential diagnoses: D1 = {m1},
D2 = {a1}, D3 = {a2,m2} and D4 = {m2,m3}. They
all are shown in Figure 2.

{ a1 , m1 , m2 }

{ a1 , a2 , m1 , m3 }

D1 D2

D4

D3

Figure 2: Generation of potential diagnoses.

Note that so far only binary faults were considered
(i.e. a component may be faulty or not). In (Ligęza
and Kościelny, 2008) and further in (Ligęza, 2009)
an attempt at introducing qualitative diagnoses was
undertaken. After calculation of possible binary di-
agnoses their qualitative forms were considered, and
with use of inference rules representing simple con-
straints inconsistent qualitative diagnoses were elim-
inated. In the next section a still more precise, in-
depth, numerical analysis will be carried out. The
model of the system will be used as constraints. The
binary logical diagnoses (i.e. faulty or correct) will
be replaced with exact numerical characteristics.

4 CONSTRAINT
PROGRAMMING

In this section a brief note on Constraint Program-
ming is presented. We aim at explaining the basic
ideas of this promising technology for solving com-
plex, combinatorial problems. Our presentation is
based on (Ligęza, 2009).

A Constraint Satisfaction Problem (CSP) is one
where the goal consists in finding a legal assignment
of values to a set of predefined variables so that a set
of given constraints is satisfied.

More formally, after (Dechter, 2003) let X =
{X1,X2, . . . ,Xn} denote a set of variables, V =
{V1,V2, . . . ,Vn} is a set of domains for the variables
in X and C is a set of constraints. Each constraint
is given by a pair (Si,Ri), where Si is referred to as
the scope (or scheme) and consists of a selection of
variables from X , while Ri is a relation defined over a
Cartesian Product of domains appropriate for the vari-
ables in the scope. The Constraint Satisfaction Prob-
lem is given by the triple (X ,V,C).

A solution to CSP given by (X ,V,C) is any as-
signment of values to variables of X of the form
{X1 = v1,X2 = v2, . . . ,Xn = vn}, such that vi ∈ Vi,
and for any constraint in (Si,Ri) ∈ C, Ri is satisfied
by the appropriate projection of the solution vector
(v1,v2, . . . ,vk) over variables of Si. Obviously, all the
constraints must be satisfied, and there can be more
one or many solutions; no solution may exist for an
over-constrained problem.

If the domains of V are finite (e.g. binary or dec-
imals digits are allowed) we speak about Finite Do-
mains (FD) problems. Obviously, such problems suf-
fer from combinatorial explosion while attempting at
solving them. Constraint Programming (CP) is a set
of techniques (or a technology) for efficient dealing
which constraints.

The basic technique for solving a CSP given by
(X ,V,C) consists in subsequent assignment of admis-
sible values to variables of X (e.g. by backtracking
search); the order is chosen in an arbitrary way, and it
can influence how fast a solution is found.

In order to improve search efficiency both heuris-
tics and strategies are used. The most typical strate-
gies are based on (i) variable ordering, (ii) values or-
dering, and (iii) look-ahead techniques. Especially
the look-ahead strategies can improve search effi-
ciency. The principal idea is that the algorithm looks
how current decisions will affect the future search.

Towards Constructive Abduction - Solving Abductive Problems with Constraint Programming

355

5 ABDUCTION AS CONSTRAINT
PROGRAMMING

The key message of this section is to show that abduc-
tion can be solved in a constructive way with efficient
approach of Constraint Programming. The multiplier-
adder example (presented in Section 3; see Figure 1)
will be used as an illustrative guideline. The obtained
diagnoses are more precise than in the case of purely
logical abduction of Consistency-Based Diagnosis. In
case of more than one potential diagnoses, the exact
values of variables can be used for further analysis,
and — if applicable — elimination of some spurious
diagnoses due to impossible values predicted by CP
or thanks to introduction of additional measurements
for confirming or rejecting the generated values.

Let us refer to the multiplier-adder system as
presented in Figure 1 once again. As the starting
point consider the four logical potential diagnoses:
D1 = {m1}, D2 = {a1}, D3 = {a2,m2} and D4 =
{m2,m3}. They are logical in the sense that the only
information provided is of logical value: True if a di-
agnosis is valid or False if a diagnosis is invalid.

We shall build a constraint model for the diagnos-
tic case presented in Figure 1 so as more detailed, nu-
merical characteristics can be abducted.

First, the set of common observations is modeled
with simple constraints as follows3:
[...]
A #= 3,
B #= 2,
C #= 2,
D #= 3,
E #= 3,
F #= 10,
G #=12,
[...]

In this code excerpt comma is used to separate con-
straints, while #<op> (like #= or #>) is used to ex-
press constraints; several typical relations can be used
in place of <op>.

Now, consider the first case of m1 being faulty. We
assume that a faulty multiplier produces the incorrect
output and its value can be expressed as multiplication
of the correct value by a factor K1/M1, where both the
numbers are integers. The model takes the following
form:
A * C * K1 #= X *M1,
B * D #= Y,
C * E #= Z,
X + Y #= F,
Y + Z #= G,
K1 #> 0, M1 #> 0.

3The constraints are direct codes of SWI-Prolog; for
constraint modeling we use the clp(fd) package

The first constraint models the fault of m1. For the
sake of operation in the domain of integers, M1 is
placed as a multiplication factor on the right-hand
side. The other constraints correspond directly to the
operation and connections of the components. The
produced output is:
X=4, Y=6, Z=6, K1=2, M1=3

and it can be easily checked by hand.
As the second case consider the diagnosis a1 be-

ing faulty. We assume that a this time it is the adder
that produces the incorrect output and its value can
be expressed as subtraction from the correct value a
factor A1 (an integer). The model takes the following
form:
A * C #= X,
B * D #= Y,
C * E #= Z,
X + Y - A1 #= F,
Y + Z #= G.

The fourth constraint models the fault of a1. The
other constraints correspond directly to the operation
and connections of the components. The produced
output is:
X=6, Y=6, Z=6, A1=2

and again, it can be easily checked by hand.
The third, a bit more complex case is the one of

active diagnosis {a2,m2}. The model for this case is
as follows:
A * C #= X,
B * D * K2 #= Y * M2,
C * E #= Z,
X + Y #= F,
Y + Z +A2 #= G,
K2 #> 0, M2 #> 0.

Variables K2/M2 model the multiplicative fault of m2
and variable A2 models the fault of a2. The produced
output is:
X=6, Y=4, Z=6, K2=2, M2=3, A2=2

and again, it can be easily checked by hand.
The fourth and perhaps the most complex case is

the one of active diagnosis {m2,m3}. Here we have to
introduce four variables, namely K2/M2 and K3/M3 for
modeling two multiplicative faults, namely the one of
m2 and m3, respectively. The model is as follows:
A * C #= X,
B * D * K2 #= Y * M2,
C * E * K3 #= Z * M3,
X + Y #= F,
Y + Z #= G,
K2 #> 0, M2 #> 0,
K3 #> 0, M3 #> 0.

The produced output is:
X=6, Y=4, Z=8, K2=2, M2=3, K3=4, M3=3

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

356

and again, it can be checked by hand.
In the above example we applied the simplest

methodology for constraint modeling applied to solv-
ing an abductive problem of finding detailed numeri-
cal characteristics — in fact numerical models — of
minimal diagnoses. The basic stages can be summa-
rized as follows:
• take a minimal diagnosis for detailed examina-

tion; it can be composed of k components,
• for any component define one or more (as in the

case of multipliers) variables with use of which
one can capture the idea of the misbehavior of the
component,

• define the domains of the variables (a set neces-
sary in CP with finite domains),

• define the constraints imposed on these variables
for the analyzed case, and finally

• using the intended definition of components in
presence of the assumed fault, define the con-
straints modeling the work of all the components
(the correct ones and the faulty ones).

The flow (links) between the component are defined
by the appropriate use of defined input-output and in-
ternal variables. Note that the direction of flow, or
causality is not of interest here, and one does not need
to bother about that. In fact, what we look for is a sta-
ble, numerical solution consistent with the diagnoses
and the observations. Such a model may be used for
further analysis and elimination of unfeasible diag-
noses.

In case of many potential diagnoses, the procedure
should be repeated for each diagnosis.

6 CONCLUSIONS

The paper presents a note on applying Constraint Pro-
gramming for enriching abductive reasoning with ex-
act (numerical) knowledge. In this way not only log-
ical or qualitative solutions are obtained (of the form
yes/no), but detailed numerical characteristics of the
generated solutions are provided. This kind of ap-
proach we call constructive abduction.

The models presented in Section 5 were relatively
simple, and provided for all four diagnoses separately.
But it seems straightforward to build one, general
model by introducing another five binary variables for
representing if a component is faulty or not. In this
way appropriate subset of all constraints can be made
active, while inappropriate constraints are eliminated.

Finally, the focus of the paper was on a diagnostic
example, but it seems that this kind of approach can
be applied in a wide spectrum of abductive problems.

ACKNOWLEDGMENTS

The presented research was carried out within
AGH University of Science and Technology Internal
Project No. 11.11.120.859.

REFERENCES

Cordier, M.-O. and et al. (2000a). Ai and automatic con-
trol approaches of model-based diagnosis: Links and
underlying hypotheses. In Edelmayer, A. M., editor,
Preprints: SAFEPROCESS 2000, 4th IFAC Sympo-
sium on Fault Detection, Supervision and Safety for
Technical Processes, pages 274–279. IFAC.

Cordier, M.-O. and et al. (2000b). A comparative analysis of
ai and control theory approaches to model-based diag-
nosis. In Horn, W., editor, ECAI’2000. 14th European
Conference on Artificial Intelligence, pages 136–140.
IOS Press.

Davis, R. and Hamscher, W. (1992). Model-Based Reason-
ing: Troubleshooting, pages 3–24. Morgan Kaufmann
Publishers, San Mateo, CA.

Dechter, R. (2003). Constraint Processing. Elsevier Sci-
ence.

Hamscher, W., Console, L., and de Kleer, J., editors (1992).
Readings in Model-Based Diagnosis. Morgan Kauf-
mann, San Mateo, CA.

Korbicz, J., Kościelny, J., Kowalczuk, Z., and Cholewa, W.,
editors (2004). Fault Diagnosis. Models, Artificial In-
telligence, Applications. Springer-Verlag, Berlin.

Ligęza, A. (2004). Selected Methods of Knowledge Engi-
neering in System Diagnosis, chapter 16, pages 633–
668. In: (Korbicz et al., 2004). Springer-Verlag.

Ligęza, A. (2006). Logical Foundations for Rule-Based Sys-
tems. Springer-Verlag, Berlin, Heidelberg.

Ligęza, A. (2009). A Constraint Satisfaction Framework
for Diagnostic Problems, pages 255–262. Control and
Computer Science. Information Technology, Control
Theory, Fault and System Diagnosis. Pomeranian Sci-
ence and Technology Publisher PWNT, Gdańsk.

Ligęza, A. and Fuster-Parra, P. (1997). And/or/not causal
graphs – a model for diagnostic reasoning. Ap-
plied Mathematics and Computer Science, Vol. 7, No.
1:185–203.

Ligęza, A. and Kościelny, J. M. (2008). A new approach
to multiple fault diagnosis. combination of diagnostic
matrices, graphs, algebraic and rule-based models. the
case of two-layer models. Int. J. Appl. Math. Comput.
Sci., 18(4):465–476.

Reiter, R. (1987). A theory of diagnosis from first princi-
ples. Artificial Intelligence, 32:57–95.

Travé-Massuyès, L. (2014). Bridges between diagnosis the-
ories from control and ai perspectives. In Korbicz, J.
and Kowal, M., editors, Intelligent Systems in Tech-
nical and medila Diagnosis, pages 3–28. Springer-
Verlag.

Towards Constructive Abduction - Solving Abductive Problems with Constraint Programming

357

