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Abstract: The usage of search engines is nowadays extended to do intelligent analytics of petabytes of data. With 
Lucene being at the heart of the vast majority of information retrieval systems, several attempts are made to 
bring it to the cloud in order to scale to big data. Efforts include implementing scalable distribution of the 
search indices over the file system, storing them in NoSQL databases, and porting them to inherently dis-
tributed ecosystems, such as Hadoop. We evaluate the existing efforts in terms of distribution, high availa-
bility, fault tolerance, manageability, and high performance. We believe that the key to supporting search 
indexing capabilities for big data can only be achieved through the use of common open-source technology 
to be deployed on standard cloud platforms such as Amazon EC2, Microsoft Azure, etc. For each approach, 
we build a benchmarking system by indexing the whole Wikipedia content and submitting hundreds of sim-
ultaneous search requests. We measure the performance of both indexing and searching operations. We 
stimulate node failures and monitor the recoverability of the system. We show that a system built on top of 
Solr and Hadoop has the best stability and manageability; while systems based on NoSQL databases present 
an attractive alternative in terms of performance. 

1 INTRODUCTION 

Since Doug Cutting originally wrote Lucene 
(McCandless et al., 2010) in 1999 after a long series 
of scientific publications dating back to 1990 (Cut-
ting and Pedersen, 1990), it has emerged as the 
standard full text search engine in the open-source 
community. Several other open-source projects, such 
as Solr (Smiley et al., 2015) and Elasticsearch (Kuc 
and Rogozinski, 2015), are built on top of Lucene 
and offer extended search facilities, such as faceted 
navigation, hit highlighting, auto-suggest, Geo-
spatial search. 

Now, search engines are required to do intelli-
gent analytics of petabytes of data. Back in 2007, the 
first attempts (Nagi, 2007) were made to provide 
scalable, robust and distributed search engines by 
porting the core of Lucene storage classes to run on 
relation database management systems. With the 
emergence of NoSQL database management systems 
and inherently distributed ecosystems, such as Ha-
doop, many open-source prototypes and implemen-
tations attempt nowadays to support the necessary 
features for any large-scale cloud-based implementa-
tion of a search engines (Karambelkar, 2015). 

In this work, we investigate the most prominent 
publicly available implementations. We believe that 
the key to the success of any large-scale search en-
gine will remain the same as the success of the orig-
inal Lucene, which is openness. In our Work, we 
explicitly refrain from adding any customized im-
plementation to the off-the-shelf open-source com-
ponents. We apply only the tweaks supplied by the 
official performance tuning recommendations from 
the providers. 

Our contribution is the independent evaluation of 
the existing approaches in terms of support for dis-
tribution - in which data partitioning and replication 
while maintaining consistency - play a major role. 
We always investigate the effect of node failures, 
since almost all popular and modern cloud providers 
nowadays, such as Amazon EC2 (Akioka and Mu-
raoka, 2010) and Microsoft Azure (Bojanova and 
Samba, 2011), are built on commodity hardware. 
Furthermore, we take into consideration the ease of 
management of the cluster. However, our main focus 
is the evaluation of the performance of both index-
ing and searching of these systems. 

The rest of the paper is organized as follows. In 
Section 2, the features desired in a distributed high-
ly-scalable search engines together with a brief 
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background of the technologies in use are presented. 
Section 3 brings a detailed description of the sys-
tems under investigation. In Section 4, the perfor-
mance evaluation is presented. Section 5 concludes 
the paper and presents an outlook to our future work 
in this area. 

2 BACKGROUND AND RELATED 
WORK 

The following features are the key to the success of 
any cloud-based large-scale search engine: 

 Partitioning (Sharding): It is splitting the index 
into several independent sections. Each section 
can be viewed as a separate index and is indexed 
independently. A query is answered by pro-
cessing it at the shards in question before the re-
sult is consolidated and returned to the user.  

 Replication: It provides redundancy and in-
creases data availability. With multiple copies of 
data on different servers, replication protects an 
index from the loss of a single node. In some 
cases, replication can be used to increase read 
capacity. 

 Consistency: A newly indexed document is not 
necessarily made available to the next search re-
quest. However, the index data structure must be 
consistent under whatever storage model used to 
store it. Taking a deeper look into the structure of 
Lucene (“Lucene - Index File Formats”, n.d.), for 
example; the content of one internal block is de-
pendent on the content of another. Consistency 
between these blocks must be guaranteed all 
times, whereas consistency across the independ-
ent shards is not a must. 

 Fault-tolerance: it means the absence of any 
Single Point of Failure (SPoF). Most modern 
clouds are based on commodity hardware. The 
temporary absence of a node is expected to occur 
at any point of time. This should never lead to 
the failure of the whole search engine. 

 Manageability: A cloud-based search engine is 
spread across several dozens of servers. The ad-
ministration of these servers and the services de-
ployed on them must be made easily: either 
through a Command Line Interface (CLI), pro-
grammatically embeddable interface, e.g., JMX, 
or most preferably via web administration con-
soles. 
 High Performance: Cloud-based search engines 

should be capable of indexing the shards in par-
allel. They should also process hundreds of 

search queries in parallel with a reasonable re-
sponse time (e.g., under 3 seconds).  

2.1 Lucene-based Search Engines 

A full text search index is an efficient cross-
reference lookup data structure. Usually, a variation 
of the well-known inverted index structure is used 
(Cutting and Pedersen, 1990). 

The indexing process begins with collecting the 
available set of documents by the data gatherer. The 
parser converts them to a stream of plain text. In the 
analysis phase, the stream of data is tokenized ac-
cording to predefined delimiters and a number of 
operations are performed on the tokens, e.g., the 
removal of all stop words and the reduction of the 
words to their roots to enable phonetic searches. 

The searching process begins with parsing the 
user query. The tokens have to be analyzed by the 
same analyzer used for indexing. Then, the index is 
traversed for possible matches. The fuzzy query 
processor is responsible for defining the match crite-
ria and the score of the hit. 

Lucene (McCandless et al., 2010) is at the heart 
of almost every full-text search engine. It provides 
several useful features, such as ranked searching, 
fielded searching and sorting. Searching is done 
through several query types including: phrase que-
ries, wildcard queries, proximity queries, range que-
ries. It allows for simultaneous indexing and search-
ing by implementing a simple pessimistic locking 
algorithm (“Lucene - Class LockFactory”, n.d.).  

An important internal feature of Lucene is that it 
uses a configurable storage engine. In its standard 
release, it comes with a codec to store the index on 
the disc or maintain it in-memory for smaller indi-
ces. The internal structure of the index file is public 
and is platform independent (“Lucene - Index File 
Formats”, n.d.). This ensures its portability. Back in 
2007, this concept was used to store the index effi-
ciently into Relational Database Management Sys-
tems (Nagi, 2007). The same technique is used today 
to store the index in other NoSQL databases, such as 
Cassandra (Lakshman and Malik, 2010) and mon-
goDB (Plugge et al., 2010). 

Apache Solr (Smiley et al., 2015) is built on-top 
of Lucene. It is a web application that can be de-
ployed in any servlet container. It adds the following 
functionality to Lucene: 

 XML/HTTP and JSON APIs 
 Hit highlighting 
 Faceted search and filtering 
 Geospatial search 
 Caching 
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 Near real-time searching of newly indexed 
documents. 

 Web administration interface 

SolrCloud (Smiley et al., 2015) was released in 
2012. It is an extension to Solr that allows for both 
sharding and replication. The management of this 
distribution is seamlessly integrated into an intuitive 
web administration console. Figure 1 illustrates the 
configuration of one our setups in the web admin-
istration console. 

 

Figure 1: Screenshot of the web administration console. 

Elasticsearch (Kuc and Rogozinski, 2015) 
evolved almost in parallel to Solr and SolrCloud. 
Both bring the same set of features. Both are very 
performant. Both are open-source and use a different 
combination of open-source libraries. At their hearts, 
both have Lucene. In general, Solr seems to be 
slightly more popular than Elasticsearch; whereas 
Elasticsearch is expanding more in the direction of 
data analytics. 

2.2 NoSQL Databases 

The main strength of NoSQL databases comes from 
their ability to manage extremely large volumes of 
data. For this type of applications, ACID transaction 
properties are too restrictive. More relaxed models 
emerged such as the CAP theory or eventually con-
sistent emerged (Brewer, 2000). It means that any 
large-scale distributed DBMS can guarantee for two 
of three aspects: Consistency, Availability, and Par-
tition tolerance. In order to solve the conflicts of the 
CAP theory, the BASE consistency model (BAsical-
ly, Soft state, Eventually consistent) is defined for 
modern applications (Brewer, 2000). This principle 
goes well with information retrieval systems, where 
intelligent searching is more important than con-
sistent ones. 

A good overview of existing NoSQL database 
management systems can be found in (Edlich, et al, 

2010). Mainly, NoSQL database systems fall into 
four categories:  

 graph databases,  
 key-value systems,  
 column-family systems, and  
 document stores. 

Graph databases concentrate on providing new 
algorithms for storing and processing very large and 
distributed graphs. They are often faster for associa-
tive data sets. They can scale more naturally to large 
data sets as they do not require expensive join opera-
tions. Neo4j (“neo4j”, n.d.) is a typical example of a 
graph databases. 

Key-value systems use associative arrays (maps) 
as their fundamental data structure. More complicat-
ed data structures are often implemented on top of 
the maps. Redis (“Redix”, n.d.) is a good example of 
a basic key-value systems. 

The data model of column-family systems pro-
vides a structured key-value store where columns are 
added only to specified keys. Different keys can 
have different number of columns in any given fami-
ly. A prominent member of the column family stores 
is Cassandra (Lakshman and Malik, 2010). Apache 
Cassandra is a second generation of distributed key 
value stores; developed at Facebook. It is designed 
to handle very large amounts of data spread across 
many commodity servers without a single point of 
failure. Replication is done even across multiple data 
centers. Nodes can be added to cluster without 
downtime. 

Document-oriented databases are also a subclass 
of key-value stores. The difference lies in the way 
the data is processed. A document-oriented system 
relies on internal structure in the document order to 
extract metadata that the database engine uses for 
further optimization. Document databases are sche-
maless and store all related information together. 
Documents are addressed in the database via a 
unique key. Typically, the database constructs an 
index on the key and all kinds of metadata. mon-
goDB (Plugge et al., 2010), first developed in 2007, 
is considered to be the most popular NoSQL nowa-
days (“DB-Engines”, n.d.). mongoDB provides high 
availability with replica sets. 

In all attempts to store Lucene index files in 
NoSQL databases, the contributors take the logical 
index file as starting point. The set of logical files 
are broken into logical blocks that are stored in the 
database. It is therefore clear that plain key-value 
data stores and graph databases are not suitable for 
storing a Lucene index. On the other hand, docu-
ment stores, such as mongoDB, are ideal stores for 
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Lucene indices. One Lucene logical file maps easily 
to a mongoDB document. Similarly, the Lucene 
logical directory (files) is mapped to a Cassandra 
column family (rows), which is captured using an 
inherited implementation of the abstract Lucene 
Directory class. The files of the directory are 
broken down into blocks (whose sizes are capped). 
Each block is stored as the value of a column in the 
corresponding row. 

2.3 Inherently Distributed Ecosystems 

After the release of (Dean and Ghemawat, 2008), 
Doug Cutting worked on a Java-based MapReduce 
implementation to solve scalability issues on Nutch 
(Khare et al., 2004); which is an open-source web 
crawler software project to feed search engines with 
content. This was the base for the Hadoop open 
source project; which became a top-level Apache 
Foundation project. Currently, the main Hadoop 
project includes these modules: 

 Hadoop Common: It supports the other Hadoop 
modules. 

 Hadoop Distributed File System (HDFS): A dis-
tributed file system. 

 Hadoop YARN: A job scheduler and cluster re-
source management. 

 Hadoop MapReduce: A YARN-based system for 
parallel processing of large data sets. 

Each Hadoop task (Map or Reduce) works on the 
small subset of the data it has been assigned so that 
the load is spread across the cluster. The map tasks 
generally load, parse, transform, and filter data. Each 
reduce task is responsible for handling a subset of 
the map task output. Intermediate data is then copied 
from mapper tasks by the reducer tasks in order to 
group and aggregate the data. It is definitely appeal-
ing to use the MapReduce framework in order to 
construct the Lucene index using several nodes of a 
Hadoop cluster. 

The input to a MapReduce job is a set of files 
that are spread over the Hadoop Distributed File 
System (HDFS). In the end of the MapReduce oper-
ations, the data is written back to HDFS. HDFS is a 
distributed, scalable, and portable file system. A 
Hadoop cluster has one namenode and a set of 
datanodes. Each datanode serves up blocks of data 
over the network using a block protocol. HDFS 
achieves reliability by replicating the data across 
multiple hosts. Hadoop recommends a replication 
factor of 3. Since the release of Hadoop 2.0 in 2012, 
several high-availability capabilities, such as provid-
ing automatic fail-over of the namenode, are imple-

mented. This way, HDFS comes with no single point 
of failure. HDFS was designed for mostly immuta-
ble files (Pessach, 2013) and may not be suitable for 
systems requiring concurrent write-operations. Since 
the default storage codec for Solr is append-only, it 
matches HDFS. With the extreme scalability, ro-
bustness and wide-spread of Hadoop clusters, it 
offers the perfect store for Solr in Cloud-based envi-
ronments. 

Additionally, there are three ecosystems that can 
be used in building distributed search engines: Katta, 
Blur and Storm. 

Katta (“Katta”, n.d.) brings Apache Hadoop and 
Solr together. It brings search across a completely 
distributed MapReduce-based cluster. Katta is an 
open-source project that uses the underlying Hadoop 
HDFS for storing the indices and providing access to 
them. Unfortunately, the development of Katta has 
been stopped. The main reason is the inclusion of 
several of the Katta features within the SolrCloud 
project. 

Apache Blur (“Blur”, n.d.) is a distributed search 
engine that can work with Apache Hadoop. It is 
different from the traditional big data systems in that 
it provides a relational data model-like storage on 
top of HDFS. Apache Blur does not use Apache 
Solr; however, it consumes Apache Lucene APIs. 
Blur provides data indexing using MapReduce and 
advanced search features; such as a faceted search, 
fuzzy, pagination, and a wildcard search. Blur shard 
server is responsible for managing shards. For Syn-
chronization, it uses Apache ZooKeeper 
(“ZooKeeper”, n.d.). Blur is still in the apache incu-
bator status. The current release version 0.2.3 works 
with Hadoop 1.x and is not validated using the 
scalability features coming with Hadoop 2.x. 

The third project Storm (“Storm”, n.d.) is also in 
its incubator state at Apache. Storm is a real time 
distributed computation framework. It processes 
huge data in real time. Apache Storm processes 
massive streams of data in a distributed manner. So, 
it would be a perfect candidate to build Lucene indi-
ces over large repositories of documents once it is 
reaches the release state. Apache Storm uses the 
concept of Spout and Bolts. Spouts are data inputs; 
this is where data arrives in the Storm cluster. Bolts 
process the streams that get piped into it. They can 
be fed data from spouts or other bolts. The bolts can 
form a chain of processing, with each bolt perform-
ing a unit task in a concept similar to MapReduce. 
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3 SYSTEMS UNDER 
INVESTIGATION 

3.1 Solr on Cassandra 

Solandra is an open-source project that uses Cassan-
dra instead of the operating system file system for 
storing indices in the Lucene index format (“Lucene 
- Index File Formats”, n.d.). The project is very 
stable. Unfortunately, the last commit dates back to 
2010. The current Solandra version available for 
download uses Apache Solr 3.4 and Cassandra 0.8.6. 
That's why any installation would use Solr and not 
SolrCloud. The details of the Cassandra-based dis-
tributed data storage is completely hidden behind the 
CassandraDirectory class and its associated 
classes. Solandra uses its own index reader called 
SolandraIndexReaderFactory by overriding the 
default index reader. 

Under Solandra, Solr and Cassandra run both 
within the same JVM. However, with a slight recon-
figuration, we run a Cassandra cluster instead. In a 
small implementation, the Cassandra cluster spreads 
over 3 nodes and 7 nodes in the larger one as illus-
trated in Figure 2. 

 

Figure 2: Our Solandra installation. 

On Cassandra, each node exchanges information 
across the cluster every second. A sequentially writ-
ten commit log on each node captures write activity 
to ensure data durability. Data is then indexed and 
written to an in-memory structure. Once the memory 
structure is full, the data is written to disk in an 
SSTable data file. All writes are automatically parti-
tioned and replicated throughout the cluster. A clus-
ter is arranged as a ring of nodes. Clients send 
read/write requests to any node in the ring; that takes 
on the role of coordinator node, and forwards the 
request to the node responsible for servicing it. A 
partitioner decides which nodes store which rows. 

This way, both sharding and replication are au-
tomatically made available by Casandra. Cassandra 
also guarantees the consistency of the blocks read by 
its various nodes. Although fault-tolerance is a 
strong feature of Cassandra, Solr itself is the single 
point of failure in this implementation, due to the 
absence of the integration with SolrCloud. Unfortu-
nately, Solandra does not support the administration 
console of Solr. The only management option is 
through the Cassandra CLI. 

3.2 Lucene on mongoDB 

Another open-source NoSQL-based project is Lu-
Mongo (“LuMongo”, n.d.). LuMongo provides the 
flexibility and power of Lucene queries with the 
scalability and ease of use of mongoDB. All data in 
LuMongo is stored in mongoDB including indices 
and documents. Inherently mongoDB can be sharded 
and replicated. LuMongo itself operates as a cluster. 
On error, clients can fail to another cluster node. 
Nodes in the cluster can be added and removed dy-
namically through a simple CLI command. The CLI 
offers to query the health status of cluster, list avail-
able indices, get their counts, submit simple queries, 
and fetch documents.  

LuMongo indices are broken down into shards 
called segments. Each segment is an independent 
index. A hash of the document's unique identifier 
determines which segment a document's indexed 
fields will be stored into. In our smaller implementa-
tion, illustrated in Figure 3, the segments are stored 
in a 3x3 mongoDB cluster for the small setup and 7 
shards and 3 replicas for the larger setup to match 
the number of LuMongo servers; which is 3 and 7 
respectively. 

 

Figure 3: Our LuMongo implementation. 
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In this setup, sharding is implemented in both 
LuMongo and mongoDB. The mongoDB takes care 
of partitioning seamlessly. mongoDB guarantees the 
consistency of the index store, while LuMongo 
guarantees the consistency of the search result. 
There is no single point of failure in mongoDB and 
LuMongo. 

3.3 SolrCloud 

SolrCloud (Smiley et al., 2015) contains a cluster of 
Solr nodes. Each node runs one or more collections. 
A collection holds one or more shards. Each shard 
can be replicated among the nodes. Apache 
ZooKeeper (“ZooKeeper”, n.d.) is responsible for 
maintaining co-ordination among various nodes. It 
provides load-balancing and failover to the Solr 
cluster. Synchronization of status information of the 
nodes is done in-memory for speed and is persisted 
on the disk at fixed checkpoints. Additionally, the 
Zookeeper maintains configuration information of 
the index; such as schema information and Solr 
configuration parameters. Usually, there are more 
than one Zookeeper for redundancy. Together, they 
build a Zookeeper ensemble. When the cluster is 
started, one of the Zookeeper nodes is elected as a 
leader. The same occurs for Solr. There is a leader 
responsible for each shard. 

SolrCloud distributes search across multiple 
shards transparently. The request gets executed on 
all leaders of every shard involved. Search is possi-
ble with near-real time; i.e., after a document is 
committed. Figure 4 illustrates our small cluster 
implementation. We build the cluster using a 
Zookeeper ensemble consisting of 3 nodes. We 
install 3 SolrCloud instances on three different ma-
chines, define 3 shards and replicate them 3 times. 
 

 

Figure 4: Our SolrCloud Implementation. 

In the larger cluster, we extend the Zookeeper en-
semble to spread 7 machines. We use 7 SolrCloud 
instance to master 7 shards while keeping the repli-
cation factor at 3. 

3.4 SolrCloud on Hadoop 

Building SolrCloud on Hadoop is an extension to the 
implementation described in Section 3.3. The same 
Zookeeper ensemble and SolrCloud instances are 
used. Solr is then configured to read and write indi-
ces in the HDFS by implementing an HdfsDirec-
toryFactory and implementing a lock type based 
on HDFS. Both come with the current stable version 
of Solr (“Solr”, n.d.), version 5.2.1. Figure 5 illus-
trates our small cluster implementation. We leave 
replication to the HDFS. We set the replication fac-
tor on HDFS to 3 to be consistent with the rest of the 
setups. For the small cluster, we also use a 3 node 
Hadoop installation. For the large cluster, we use a 7 
node cluster. 

 

Figure 5: Our SolrCloud implementation over Hadoop. 

Solr provides indexing using MapReduce in two 
ways. In the first way, the indexing is done at the 
map side (“Solr-1045”, n.d.). Each Apache Hadoop 
mapper transforms the input records into a set of 
(key, value) pairs, which then get transformed into 
SolrInputDocument. The Mapper task then cre-
ates an index from SolrInputDocument. The 
Reducer performs de-duplication of different indices 
and merges them if needed. In the second way, the 
indices are generated in the reduce phase (“Solr-
1301”, n.d.). Once the indices are created using 
either ways, they can be loaded by SolrCloud from 
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HDFS and used in searching. We use the first way 
and employ 20 nodes in the indexing process. 

3.5 Functional Comparison 

Table 1 summarizes the functional differences be-
tween all 4 systems under investigation. 

Table 1: Functional Comparison of the systems under 
investigation. 

 Solr on 
Cassandra 

Lucene on 
mongoDB 

SolrCloud SolrCloud 
on Hadoop

Sharding done by 
Cassandra 

done by 
mongoDB 

done by Solr done by 
Solr 

Replica-
tion 

done by 
Cassandra 

done by 
mongoDB 

sync. on the 
level of the file 
system under 
to coordination 
of Zookeeper 

done by 
HDFS 

Con-
sistency 

guaran-
teed by  
Cassandra 

guaranteed 
by Lu-
Mungo and 
mongonDB 

done by Solr 
and managed 
by Zookeeper 

guaranteed 
by HDFS, 
Solr and 
Zookeeper 

Fault-
tolerance 

Solr is 
SPoF 

No SPoF No SPoF No SPoF 

Manage-
ability 

CLI CLI Web web for 
Solr + web 
for Hadoop

4 BENCHMARKING 

In our order to evaluate the performance of the vari-
ous search engine clusters under investigation, we 
build a full text search engine of the English Wik-
ipedia (“Wikipedia-dumps”, n.d.). The index is built 
over 49 GB of textual content. We develop a 
benchmarking platform on top of each search engine 
under investigation as illustrated in Figure 6. 

The searching workload generator composes 
queries of single terms, which are randomly extract-
ed from a long list of common English words. It 
submits them in parallel to the application. The in-
dexing workload generator parses the Wikipedia 
dump and sends the page title, the content, and other 
attributes such as timestamp and revision numbers to 
the benchmarking platform workers, which in turn 
pass them to the search engine cluster be indexed. 
The benchmarking platform manages two connec-
tion pools of worker threads. The first pool consists 
of several hundreds of searching workers threads 
that process the search queries coming from the 
searching workload generator. The second pool 
consists of index inserting workers threads that 
process the updated content coming from the index-
ing workload generator. Both worker types submit 

their requests over http to the search engine cluster 
under investigation. The performance of the system 
including that of the search engine cluster is moni-
tored using the performance monitor unit. 

 

Figure 6: Components of the benchmarking platform. 

4.1 Input Parameters and Performance 
Metrics 

We choose the maximum number of fetched hits to 
be 50. This is a realistic assumption taking into con-
sideration that no more than 25 hits are usually dis-
played on a web page. We choose to read the content 
of these 50 hits and not only the title while fetching 
the result-set. This exaggerated implementation is 
intended to artificially stress test the search engines 
clusters under investigation. The number of search 
threads is varied from 32 to 320 to match the size of 
connection pool for the searching worker threads. In 
case of high load, the workload generator distributes 
its searching search threads over 4 physical ma-
chines to avoid throttling the requests by the hosting 
client. Due to locking restrictions inherent in Lu-
cene, we restrict our experiments to maximum one 
indexing worker per node in the search engine clus-
ter. 

In all our experiments, we monitor the response 
time of the search operations from the moment of 
submitting the request till receiving the overall re-
sult. We also monitor the system throughput in terms 
of: 
 searches per second, and 
 index inserts per hour. 
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Additionally, the performance monitor constantly 
monitors CPU and memory usages of the machines 
running the search engine cluster. 

4.2 System Configuration 

In order to neutralize the effect of using virtualized 
nodes in globalized data cloud centers; such as Am-
azon EC2 or Microsoft Azure, we conduct our ex-
periments in an isolated cluster available at the In-
ternet Archive of the Bibliotheca Alexandrina (“In-
ternet Archive BA”, n.d.). The Bibliotheca Alexan-
drina possesses a huge dedicated computer center for 
archiving the Internet, digitizing material at Biblio-
theca Alexandrina and other digital collections. 

The Internet Archive at the Bibliotheca Alexan-
drina has about 35 racks each rack is comprised of 
30 to 40 nodes and a gigabit switch connecting 
them. The 35 racks are connected also with a gigabit 
switch. The nodes are based on commodity servers 
with a total capacity of 7000 TB. 

The Bibliotheca Alexandrina dedicated one rack 
with 20 nodes to our research for approx. one month. 
The nodes are connected with a gigabit switch and 
are isolated from the activities of the Internet Ar-
chive during the period of our experiments. Each 
node has an Intel i5 CPU 2.6 GHz, 8 GB RAM, 4 
SATA hard disks 3 TB each. 

For each search engine cluster, we construct a 
small version and a larger one as described in Sec-
tion 3. The small cluster consists of three nodes each 
containing a shard (a portion of the index) while the 
larger one is built over 7 nodes. In all installations 
have a replication factor of 3. 

4.3 Indexing 

Indexing speed varies largely with the number of 
nodes involved in the index building operation. 
Lucene; and hence Solr; employs a pessimistic lock-
ing mechanism while inserting data into the index. 
This locking mechanism is being kept for all 
backend implementations. From our current experi-
ments and from previous ones (Nagi, 2007), we 
conclude that there is no benefit in having more than 
one indexing thread per Lucene index (or Solr 
shard).  

This means that the increase in number of shards 
and their dedicated indexing Lucene/Solr yields to a 
proportional increase in the speed of indexing. The 
increase is also linear for all systems under investi-
gation. In other words, the indexing speed of a 3 
nodes cluster is 3 times that’s of a cluster consisting 
of a single node. Respectively, the indexing speed of 

a 7 nodes cluster is 2.3 times that’s of a cluster con-
sisting of 3 nodes. A clear winner in this contest is 
SolrCloud on Hadoop that employs MapReduce in 
indexing. Using all 20 nodes available in the 
MapReduce operation increases the speed by factor 
of 18. A minimum overhead is wasted later on in 
merging the indices into 3 and 7 nodes, respectively. 

In order to normalize a comparison between all 
systems, we plot the throughput of using one index-
ing thread on a 3 shards, 3 replica cluster in Figure 
7. These numbers are roughly multiplied by the 
number of nodes involved to get the overall indexing 
speed. 

 

Figure 7: Normalized indexing speed. 

On the normalized scale, NoSQL backends bring 
very different results. Casandra has by far the fastest 
rate of insertion (60% faster than SolrCloud). This 
experiment confirms the results reported by (Rabl et 
al., 2012) proving the high throughput of Cassandra 
as compared to other NoSQL databases. On the 
other hand, mongoDB-based storage is the slowest. 
SolrCloud brings very good results on the file sys-
tem. The overhead of storage on HDFS is about 26% 
which is very acceptable taking into consideration 
the advantages of storing data on Hadoop clusters in 
cloud environments and the huge speed-ups due to 
the use of MapReduce in indexing. 

4.4 Searching 

Searching is more important than indexing. We 
repeat the search experiments with the number of 
search threads varying from 32 to 320. The duration 
of each experiment is set to 15 minutes to eliminate 
any transient effect.  

The set of experiments is repeated for both the 
small cluster and the large cluster. The response time 
for the small cluster is illustrated in Figure 8 and the 
large cluster in Figure 9. The throughput in terms of 
number of searches per second versus the number of 

Bringing Search Engines to the Cloud using Open Source Components

123



 

searching threads is plotted in Figure 10 for the 
small cluster and in Figure 11 for the larger one. 

The bad news is that the response time of the 
single Solr on the Cassandra cluster is far higher 
than the other systems (>10 seconds). So, we 
dropped plotting its values for both clusters. The 
same applies to the throughput, which was much 
lower than its counterparts (< 50 searhes/second). 
Again this matches the findings in (Rabl et al., 
2012), where the high throughput of Cassandra 
comes at the cost of read latency. 

The good news is that the response time for the 
other systems is very much below the usual 3 sec-
onds threshold tolerated by a searching user. The 
maximum search time measured on the small cluster 
is below 1.8 seconds and 1.4 seconds for the larger 
cluster. The curves also show that the response time 
of the larger cluster is better than the smaller cluster 
under all settings. This means that the performance 
of the system is enhanced by the increase of the 
number of nodes. The system did not achieve its 
saturation yet. 

The figures also illustrate the impact of HDFS 
on the response time and the overall throughput of 
the search. Although the search time is increased by 
almost 40% and the throughput is almost halved, the 
absolute values remain far below the user threshold 
of 3 seconds by retrieving the hits and the contents 
of each hit for a result-set size of 50 in less than 2 
seconds. 

Another important remark is that the perfor-
mance of all systems degrade gracefully with the 
increase of workload except for LuMongo. Under 
heavy workloads, (192 for the small cluster and 288 
for the large cluster) LuMongo runs out of heap 
memory. We track down the problem to be in fetch-
ing the content of the documents after returning the 
document ids from the search engine. There is a 
small memory leakage in LuMongo that causes the 
abortion of the searches under heavy loads. Hav-
ingthis solved in future releases on LuMongo, Lu 
 

 

Figure 8: Search time on the small cluster. 

Mongo will be a very important choice regarding its 
superior response time illustrated in Figure 8 and 
Figure 9. 

 
Figure 9: Search time on the large cluster. 

The throughput curves, Figure 10 and Figure 11, 
illustrate that the throughput saturates after a certain 
number of concurrent search threads. In the small 
cluster, Figure 10, the three setups saturate at 64 
concurrent threads. On the large cluster, Figure 11, 
this number increases to 128. 

 
Figure 10: Throughput of the small cluster. 

 
Figure 11: Throughput of the large cluster. 

5 CONCLUSION AND FUTURE 
WORK 

In this paper, we investigate the available options for 
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building large-scale search engines that are capable 
of running in the Cloud. We restrict ourselves to 
open-source libraries, including Lucene, Solr, mon-
goDB, Cassandra, and Hadoop. We explicitly do not 
add extra implementation other that publicly availa-
ble components. We investigate each variation, in 
terms of scalability through data partitioning, redun-
dancy through replication, consistency either 
through the NoSQL databases or through open-
source synchronization libraries, such as Zookeeper. 
The ease of management of the multi-node cluster is 
also an important issue in our evaluation. Perfor-
mance plays a major part in our analysis. We build a 
benchmarking platform on top of the systems under 
investigation. For each variation, we construct a 
small and a large cluster. In our experiments, we 
measure both the speed of indexing as well as the 
search time and the throughput of the searching 
threads. The results of the experiments show that 
Solr and Hadoop provide the best tradeoff in terms 
of scalability, stability and manageability. Search 
engines based on NoSQL databases offer either a 
superior indexing speed, or fast searching times. 
Unfortunately, they suffer from stability in their 
integration implementations.  

In the future, we plan to contribute to LuMongo 
by fixing its memory leakage problem. A good con-
tribution would also be the extension of Solandra to 
support SolrCloud instead of a single Solr instance. 
Having done this, the owner of the large-scale search 
engine would have the choice between either using 
the Hadoop infrastructure or a NoSQL cluster instal-
lation depending on availability in his/her environ-
ment and his/her knowledge. 
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