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Abstract: Community Detection is a fundamental task in the field of Social Network Analysis, extensively studied in
literature. Recently, some approaches have been proposed to detect communities distinguishing their mem-
bers between kernel that represents opinion leaders, and auxiliary who are not leaders but are linked to them.
However, these approaches suffer from two important limitations: first, they cannot identify overlapping com-
munities, which are often found in social networks (users are likely to belong to multiple groups simulta-
neously); second, they cannot deal with node attributes, which can provide important information related to
community affiliation. In this paper we propose a method to improve a well-known kernel-based approach
named Greedy-WeBA (Wang et al., 2011) and overcome these limitations. We perform a comparative anal-
ysis on three social network datasets, Wikipedia, Twitter and Facebook, showing that modeling overlapping
communities and considering node attributes strongly improves the ability of detecting real social network
communities.

1 INTRODUCTION

Community detection is an important task that al-
lows to discover the structure and organization of
online social networks. The problem of commu-
nity detection (also called community discovery) has
been largely investigated. Several algorithms have
been proposed, ranging from cut- and conductance-
based methods (Rosvall and Bergstrom, 2007),
agglomerative-based (Newman, 2006b), model-based
(Chang and Blei, 2009) and spectral clustering
(Donetti and Munoz, 2004).

However, most of these methodologies do not
consider that community structures of influential
users (opinion leaders) are different from that of oth-
ers. It has been shown in the literature that in many
social network, especially online social networks such
as Twitter, Facebook and Google Plus, the average de-
gree of connections of opinion leaders is almost ten
times more than other users (Wang et al., 2011).

Most of the approaches for community and opin-
ion leader detection available in literature are based
on the assumption that each influential user should
be placed in a different community with its relative
followers/friends. However, this assumption does not
reflect the real world, where a community is likely to
be composed of several kernels of users (as opinion
leaders) and auxiliary members.

In order to define a community and detect its opin-

ion leaders, the community kernel detection problem
has been introduced in (Wang et al., 2011), com-
posed of two subtasks: (1) the identification of kernel
nodes, i.e. influential members of the network and (2)
the identification of auxiliary nodes (non-influential
members) and their association to a kernel to form a
community.

In literature, very few approaches have been pro-
posed to address this problem (Wang et al., 2011; Du
et al., 2007). Among these, one of the most promis-
ing is the Greedy - Weight-balanced Community de-
tection algorithm (Greedy-WeBA), which combines
multiple steps to first identify the kernels, and subse-
quently the auxiliary nodes to form the communities.

However, this approach suffers from two impor-
tant limitations:

• Overlapping Communities. Most actual social
networks are made of highly overlapping cohesive
subgroups of nodes, simply because individuals
often belong to numerous different kinds of com-
munities simultaneously (Leskovec and Mcauley,
2012). Members of a network may participate in
many social circles according to their interests,
hobbies, and relationships connected to their ed-
ucational background, working environment and
family.
Greedy-WeBA does not take into account the pos-
sibility of overlapping communities when detect-
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ing the auxiliary nodes, that can be associated
only to one kernel (each of them is assigned only
to the most similar kernel).
For this reason, we introduce a Overlapping Aux-
iliary Community Detection approach that can
overcome the limits of the existing method.

• Node Attributes Existing approaches for com-
munity detection usually take into account only
one source of information: the relationships
among the network members, e.g. friendship or
following/followee relationships.
Social networks, however, often provide a large
amount of information that is not directly in-
cluded in the relationships. For example, online
social networks like Twitter and Facebook allow
their members to write and share textual messages
(posts), which can be very informative attributes
of the user representing interests and ideas.
Still, most community detection algorithms do not
exploit this information to improve their perfor-
mance. The Greedy-WeBA algorithm is based on
the assumption that each member of a kernel has
more connections to/from the kernel than a vertex
outside the kernel does. However, this assumption
does not consider that two users may share simi-
lar interests even when not directly connected by
a relationship.
Therefore, we introduce an improved version of
the Greedy-WeBA algorithm that includes both
network structure and information from node at-
tributes.

The paper is structured as follows: first, in Sec. 2
we summarize the existing related work, and in Sec. 3
we introduce some preliminary notation to better de-
fine the problem of kernel and community detec-
tion. Then, in Sec. 4 we present the proposed ker-
nel community detection algorithm, highlighting the
novel approaches we adopt to overcome the existing
method’s limitations. In Sec. 5 we outline the experi-
mental investigation, detailing the datasets that will be
used in this work, and in Sec. 6 we show the compar-
ative results of the proposed approach with the base-
line. Finally, in Sec. 7 conclusions are derived.

2 RELATED WORK

The problem of identifying and evaluating commu-
nity has been addressed extensively by many papers
(Papadopoulos et al., 2012). Most existing works are
based on the hypothesis that communities are subsets
of vertices which are densely connected internally, but

sparsely connected to the rest of the network (New-
man, 2004b; Newman, 2006a; Leskovec et al., 2008).

One of the most popular approaches is the al-
gorithm developed by Girvan and Newman, which
looks for disjoint communities in the social network
based on a measure of betweenness and modularity
(Newman, 2004a). Other works have also introduced
information-theoretic frameworks for obtaining hier-
archical communities in the networks (Rosvall and
Bergstrom, 2007; Papadimitriou et al., 2008).

More recently, new methods have been proposed
to detect communities that can overlap, and thus bet-
ter represent the actual behavior in social networks.
Mishra et al. (Mishra et al., 2008) proposed an al-
gorithm based on the concept of (α,β) communities
to allow close communities to overlap. Other meth-
ods allow users to belong to multiple communities,
using either probabilistic generative processes (Yang
and Leskovec, 2013) or using graph transformation
approaches (Xie and Szymanski, 2012).

Considering that the above mentioned investiga-
tions do not consider node attributes when communi-
ties are created, some alternative methods have been
proposed(Günnemann et al., 2013; Gunnemann et al.,
2010; Chang and Blei, 2009; Liu et al., 2009; Yang
et al., 2013). However, none of these approaches con-
sider communities as composed of kernel members
and auxiliary nodes, disregarding the real social net-
work aggregation. In order to overcome this limita-
tion, we extended one of the most recent and promis-
ing kernel-based approaches (Wang et al., 2011) to
detect overlapping communities, also exploiting the
information provided by node attributes as well as the
network structure. To the best of our knowledge, no
community detection algorithm with these character-
istics has been proposed in literature.

3 PRELIMINARIES

Before discussing the details of the proposed method,
we introduce some important notations. A social net-
work is represented as a graph G = (V,E), where the
set of nodes V represents members of the network
(users) and the set of edges E denotes connections
among them.

Community detection in networks aims at find-
ing a set of communities C = {c1,c2, . . . ,ck}, where
communities ci are formed by groups of vertices with
dense intra-community connections, but sparse inter-
community links. Here we consider simple graphs
only, i.e. graphs without self-loops or multi-edges.
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Figure 1: Example of kernel community (red members) and
auxiliary community (blue members).

3.1 Kernel Communities

In this paper, communities are assumed to be com-
posed by a kernel and an auxiliary community (see
Fig.1 for example). They are defined as follows:

Def: Kernel Community. Given an oriented
graph G = (V,E), l disjoint subsets {K1, . . . ,Kl} of
vertices are called kernel communities if:

|E(u,Ki)| ≥ |E(v,Ki)|∧ |E(Ki,u)| ≥ |E(Ki,v)| ,
∀i ∈ {1, . . . , l},∀u ∈ Ki,∀v /∈ Ki (1)

where E(A,B) = {(u,v) ∈ E|u ∈ A,v ∈ B} for A,B⊆
V .

Def: Auxiliary Community. Given a set
of kernel communities K, l associated subsets
{AKi , . . . ,AKl} of vertices are called auxiliary commu-
nities if:

• AKi ∩Ki =∅,∀i ∈ {1, . . . , l};
• |E(v,Ki)| ≥

∣∣E(v,K j)
∣∣ ,

∀i ∈ {1, . . . , l},∀ j 6= i,∀v ∈ AKi ;

• |E(AKi ,Ki)| ≥ |E(Ki,Ki)| ,∀i ∈ {1, . . . , l}.
For any i ∈ {i, . . . , l}, each vertex in Ki is a kernel

member and each vertex in AKi is an auxiliary mem-
ber.

3.2 Node Attributes

In this paper we consider node attributes as additional
information for detecting communities in networks.
In order to model this information, we introduce a
function τ(u) : u → tu which maps a network user
u ∈V to its feature vector representation tu as:

tu =
(

tu
1 , t

u
2 , . . . , t

u
|F |
)

(2)

where |F | is the number of attributes shared by
all the users. In our case, attributes can represent any
kind of information related to the user (gender, age,
job titles, etc.), denoted by binary values.

For any u,v ∈V represented as in Eq. 2, we derive
a similarity matrix M, with |M| = |V | × |V |, defined
as follows:

Mu,v = cos(tu, tv) =
< tu · tv >

‖tu‖ · ‖tv‖ (3)

4 ALGORITHM

In order to overcome the limitations of the approaches
reported in Sec. 2, we propose an extended and re-
vised version of the kernel-based community detec-
tion algorithm WEBA, presented in (Wang et al.,
2011).

This baseline algorithm consists of three main
steps:

• A Greedy approach based on maximum cardinal-
ity search, aimed at finding l kernels nodes for
each community with dense internal connections
allowing also dense external relations;

• A Weight-balanced heuristic (WeBA) to tune the
solution find by Greedy in order to revise the
initial community of kernels taking into account
information provided by the connection of non-
kernel members;

• An Auxiliary Community Detection approach to
find the auxiliary communities: it associates at
each node a ranked list of kernels (kernel-based
association).

In the following we detail the novel methods pro-
posed in this paper: first, we describe the new Greedy
and WeBA algorithm for exploiting node attributes in
the detection of kernel communities; then, we intro-
duce a variant of the Auxiliary Community Detection
method that can detect overlapping communities.

4.1 Community Detection with Node
Attributes

A major limit of the existing algorithm is its inabil-
ity to take into account all the sources of information
available in the networks. Specifically, node attributes
can be considered to improve the performance of the
community detection task.

In order to improve the original algorithm shown
in (Wang et al., 2011), we separately modify the pro-
cedures for Greedy and WeBA as following:

Greedy. Given an undirected graph G = (V,E)
and kernel size k, initialize a subset S ⊆ V to be a
random vertex v ∈ V . Then, iteratively enlarge S by
adding the vertex with the maximum number of con-
nections to S. If there are multiple vertices with the
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Figure 2: Pseudocode for the revised Greedy algorithm.

maximum number of connections to S, pick the one
with the highest degree d(u) = ∑v∈V E(u,v) (if there
are several nodes with the same highest degree, ran-
domly pick one of them). This subroutine is repeat-
edly executed O(|V |/k) times to obtain steady-state
results and reduce the effect of the random selection
of the initial point.

This original Greedy algorithm has been extended
in order to take into account content similarity of
nodes. The proposed algorithm takes as additional
input the similarity matrix M (defined in Eq. 3), to
evaluate how close are the attributes of each couple
of nodes. When the algorithm selects a vertex u as
kernel node, it will evaluate not only the number of
edges d(u), but also the similarity of contents among
u and all the other kernel members already assigned to
the same kernel community. In particular, instead of
evaluating only the degree d(u) as indication of node
importance, we define p(u) as:

p(u) = ∑
v∈V

E(u,v)+M(u,v)
2

(4)

The pseudo-code is reported in Fig.2.
WeBA. Starting from the initial result generated

by the Greedy algorithm, the kernels are refined
and optimized by the Weighted-Balanced Algorithm
(WEBA). Given a kernel size l and an initial subset
S to refine, the original WeBA algorithms assigns a
weight w(v) = 1 to each vertex v ∈ S, and a weight
w(v) = 0 to each vertex v /∈ S. Let N(v) be the set of

Figure 3: Pseudocode for the revised WeBA algorithm.

neighboring vertices of v, i.e. N(v) = {u ∈V |(u,v) ∈
E}. Then, at each iteration, the algorithm searches
for a pair of vertices u,v ∈ V satisfying both of the
following relaxation conditions:

a) w(u)< 1

b) w(v)> 0

c) nw(u)> nw(v)

where nw(u) is the neighboring weight of u, i.e.
nw(u) = ∑

v∈N(u)
w(v) ·E(u,v).

Similarly to Greedy, also WeBA has been ex-
tended in order to deal with the content similarity.
In order to include it, we consider the neighboring
weight according to both links and content similarity:

nw∗(u) = ∑
v∈N(u)

w(v) · E(u,v)+M(u,v)
2

(5)

The pseudocode for the revised WeBA is reported
in Fig. 3.

4.2 Overlapping Auxiliary
Communities

The detection of auxiliary communities has been re-
vised and improved to allow auxiliary communities to
overlap. Given a node v, the proposed approach takes
into account a popularity measure relative to v when
choosing the auxiliary community AKi . In particular,
v is associated to AKi if two conditions are satisfied:
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Figure 4: Pseudocode for the revised Auxiliary Community
detection algorithm.

• v is the node with the highest number of edges
pointing to the community Ci =

⋃{Ki,AKi}, i.e.

|E(v,Ci)| ≥ |E(v,C j)| for j 6= i (6)

• There is no other node u /∈Ci such that u has more
edges pointing to all the communities Cn than v,
i.e.

k

∑
n=1
|E(v,Cn)| ≥

k

∑
n=1
|E(u,Cn)| (7)

While the first condition was included in the orig-
inal version of the algorithm, the second one ensures
that we consider first the nodes having a higher num-
ber of connections (as indication of popularity) to all
the communities.

If both conditions are satisfied for more than one
community Ci, the node is associated to all of the cor-
responding AKi .

In Fig. 4 we report the pseudocode for the algo-
rithm.

The final communities Ci will be formed by the
association of the kernel community Ki with the cor-
responding auxiliary community AKi .

5 EXPERIMENTAL SETTINGS

Datasets Description. In order to evaluate the perfor-
mance of the proposed kernel-based community de-
tection method, we considered three benchmarks used
in the state of the art:

• Philosophers. The philosophers network (Ahn
et al., 2010) consists of Wikipedia articles about
famous philosophers. Nodes represent Wikipedia
articles about philosophers, and directed edges in-
dicate whether one article links to another. The

Table 1: Datasets statistics. N: number of nodes, E: number
of edges, C: number of communities, K: number of node
attributes, S: average community size, A: community mem-
bership per node.

Dataset N E C K S A
Philosophers 1546 7971 907 5770 6,86 6,87

Twitter 125120 2248406 3140 33569 15,54 0,39
Facebook 4089 170174 193 175 28,76 1,36

attributes of a given node u are represented by a
binary indicator vector of out-links from node u
to other non-philosopher Wikipedia articles (e.g.
if a philosopher page links to a Wikipedia article
”Mathematician”, the binary value of the attribute
”Mathematician” for the corresponding philoso-
pher will be equal to one). The Wikipedia network
is formed by 1546 nodes and 7971 edges.
Moreover, Wikipedia provides categories (e.g.
”Hindu philosophers”, or ”Austrian psycholo-
gists”) for each article. We consider each category
with more than five philosophers as a ground-truth
community, obtaining a total of 907 overlapping
communities.

• Twitter. The Twitter network is a ego-network
available from the Stanford Large Network
Dataset Collection (http://snap.stanford.edu/data)
(Leskovec and Mcauley, 2012). The ground truth
communities are obtained from Twitter ”lists”
manually labeled by the owner of the ego-network
(only a subset of the nodes will belong to a com-
munity). Node attributes are defined by process-
ing the tweets (posts) generated by each user of
the network. We use a ”bag of words” represen-
tation, where each binary attribute indicates that
a specific word appeared in the user’s tweets. In
particular, we consider only specific words called
”hashtags”, i.e. words appearing in the tweets pre-
ceded by the character ”#”. The network contains
a total of 125120 nodes and 2,248,406 edges, and
a total of 3,140 communities.

• Facebook. Like the Twitter network, the Face-
book network is composed of ego-networks from
the Stanford Large Network Dataset Collection
(Leskovec and Mcauley, 2012). Node attributes
are extracted from user profiles, such as gender,
job titles, institutions, etc. Ground truth commu-
nities have been manually labeled by the owner
of the ego-network, and represent his ”social cir-
cles”. The size of the full network is 4089 nodes
and 170174 edges, with 193 communities.

The statistics related to the benchmarks are re-
ported in Table 1.

Baseline for Comparison. In order to investigate
whether overlapping communities and node attributes
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can aid the community detection task, we perform a
comparative analysis with the following algorithms:

• Standard Greedy-WeBA Algorithm. We first
test the performance of the original algorithm,
without node attributes and with non-overlapping
auxiliary community detection.

• Overlapping Greedy-WeBA. The second algo-
rithm is the original version of Greedy-WeBA, but
with the addition of our algorithm for detecting
overlapping auxiliary communities.

• Overlapping Greedy-WeBA with Node At-
tributes. Finally, we test the complete version of
our method, considering both overlapping com-
munities and the availability of node attributes.

Evaluation Metrics We quantify the performance
in terms of the agreement between the ground-truth
communities and the communities detected by the al-
gorithms. As some datasets contain nodes not be-
longing to any community, we do not include them
when computing the performance. To compare a set
of ground truth communities C∗ to a set of detected
communities C, we use the following measures: Pre-
cision (P), Recall (R) and F-Measure (F) (Eq. 8-10),
which evaluate the number of correct pairs of vertices
clustered into the same community kernel.

P(Ci,C∗j ) =

∣∣∣C∗j ∩Ci

∣∣∣
|Ci|

(8)

R(Ci,C∗j ) =

∣∣∣C∗j ∩Ci

∣∣∣
∣∣∣C∗j
∣∣∣

(9)

F(Ci,C∗j ) =
2×P(Ci,C∗j )×R(Ci,C∗j )

P(Ci,C∗j )+R(Ci,C∗j )
(10)

Moreover, we consider Jaccard Index (J) to mea-
sure the pairwise resemblance of C with C∗ (Eq. 11).

J(Ci,C∗j ) =

∣∣∣C∗j ∩Ci

∣∣∣
∣∣∣C∗j ∪Ci

∣∣∣
(11)

Finally, we introduce an index, based on the Jac-
card measure, that evaluates the percentage of ground
truth communities that have been successfully asso-
ciated to the generated communities. This measure,
called Equivalence (Q), takes value in the range [0,1]
and is defined as follows:

Q(C,C∗) =
1
|C∗|

∣∣∣∣∣

{
argmax

C∗j∈C∗
J
(
Ci,C∗j

)
,∀Ci ∈C

}∣∣∣∣∣
(12)

6 RESULTS

In this section we report the detailed results of our ex-
perimental investigation. In the first part of the section
we describe a sensitivity analysis of the considered al-
gorithms. In the second part, we report the best results
obtained by each algorithm for the datasets shown in
Sec. 5.

6.1 Sensitivity Analysis

The number of communities to be detected in the net-
work depends on the parameter k, that regulates the
number of kernel members of each community. In
order to evaluate the performance of the algorithms
varying the parameter k, a sensitivity analysis has
been performed. In Fig. 5 we report the results of our
analysis, performed on the Philosophers dataset, com-
puted in terms of Equivalence (as detailed in Eq. 12).
We can see that, in general, all three algorithms show
their best performance when the kernel size k is small.

In particular, for Standard and Overlapping the
performance decreases sharply for k ≥ 7, indicating
that the nodes forming a kernel are usually very few.
When we consider node attributes, however, the per-
formance remains high for a larger value of k. This
behavior is mainly due to the attribute similarities
considered as ”textual relationships” between nodes.
These ”relationships” derived by the textual similarity
usually outnumber structural relationships, therefore
leading to larger kernels. However, the performance
starts dropping since k = 6, a value consistent with the
result obtained by the other two algorithms.

An analogous sensitivity analysis has been per-
formed on the other two benchmarks. It emerges
that, also for bigger datasets, the number of kernel
members are quite low. The results of this sensitiv-
ity analysis suggests that the experiments should be
performed considering a small kernel size, within the
range of 3-6 nodes.

6.2 Comparative Results

We perform experiments on the three benchmarks
starting from the conclusions drawn from the sensi-
tivity analysis step.

In Table 2 we report the results relative to the first
dataset. In order to make the results comparable, we
run the three algorithms with a kernel size k = 3,
which has been previously proven as a good value
for all three algorithms. In this case, the equivalence
measure highlights a performance of 7,12±1,97 for
the Standard algorithm, 87,21± 2,71 for Overlap-
ping Greedy-WeBA, and 90,91± 3,95 for Overlap-

KDIR 2015 - 7th International Conference on Knowledge Discovery and Information Retrieval

522



Table 2: Performance results on the Philosophers dataset. Best results for each row are marked in bold.

Measures Standard Greedy-WeBA Overlapping Greedy-WeBA Overlapping Greedy-WeBA with Node-Attributes
Recall (average) 39,05 ± 3,41 30,95 ± 0,77 44,30 ± 1,39

Precision (average) 16,25 ± 2,27 48,35 ± 1,44 35,77 ± 0,99
F1 Score (average) 21,66 ± 2,31 32,41 ± 0,47 36,44 ± 1,77

Jaccard Index (average) 12,20 ± 1,47 20 ± 0,42 23,08 ± 0,81

Table 3: Performance results on the Twitter dataset. Best results for each row are marked in bold.

Measures Standard Greedy-WeBA Overlapping Greedy-WeBA Overlapping Greedy-WeBA with Node-Attributes
Recall (average) 31,61 ± 1,36 58,22 ± 2,75 47,51 ± 2,93

Precision (average) 19,96 ± 0,98 31,73 ± 1,14 40,10 ± 1,12
F1 Score (average) 24,43 ± 3,01 32,47 ± 2,53 36,04 ± 2,37

Jaccard Index (average) 10,98 ± 0,89 19,74 ± 0,77 22,53 ± 1,01

Figure 5: Sensitivity analysis for the three algorithms on
Philosophers dataset.

ping Greedy-WeBA with Node Attributes. The first
thing we can observe is a large increment in the equiv-
alence measure when adding overlapping communi-
ties. This effect can be explained by the number of
communities detected by the original Greedy-WeBA
algorithm, which is very low compared to the number
of ground truth communities. A similar behaviour can
be observed for all the other measures: the introduc-
tion of overlapping communities in the algorithm lead
to a better performance in terms of F-Measure (from
22% to 32%) and Jaccard index (from 12% to 20%).

When considering node attributes, we can observe
that the equivalence value is relatively unchanged (the
value increase from 87% to 90%). This means that the
addition of overlapping communities is generally suf-
ficient for detecting the majority of the ground truth
communities. However, we can see that the values
of F-Measure and Jaccard score increase significantly
(from 32% to 36%, and from 20% to 23% respec-
tively). Thus, the communities obtained by the al-
gorithm that exploits node attributes are closer to the
ground truth communities than overlapping commu-
nities only. In Table 3 and Table 4 we report the re-
sults obtained on the Twitter and Facebook datasets.

Although Overlapping Greedy-WeBA with Node At-
tributes always outperforms the other two approaches
for all the considered performance measures and for
any value of the kernel size k, we only report the re-
sults obtained for k = 3. This kernel size has been
selected because it provides a good tradeoff between
performance and computational cost for the three al-
gorithms.

We can observe that the results for Twitter and
Facebook are consistent with those obtained on the
Philosophers dataset. Allowing overlapping commu-
nities strongly improves the performance of the algo-
rithm for both datasets (+8% and +7% for F-Measure,
and +9% and +%7 for Jaccard index). This con-
firms that this improvement is essential when deal-
ing with online social networks, whose users usually
belong to multiple communities. The performance
improvement obtained by considering node attributes
together with overlapping communities is higher on
the Facebook dataset than the Twitter one. This be-
havior is mainly related to the nature of the node at-
tributes that have been considered. While Twitter at-
tributes are related to words used by the social net-
work users in their posts, Facebook attributes are re-
lated to their personal information (school institution,
name of the company where they work, etc.) which
may be more informative when determining the com-
munity to which they belong. The increment in the
Twitter dataset, however, suggests that node attributes
play a fundamental role even when they are obtained
from a noisy source of information like user generated
posts.

7 CONCLUSION

In this paper we introduced a kernel-based commu-
nity detection algorithm that can discover overlap-
ping communities using both the network structure
and node attributes. The comparison with the base-
line algorithm shows that the ability to find overlap-
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Table 4: Performance results on the Facebook dataset. Best results for each row are marked in bold.

Measures Standard Greedy-WeBA Overlapping Greedy-WeBA Overlapping Greedy-WeBA with Node-Attributes
Recall (average) 27,85 ± 2,01 40,02 ± 1,92 55,60 ± 2,47

Precision (average) 32,10 ± 3,30 37,16 ± 3,05 48,75 ± 2,99
F1 Score (average) 29,80 ± 1,40 36,45 ± 1,73 51,99 ± 1,54

Jaccard Index (average) 17,48 ± 0,78 22,64 ± 1,66 35,19 ± 1,44

ping communities is fundamental for detecting the
correct groups of users in social networks, where of-
ten users can belong to several social circles (due to
various interests, hobbies or relationships). Moreover,
we showed that the inclusion of node attributes can
provide important additional information, leading to
results which better fit the real communities.

There are several possible directions for future
work. For instance, we would like to improve the cur-
rent algorithm by including a method for automatic
inferring the best kernel-size. Moreover, we would
like to study how the community kernels change di-
namically over time, and how this affects auxiliary
communities.
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