
Data Parsing using Tier Grammars

Alexander Sakharov1 and Timothy Sakharov2
1Verizon, Waltham, Massachusetts, U.S.A.

2Northeastern University, Boston, Massachusetts, U.S.A.

Keywords: Data Preprocessing, Unstructured Data, Data Languages, LL(1) Grammars, Predictive Parsing.

Abstract: Parsing turns unstructured data into structured data suitable for knowledge discovery and querying. The com-
plexity of grammar notations and the difficulty of grammar debugging limit the availability of data parsers.
Tier grammars are defined by simply dividing terminals into predefined classes and then splitting elements of
some classes into multiple layered sub-groups. The set of predefined terminal classes can be easily extended.
Tier grammars and their extensions are LL(1) grammars. Tiergrammars are a tool for big data preprocessing.

1 INTRODUCTION

Knowledge discovery methods focus on structured
data such as databases, semi-structured data such as
XML, and natural language (NL) documents. Infor-
mation retrieval is also well researched for structured
data (SQL), XML (XQuery), and for NL (search en-
gines). In reality, plenty of data are unstructured, and
they are not precisely NL documents. Examples of
such unstructured data include log files, dump files,
documents combining NL, codes/abbreviations, ref-
erences, and numeric data. NL processing methods
cannot be efficiently used for these data because the
NL that they contain is usually short and mixed with
numeric and encoded values. These unstructured data
need to be preprocessed to become usable for knowl-
edge discovery or search.

Parsing turns unstructured data into structured
data and can also serve as an information extraction
utility. Hard-coded parsers are typically used for pro-
cessing unstructured data. Their implementation is
costly and error-prone. These parsers require software
updates with every change in data format. Due to
these implementation problems, documents combin-
ing NL with other kinds of data may even be treated
as NL, and the other data including numbers become
noise. The declarative programming of parsers us-
ing grammars partially solves these problems and is a
good fit for data preprocessing.

The output of grammar-based parsers is an ab-
stract syntax tree (AST) (Aho et al., 2006) which
contains syntactic information extracted from the
source. ASTs can be represented as DOM trees or
can be converted to XML or JSON. The XML or
JSON generated from ASTs is structured data be-

cause the set of node tags and the schema are pre-
defined. For the same reason, ASTs can be loaded
into relational database tables. Following parsing,
knowledge can be extracted from DOM, database ta-
bles, XML, or JSON, and queries can be executed.
ASTs may provide leverage for information extrac-
tion (Tari et al., 2012). Note that fielded search
(http://lucene.apache.org) and XQuery and XPath
Full Text (http://www.w3.org/TR/xpath-full-text)
search can be applied to the transformed data origi-
nating from documents including NL fragments.

Context-free grammars (CFG) are an excellent
mechanism for specifying the syntax of and parsing
programming languages (Aho et al., 2006) but they
are rarely used for data parsing because of the com-
plexity of their notation. Few software developers
have experience with CFGs. Creating an unambigu-
ous CFG is a challenge even for experts. The power
of available grammar inference methods (Sakakibara,
1997) is not sufficient to handle real-world problems.
Note also that the inferred grammars have to be an-
alyzed and their nonterminals have to be mapped
to meaningful constructs for further data processing,
which is a non-trivial task.

There exist ample differences between program-
ming languages and data languages. In contrast
to programming languages, data languages normally
have a limited variety of constructs. Data languages
mostly consist of aggregation constructs and refer-
ences. The former represent structures with named
fields or sets including maps, i.e. key-value pairs.
Data languages are less constraining and strict than
programming languages. Almost always, some por-
tions of data somehow diverge from any given stan-
dard. Therefore, grammars for defining the syntax of

Sakharov, A. and Sakharov, T..
Data Parsing using Tier Grammars.
In Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2015) - Volume 1: KDIR, pages 463-468
ISBN: 978-989-758-158-8
Copyright c© 2015 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

463



data should be inclusive in order to avoid undesirable
exceptions when processing these data. In contrast
to programming languages, data formats are plentiful
and evolve all the time. It is important, especially for
big data, to be able to easily modify data grammars
without the danger of compromising their properties.
It is also important to be able to parse data using an
incomplete grammar because the exact syntax of big
data may not be known. Moreover, big data are often
syntactically incoherent, and grammars apply to data
fragments only. Therefore, a family of tiny grammars
may be needed to specify the syntax of data.

An adequate notation for defining the syntax of
data languages should be on par with regular expres-
sions in terms of simplicity and comprehensibility.
Unfortunately, regular expressions themselves are not
a good choice for defining data languages because of
their limited expressiveness and because they do not
help build informative ASTs. The use of such nota-
tion should not require sophisticated tools for parser
generation, and parsing should be feasible in linear
time. We introduce a grammar notation that satisfies
the above criteria.

This notation has no nonterminals, no grammar
productions, and no formulas. A language is defined
in this notation by simply dividing terminals into pre-
defined classes. Each class has its role. There could
be multiple layered sub-groups within a class. Note
that the choice of terminal classes in this notation is
not motivated by theoretical considerations but rather
is driven by the intent to cover more constructs used in
practice, while maintaining a clear meaning for every
terminal class.

Our notation defines a subset of LL(1) languages,
which makes predictive parsing possible (Aho et al.,
2006). These languages are unambiguous, and are de-
vised to be very inclusive. We give a simple character-
ization of strings belonging to these languages. This
notation is rich enough for specifying data formats
of various kinds of documents, including machine-
generated documents. Our notation facilitates the
definition of constructs representing data aggregates
and references. This notation is especially beneficial
for big data tasks because it enables the quick and
easy specification of multiple data formats as well as
the modification and augmentation of these specifi-
cations. We call this notation tier grammars because
their constructs stack according to the priorities of
layered terminals groups. Tier grammars can be eas-
ily combined and extended in a variety of ways with-
out compromising the LL(1) property.

2 DEFINITION OF TIER
LANGUAGES

Following the tradition for programming languages, it
is assumed that lexical analysis using regular expres-
sions is done before parsing. The output of lexical
analysis is a sequence of tokens whose names are ter-
minals for parsing. As usual, the longest lexeme is
selected in case of conflicts (Aho et al., 2006). If the
syntax is known for portions of the input, then regu-
lar expressions are also used to select these fragments
before parsing them.

Suppose the set of terminals T is a union of dis-
joint setsT1, T2, T3, T4, T5, T6, T7. T1 is the set of base
terminals. Terminals fromT2 andT3 define bracketed
constructs. Terminals fromT2 are opening brackets,
and terminals fromT3 are closing ones. Terminals
from T4 are called markers. These terminals are split
into disjoint groups by their priority. Their role is to
serve as delimiters that combine items to the left and
right of them in groups.

Terminals fromT5 are called postfixes, and act
as postfix operators. Terminals fromT6 are called
prefixes; these are unary prefix operators. Terminals
from T7 are connectives that serve either as binary op-
erators in expressions or as separators, such as in the
comma-separated values format. Prefixes, postfixes,
and connectives are also split into disjoint groups by
their priority. They share the range of priorities but
only one kind of terminals is allowed for a given pri-
ority. Let q be the highest priority for markers andk
be the highest priority for postfixes, prefixes, and con-
nectives. We usei to denote the number of distinct
markers, postfixes, prefixes, or connectives of priority
i.

The tier languageΛ(T) for T = {T1, T2, T3, T4,
T5, T6, T7} is defined recursively by the following
rules. Understanding these rules does not require any
knowledge of CFGs, but tier languages can still be
expressed via CFGs. We give CFG productions along
with the rules in order to demonstrate how the rules
map to them.Swill denote the start nonterminal of the
corresponding CFG. Symbolε will denote the empty
string. T4i,T5i ,T6i ,T7i will denote the respective ter-
minals of priorityi. Note that only one ofT5i ,T6i ,T7i
may be non-empty for anyi.

1. If b∈ T1 = {b1, ...,bb}, thenb∈ Λ(T).
A→ b1|...|bb

2. If a ∈ Λ(T), r ∈ T2 = {r1, ..., rr},e ∈ T3 =
{e1, ...,ee}, thenrae∈ Λ(T).
B→ FSH; F → r1|...|rr ; H → e1|...|ee

3. Let eitherc1, ...,cn ∈ T7i = {ci1, ...,cii} (con-
nective), p ∈ T6i = {pi1, ..., pii} (prefix), or s ∈
T5i = {si1, ...,sii} (postfix). If a1, ...,an,an+1 ∈ Λ(T),

KDIR 2015 - 7th International Conference on Knowledge Discovery and Information Retrieval

464



a1, ...an,an+1 are defined by rules 1, 2, or this rule for
terminals of higher priority,a0 ∈ Λ(T),a0 is defined
by rules 1, 2, or this rule for terminals of the same
or higher priority, thena1c1a2c2...ancnan+1 ∈ Λ(T),
pa0 ∈ Λ(T), or a1s∈ Λ(T).
C→ A|B

postfix:
Ei → Ei+1Gi (for i = 1, ...,k−1); Ek →CGk

Gi → ε|si1|...|sii

prefix:
Ei → Ei+1|pi1Ei |...|pii Ei (for i = 1, ...,k−1)
Ek →C|pk1Ek|...|pkkEk

connective:
Ei → Ei+1Li (for i = 1, ...,k−1); Ek →CLk

Li → ε|ci1Ei+1Li |...|cii Ei+1Li (for i = 1, ...,k−1)
Lk → ε|ck1CLk|...|ckkCLk

4. If m1, ...,mn ∈ T4i = {mi1, ...,mii},
a0,a1, ...,an ∈ Λ(T), thenε ∈ Λ(T), a1...an ∈ Λ(T),
a0m1a1...mnan ∈ Λ(T) provided that this string
follows the beginning of the input string, a terminal
from T2, or a marker of lower priority, and precedes
the end of the input string, a terminal fromT3, or a
marker of lower priority.
Qi → Qi+1Ri (for i = 1, ...,q−1); Qq → DRq

Ri → ε|mi1Qi+1Ri |...|mii Qi+1Ri (for i = 1, ...,q−1)
Rq → ε|mq1DRq|...|mqqDRq

D → ε|E1D
Now we only need to add one more production

to complete the definition of the corresponding CFG:
S→ Q1. The above context-free productions have
to be slightly modified when some terminal sets are
empty. In case the sets of connectives, postfixes, and
prefixes are all empty:E1 → C. In case the set of
markers is empty:Q1 → D.

These terminal classes are suitable for various rep-
resentations of data aggregates and references: pre-
fixes, postfixes, and connectives for named fields in
structures; brackets for structures, including recur-
sive ones; markers and connectives for sets, including
multi-dimensional arrays; connectives for key/value
pairs; prefixes and brackets for references. Rule ap-
plications define parse trees for tier languages. Ap-
plications of rule 1 constitute the terminal nodes of
these parse trees. Every application of all other rules
corresponds to a nonterminal node of the parse tree.

Parse trees for tier grammars are similar to the
ASTs of the underlying CFG. One difference is that
one node in a tier grammar parse tree combines all as-
sociated connectives or markers. Tier grammar parse
trees are very compact, which is especially important
for big data. This translates into compact XML or
database representations with simple schemas. XPath
is widely used for expressing queries and information
extraction wrappers (Dalvi et al., 2011) for HTML. It

can fulfill the same purposes for tier grammar parse
trees due to their simplicity.

3 EXAMPLES

Typical data dump formats such as CSV and other for-
mats for multidimensional arrays can be easily speci-
fied as tier grammars. The same applies to the output
of many Unix commands and of many command-line
tools. Here are a couple of other simple examples of
data formats that can be parsed using tier grammars.
In these examples,\b denotes a space and\n denotes
a new line character.

1. BibTex format (please see its specification at
http://www.bibtex.org)
Base terminals: words and quoted strings
Brackets:{ }
Prefix: words starting with @ (priority 4)
Connectives: # (priority 3) = (priority 2) , (priority 1)

2. Documents with numbered sections
Markers: .\b ?\b !\b .\n ?\n !\n (priority 3); \n\n
(priority 2); section numbers defined as lexemes\n[0-
9]* (priority 1)

Machine-generated human-readable files are the
main source of examples of tier languages. The
output of Apache’s ReflectionToStringBuilder
(http://commons.apache.org) is one example. Let us
look at some code fragments that generate log files.
The following code patterns demonstrate why log
files or some parts contained therein are usually tier
languages.

print(<opening bracket>);
loop: { ... print(<data>); ... }
print(<closing bracket>);

function f(...){ print(<opening bracket>);
... f(...); ... print(<closing bracket>);
return; }

loop: { ... case ...: print(<prefix>);
print(<data>); ... }

loop: { ... print(<data>); if ( ... )
print(<postfix>); ... }

loop: { ... print(<data>);
print(<connective>); print(<data>); ... }

loop: { if ( !first ) print(<connective>);
... print(<data>); ... }

loop: { loop: { loop: { ... print(<data>);
... } ... print(<high priority marker>);
... } ... print(<low priority marker>);
... }

4 ANALYSIS

Proposition 1. Tier grammars define LL(1) lan-
guages.

Data Parsing using Tier Grammars

465



The availability of matching LL(1) grammars
makes table-driven predictive parsing (Aho et al.,
2006) possible for tier languages. Predictive parsing
has a linear time complexity. The uniformity of tier
languages with respect to predictive parsing is an es-
sential benefit because most questions about CFGs are
undecidable. Note thatS⇒∗ N for every nonterminal
N from tier grammar parse trees. This is an indication
of the inclusiveness of tier grammars. Tier languages
are unambiguous.

LL(1) parsing does not require any parser genera-
tor tools. A parser can be implemented as a couple of
library functions. One of them builds a parsing table,
and the other parses the input. In the case of gigantic
documents, parsing can be implemented via callbacks
like it is done in the SAX API for XML in Java

(http://www.saxproject.org):

void parse(LexemeStream stream,
EventHandler handler);

where class EventHandler has callback methods for
terminals fromT1, T2, T3, as well as for prefixes, post-
fixes, connectives, markers. The latter methods are
called when the corresponding nonterminal is popped
from the stack.

The set of tier languages is a proper subset of
LL(1) languages. It includes languages that are not
regular. For instance, the language{anbn|n ≥ 0} is
one such example. Since tier languages are designed
to be as inclusive as possible, they do not even include
some restrictive regular languages. For instance, the
language defined by regular expression(ab)∗ and any
language with a finite set of distinct strings are not tier
languages. If a tier grammar does not have brackets,
then it defines a regular language.

Since the tier grammar notation does not involve
any kind of formulas, terminals can only serve as tags
giving a particular syntactic meaning to neighboring
items or to strings starting or ending with them. Pre-
fixes give a syntactic meaning to the item to the right.
Postfixes do the same for the item to the left. A
connective glues together the two items adjacent to
it. Markers group items on the left and on the right.
Brackets define construct borders. Altogether, they
cover more important cases.

The following simple characterization of tier lan-
guages shows that every tier language includes a wide
variety of strings. This helps avoid parsing excep-
tions.
Proposition 2. A string belongs to a given tier lan-
guage if and only if the following conditions hold:
- brackets are balanced, i.e. the number of opening
brackets in the string is equal to the number of clos-
ing brackets, and the number of opening brackets is

greater or equal to the number of closing brackets in
any prefix substring
- every postfix follows a base token, closing bracket,
or another postfix of a higher priority
- every prefix precedes a base token, opening bracket,
or prefix of the same or higher priority
- every connective follows a base token, closing
bracket, or postfix of a higher priority and precedes
a base token, opening bracket, or prefix of a higher
priority
Corollary 1. If T ′

2, T′
3, T′

4, T′
5, T′

6, T′
7 are subsets

of T2, T3, T4, T5, T6, T7, respectively, s∈ Λ({T1,
T2, T3, T4, T5, T6, T7}), and terminals from T2 \ T ′

2
are balanced with terminals from T3 \ T ′

3 in s, then
s ∈ Λ({T1 ∪ T ′

2 ∪ T ′
3 ∪ T ′

4 ∪ T ′
5 ∪ T ′

6 ∪ T ′
7,T2 \ T ′

2,T3 \
T ′

3,T4\T ′
4,T5 \T′

5,T6 \T ′
6,T7\T ′

7}).
This corollary guarantees that parsing with incom-

plete syntax will work. The extension of syntax usu-
ally amounts to assigning other roles to some of the
base terminals. Another corollary of Proposition 2 is
that all strings belong to every tier language contain-
ing only base terminals and markers.

5 EXTENDING AND COMBINING
TIER GRAMMARS

If the expressiveness of tier grammars is not suffi-
cient, they can be easily extended. One extension
is the addition of prefixes of arity more than one.
This extension is introduced by the following context-
free production:Ei → Ei+1|pEi ...Ei where the num-
ber of Ei is the arity of p. Another typical exten-
sion is a construct defined by a terminal pair:Ei →
Ei+1|p1Ei p2Ei. It may also be useful to add other
types of prefixes. These other prefixes share pri-
orities with markers, as opposed to connectives and
postfixes. They are introduced by the following pro-
duction: Qi → Qi+1|p1Qi |...|pnQi . One more ex-
ample is a construct with three constituents, where
the third one is optional. This construct is defined
by the following productions:Ei → p1Ei p2Ei+1Li ,
Li → ε|p3Ei+1.

We specify a class of productions that can be
added to tier grammars to form extensions. All afore-
mentioned examples belong to this class. The four
following types of productions guarantee that any ex-
tension defined by them is a LL(1) grammar. Letα j
denote a string of terminals and/or nonterminals.
1. Ei → α1|...|αn

whereEi ,Ei+1, andS are the only nonterminals that
may occur in anyα j , all α j start with a terminal or
Ei+1, not more than oneα j starts withEi+1, and ev-

KDIR 2015 - 7th International Conference on Knowledge Discovery and Information Retrieval

466



ery occurrence ofS in α j should be preceded and fol-
lowed by terminals.
2. Ei → α0Li

Li → ε|α1Li |...|αnLi (or Li → ε|α1|...|αn)
whereα0 starts withEi+1 or a terminal, otherα j start
with a terminal,Ei ,Ei+1, andSare the only nontermi-
nals that can occur inα j , and every occurrence ofS
andEi in anyα j should be preceded and followed by
terminals.
3. Qi → α1|...|αn

whereQi , Qi+1, andSare the only nonterminals that
may occur inα j , all α j start with a terminal orQi+1,
not more than oneα j starts withQi+1, every occur-
rence ofS andQi in any α j should be preceded and
followed by terminals, and every two consecutive oc-
currences ofQi+1 in anyα j should be separated by a
terminal.
4. Qi → α0Ri

Ri → ε|α1Ri |...|αnRi (or Ri → ε|α1|...|αn)
whereα0 starts withQi+1 or a terminal, otherα j start
with a terminal,Qi ,Qi+1, andSare the only nontermi-
nals that can occur inα j , every occurrence ofSandQi
in anyα j should be preceded and followed by termi-
nals, and every two consecutive occurrences ofQi+1
in anyα j should be separated by a terminal.

All terminals fromα j are distinct from terminals
from T. No terminal may occur more than once in all
productions. As with basic tier grammars, one exten-
sion production defines a class of terminals. This pro-
duction can be used as a template for the introduction
of multiple instances of this production, each having
distinct terminals and a priority. The first two types
of extension productions add new priorities to those
of postfixes, prefixes, and connectives. The last two
types add new priorities to the priorities of markers.
The priorities of the original tier grammar should be
shifted accordingly.
Proposition 3. Extended tier grammars define LL(1)
languages.

If the flexibility of a single tier grammar is not
sufficient, then multiple tier grammars can be com-
bined so that every source grammar applies only to
a relevant portion of a document. The advantage of
combining multiple tier grammars vs CFGs is that the
simplicity of the notation is not compromised. Note
that the terminals of combined grammars may inter-
sect. If the set of terminals of tier grammarΓ1 does
not includeee+1, thenΓ1 can be combined withΓ by
modifying theB production ofΓ to the following:
B→ FSH|rr+1S1ee+1

whereS1 is the start nonterminal ofΓ1. If the set
of terminals ofΓ1 is disjoint with {T3,T41, ...,T4i−1}
for Γ, thenΓ1 can be combined withΓ by adding a
marker tier. Here is theRi production for this tier:

Ri → ε|mi1S1

The combined grammars define LL(1) languages.

6 RELATED WORK

Several alternatives to the notation of CFGs have been
developed (Ford, 2004; Aho et al., 2006; Berstel and
Boasson, 2002). With the exception of regular expres-
sions, none of these alternatives really simplified the
task of creating and debugging grammars. Stochas-
tic CFG parsers (Chappelier and Rajman, 1998) have
a prohibitive time complexity for data that may be
much bigger than programs.

Despite the remarkable research in the area of for-
mal grammars, its applications to data parsing are
few and far between (Underwood, 2012; McCann
and Chandra, 2000; Back, 2002; Fisher and Gruber,
2005; Xi and Walker, 2010; Powell et al., 2011). An
overview of data description languages can be found
in (Fisher et al., 2006). None of these data description
languages are on par with tier grammars in terms of
the simplicity of specification for data formats.

Regular expressions have been used for infor-
mation extraction tasks (Appelt and Onyshkevych,
1998), particularly for entity recognition. Google
uses regular expressions and LL(1) grammars for en-
tity recognition in their Search Appliance. There exist
techniques for learning regular expressions and CFGs
utilized in entity recognition (Li et al., 2008; Viola
and Narasimhan, 2005). Grammars for the purpose of
entity recognition should be strict, unlike tier gram-
mars. Tier grammars capture the overall syntactic
structure.

Grammar inference methods are basically lim-
ited to regular languages and other simple languages
(Sakakibara, 1997). RoadRunner (Crescenzi and
Mecca, 2004) infers union-free regular grammars that
are used to extract information from large web sites.
A method of learning CFG productions that specify
the syntax of web server access logs is presented in
(Thakur et al., 2013). The log format considered in
this paper is a very simple regular language. It is not
clear if this inference method will work for more com-
plex languages.

7 CONCLUSION AND FUTURE
WORK

Grammars enable the declarative programming of
data preprocessors that extract syntactic information
from unstructured sources and generate structured

Data Parsing using Tier Grammars

467



data that, in turn, serve as input for knowledge dis-
covery and querying. Specifying a grammar by split-
ting terminals into meaningful disjoint subsets is one
of the easiest ways to describe syntax. It is even
simpler than regular expressions. The family of tier
grammars presented and investigated here has suffi-
cient expressive power to describe the syntax of many
data languages. Tier grammars can be extended and
combined, and predictive parsing is possible for all of
them. Tier grammars have the qualities that are im-
portant for data parsing, particularly for parsing big
data. The idea behind tier grammars that leads to
LL(1) conditions is considering nonterminals as an
ordered set and limiting productions to the forms in
which forward references in the right-hand sides are
always to the next nonterminal and backward refer-
ences are bracketed by terminals.

Tier grammars can be embedded into LL(1) gram-
mars. This gives a mechanism for defining multi-
ple variants of syntactically complex languages. The
LL(1) grammar part takes care of the syntactic diffi-
culties whereas the tier part enables easy syntax mod-
ifications with the guarantee of predictive parsing.
Defining stochastic tier grammars is easier than defin-
ing stochastic CFGs. Probabilities are given for termi-
nal membership in classes/sub-groups rather than for
productions. Tier grammar inference from positive
examples can be formulated as a discrete optimiza-
tion problem. Further investigation of all these topics
is beyond the scope of this paper.

REFERENCES

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006).
Compilers: Principles, Techniques, and Tools (2nd
Edition). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

Appelt, D. E. and Onyshkevych, B. (1998). The common
pattern specification language. InProceedings of a
Workshop on Held at Baltimore, Maryland: October
13-15, 1998, TIPSTER ’98, pages 23–30, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Back, G. (2002). Datascript - a specification and script-
ing language for binary data. InIn Generative Pro-
gramming and Component Engineering, pages 66–77.
Springer.

Berstel, J. and Boasson, L. (2002). Balanced grammars and
their languages. InFormal and Natural Computing
- Essays Dedicated to Grzegorz Rozenberg [on occa-
sion of his 60th birthday, March 14, 2002], pages 3–
25.

Chappelier, J.-C. and Rajman, M. (1998). A generalized cyk
algorithm for parsing stochastic cfg. InProceedings
of Tabulation in Parsing and Deduction (TAPD’98),
pages 133–137, Paris, France.

Crescenzi, V. and Mecca, G. (2004). Automatic information
extraction from large websites.J. ACM, 51(5):731–
779.

Dalvi, N., Kumar, R., and Soliman, M. (2011). Automatic
wrappers for large scale web extraction.Proc. VLDB
Endow., 4(4):219–230.

Fisher, K. and Gruber, R. (2005). Pads: A domain-specific
language for processing ad hoc data. InProceedings
of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI
’05, pages 295–304, New York, NY, USA. ACM.

Fisher, K., Mandelbaum, Y., and Walker, D. (2006). The
next 700 data description languages. InConference
Record of the 33rd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages,
POPL ’06, pages 2–15, New York, NY, USA. ACM.

Ford, B. (2004). Parsing expression grammars: A
recognition-based syntactic foundation. InProceed-
ings of the 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’04,
pages 111–122, New York, NY, USA. ACM.

Li, Y., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S.,
and Jagadish, H. (2008). Regular expression learning
for information extraction. InProceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 21–30. Association for Computa-
tional Linguistics.

McCann, P. J. and Chandra, S. (2000). Packet types:
Abstract specification of network protocol messages.
In Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Com-
puter Communication, SIGCOMM ’00, pages 321–
333, New York, NY, USA. ACM.

Powell, A., Beckerle, M., and Hanson, S. (2011). Data
format description language (dfdl). Technical report,
Open Grid Forum.

Sakakibara, Y. (1997). Recent advances of grammatical in-
ference. Theoretical Computer Science’, 185(1):15–
45.

Tari, L., Tu, P. H., Hakenberg, J., Chen, Y., Son, T. C., Gon-
zalez, G., and Baral, C. (2012). Parse tree database for
information extraction.IEEE Transactions on Knowl-
edge and Data Engineering, 24(1):86–99.

Thakur, R., Jain, S., and Chaudhari, N. S. (2013). User
behavior analysis using alignment based grammati-
cal inference from web server access log.Interna-
tional Journal of Future Computer and Communica-
tion, 2(6):543.

Underwood, W. (2012). Grammar-based specification and
parsing of binary file formats.International Journal
of Digital Curation, 7(1):95–106.

Viola, P. and Narasimhan, M. (2005). Learning to extract in-
formation from semi-structured text using a discrimi-
native context free grammar. InProceedings of the
28th annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 330–337. ACM.

Xi, Q. and Walker, D. (2010). A context-free markup
language for semi-structured text. InProceedings
of the 31st ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI
’10, pages 221–232, New York, NY, USA. ACM.

KDIR 2015 - 7th International Conference on Knowledge Discovery and Information Retrieval

468


