Facilitating Ontology Co-evolution with Ontology Instance Migration

Mark Fischer and Juergen Dingle

Queen’s University, Kingston, Ontario, Canada

Keywords:

Ontology, Knowledge Base, Migration, Instance, Co-evolution, Alignment.

Abstract: An ontology is typically defined in terms of some vocabulary that is defined using other ontologies. When the
vocabulary changes, it is important for a dependent ontology to evolve in a consistent manner. Automating
the migration of ontologies based on changes to their vocabulary is requisite to proper adoption of ontologies
for varying fields of use. Oital is a transformation language capable of automatically migrating dependent
ontologies. It helps make ontologies easier to maintain as they evolve.

1 INTRODUCTION

As the information gathered and stored by comput-
ers grows, so too do the benefits of being able to for-
mally represent that data. Ontologies are the forerun-
ner technology being used to give information extra
semantic meaning. Ontologies help limit complexity
and organize information so that it can then be applied
to problem solving.

Predicting how an ontology may evolve or change
in the future is a non-trivial problem that may be in-
feasible to solve. Each alteration in an ontology may
result in inconsistencies for any ontologies which im-
port the changed ontology’s vocabulary (Stojanovic
et al., 2002). As ontologies become more ubiquitous,
the benefits from being able to effectively and consis-
tently keep dependant ontologies up to date increase
as well.

Figure 1 demonstrates the problem and a possible
solution. The original ontology evolves to become
the updated ontology. Any ontologies (11, b, ..., I,)
which depend on the original ontology might require
a migration. The solution being suggested here is to
create a transformation language which will perform
the migration automatically.

Currently, this problem is often solved by hand-
crafting SPARQL-Update statements designed to
make the necessary alterations to the dependant on-
tologies. Working at a different level of abstraction
while creating these transformations increases diffi-
culty as the user must be aware of how ontologies are

This work was partially funded by NSERC (Canada),
as part of the NECSIS Automotive Partnership with General
Motors, IBM Canada and Malina Software Corp.

Fischer, M. and Dingle, J..
Facilitating Ontology Co-evolution with Ontology Instance Migration.

owl=http://www.w3.0rg/2002/07/owl#

Original Updated

Ontology

Ontology

(0) (0

http:/iwww.example org/kitchen
T<<sassdvsbmszm>>

http/Awww example org/kitchen2

<<owl:imports>>

Ontologies .
g Ontologies con-

taining updated

individuals

containing only

individuals

Iperforms LL'....IL)

Transformation

(Qital)

(ISTCTONPN)

Figure 1: An overview of the problem setup.

serialized as RDF. Direct changes to the underlying
RDF may result in extra and unwanted artifacts being
left behind in the RDF graph.

The main contribution of this approach is twofold.
First is the way in which it helps to automate the
migration process. This is done by aiding the user
in the creation of a transformation which unambigu-
ously defines how to perform a migration for any pos-
sible dependent ontology. Second, it distinguishes it-
self from similar approaches through the creation of a
domain specific language at the same level of abstrac-
tion as the ontology being modified.

1.1 Terminology

In OWL, the separation of class and properties (termi-
nology) from individuals and relations (assertions) is

441

In Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2015) - Volume 2: KEOD, pages 441-446

ISBN: 978-989-758-158-8

Copyright © 2015 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

expressed using axioms and facts. In relation to figure
1, I; through I, are all a series of facts with an inclu-
sion reference to O while O and O’ both consist of a
series of axioms (possibly with inclusion references
to other ontologies).

Any given terminology or axiom within an ontol-
ogy may either restrict to or add to the ontology. Re-
strictive axioms add further clarification to the infor-
mation encoded in an ontology (such as holdsVolume
exactly 1 in figure 2) while additive axioms broaden
the scope of the information (such as the creation of a
new class).

An axiom is defined either in terms of fundamen-
tal parts of an ontology (any axiom predefined within
OWL, for example) or in terms of already defined ax-
ioms within the ontology.

An axiom’s context is a set of axioms that is re-
cursively defined. Let Uses(a) be the set of all ax-
ioms that a refers to (uses) and let Pre be the set of
all predefined axioms in OWL. The context a* of a is
defined to be the smallest set of axioms satisfying:

e aca*, and
o cca’if3b| (bea*AceUses(b) \c & Pre)

In other words, the context relation is the reflex-
ive, transitive closure of the Uses relation over non-
predefined axioms. For the sake of analysis, all pre-
defined axioms are assumed not to change and are
therefore not helpful when contrasting evolving on-
tologies.

What is important about an axiom’s context is that
it represents the smallest set of auxiliary axioms re-
quired in an ontology before the axiom can be con-
sidered semantically equivalent with another axiom
regardless of the rest of the ontology. If both O and
O' contain a* then we know that the axiom a in O is
not only syntactically the same, but also semantically
the same as the axiom c in O'.

An inconsistent ontology is one which contains
two statements that contradict one another. This pa-
per introduces the concept of an incongruent ontol-
ogy. An ontology is incongruent if it is inconsis-
tent or if it contains facts which can be used to in-
fer axioms within the ontology that are not already
present. Since separating axioms from facts is com-
mon practice when designing and building ontologies
(Gangemi and Presutti, 2009), an incongruent ontol-
ogy is a sign that this separation of concerns has been
breached.

2 METHODOLOGY

Creating the transformation that performs the instance

442

migration can be broken down into three distinct
phases which can be reused throughout the develop-
ment process.

When creating a transformation, it is important
to understand how the ontology in question has been
changed. This can be done through a change-log cre-
ated by the individuals updating the ontology, but it
is still generally a good idea to have a way in which
to compare the original and updated ontology. There-
fore the first phase deals with comparing ontologies
(e.g., O and O"). There are tools designed to display
the differences between ontologies, but since the ex-
pected use case is well defined, there is a less general
way of comparing which gives results tailored toward
the specific problem being addressed.

The second phase is the creation of the transfor-
mation itself. It should be as simple as possible both
to increase usability and to boost adoption. The lan-
guage being suggested as a solution here is called
Oital. The completion of this phase results in a fin-
ished and working transformation. Therefore, phase
2 relies on results from phase 1 and phrase 3. The
completed Oital script should be able to be run any
number of times to migrate any number of instances
from O to O'.

In order to determine if part or all of the transfor-
mation that has been created is working as expected,
it is important to be able to analyse the transforma-
tion. Discovering which parts of the transformation
may require more work is key to quickly creating a
trustworthy script.

rdfs=http://www.w3.0rg/2000/01/rdf-schema#
xsd=http://mwww.w3.0rg/2001/XMLSchema#

<< Property >>

.) kitchen:holdsVolume
kitchen=http://www.example.org/kitchen2#

rdfs:range xsd:integer
<< owIClass >> 8 8

o
kitchen:cutlery ecofs

40!

N
<< << owlClass >> << 5
owlClass >> kitchen:fork owlClass >> 7";

%
i " <
i o %
; o %
<<rdfs:suhClassOf>> %;1 3
|

<< RestrictionClass >>

kitchen:holdsVolume

exactly 1

Figure 2: Kitchen example ontology and a possible evolu-
tion ontology. Solid components and their labels are from
the original ontology while both solid and dashed compo-
nents are from the evolved ontology.

Table 1: Overview of which axioms require further investi-
gation with respect to specific regions as outlined in Figure
3. Incongruent and semantically ambiguous axioms must
be investigated by the user.

Restrictive Additive
Axiom (and Axiom (and
its context) its context)
Region 1 OK Incongruent
Region 2 OK OK
Region 3 OK OK
Region 1 & 2 Ambiguous Incongruent
Region 2 & 3 Incongruent Ambiguous

2.1 Phase 1: Comparing the Original
and Updated Ontologies

Since the logical formalism used by the Web Ontol-
ogy Language (OWL) is a description logic, we use
the structure of OWL’s underlying description logic
as a basis for our comparison.

This comparison focuses only on axioms within
the ontologies. The goal is to extract only those ax-
ioms which may be important for the migration of in-
dividuals. Changes which do not affect possible in-
dividuals within dependant ontologies can be safely
ignored.

Original Ontology Updated Ontology

Figure 3: Venn Diagram of two ontologies. Diagram labels
the three regions where an axiom may be found.

Figure 3 depicts three regions in which an axiom
may exist. Region 1 describes axioms which can be
found in O and not in O’ (deleted axioms), region 2
describes those axioms which can be found in both O
and O’ (unchanged axioms), and region 3 describes
axioms which cannot be found in O but can be found
in O’ (new or added axioms).

As shown in table 1, axioms being analysed can
be labelled depending on whether they are restrictive
or additive as well as which region of figure 3 they
belong to. The way in which these labels are applied
can be explained using a few categorisations:

1. Any axiom a whose context is entirely in region
3 cannot be the cause of any incongruencies. Re-
gion 3 represents those axioms which are entirely
unique to the updated ontology. If the axiom (and

Facilitating Ontology Co-evolution with Ontology Instance Migration

its context) are new, they will not be related to
any individuals within the original ontology. The
same rule applies to region 2. For any a such that
a* is entirely in Region 2, a cannot cause incon-
gruencies. Region 2 means the axiom exists in
both the updated and original ontology. Those
parts of the original ontologies which remain un-
changed will continue to describe individuals in
dependant ontologies the same way they always
have.

2. Axioms in region 1 are labelled depending on
whether they are additive or restrictive axioms. If
the axiom is restrictive, removing the restriction
will not cause any incongruencies. If the axiom is
additive, then its removal may be problematic.

For example, removing the fork is a subclass of
cutlery axiom from the kitchen ontology in figure
2 results in any facts which state that an individual
fork holds a specific volume causing the ontology
to become incongruent. cutlery.

3. If an axiom and its context a* exist within more
than one region, that axiom is likely significant.
If a* straddles region 1 and region 2, this gener-
ally means that the part of the ontology that was
removed requires the remaining parts of the ontol-
ogy to be restructured a bit. If a* straddles region
2 and region 3, this generally means that part of
the new ontology that was newly created affects
parts of the ontology that already existed. The ad-
dition of a restriction class is one such example.
In either case, the axiom may create incongruen-
cies or may be semantically ambiguous in terms
of how affected individuals are meant to be mi-
grated.

2.2 Phase 2: Developing Parts of the
Transformation

Analysis of the original and updated ontologies does
not yield enough information to be able to fully au-
tomate the co-evolution process. As will be shown,
there are possible evolution paths for an ontology
which require human input before a migration can be
completed. A transformation is used so that all the
necessary extra input can be gathered before the mi-
gration process begins.

Comparing the original and updated ontology will
only reveal the differences and cannot, inherently, de-
termine the reasoning behind the changes that were
made. This meta-data is important for the creation
of the transformation and the execution of the migra-
tion. It is important to understand the purpose of each
change as well as how those changes are meant to af-

443

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

fect the individuals within dependant ontologies.

When a new class or property is introduced, how
this is dealt with during migration depends on the
reasoning behind the introduction to the evolved on-
tology. If, for example, the new class or property
is created from the merger of two deleted classes or
properties, then individuals from the deleted elements
should be migrated to the new class or given the new
property.

Comparing O and O’ depicted in figure 2 uncovers
a difference for which there is more than one possible
desired migration. The evolution in figure 2 shows
the creation of a new class called a spork. There is
more than one possible reason for why this class was
created. Each reason requires a different action during
migration.

1. The spork class’ creation was preceded by the
creation of a new utensil called a spork. Since
the spork is new, none of the cutlery in the origi-
nal ontology is affected and no change is required
during migration.

2. The spork class was created because an analysis
of the utensil’s revealed that many of the forks
were holding a volume. Since forks which hold a
volume are undesirable, a new class is created for
them and volume-holding forks can be migrated
to this new class.

Because changes can have multiple migration
paths depending on intent, user interaction will be re-
quired during the creation of the transformation. To
express which sort of migration is desired, a trans-
formation language is used. We developed a domain
specific transformation language called Oital.

2.3 Phase 3: Analyzing the
Transformation

Once part of the transformation has been created,
analysing the transformation can help insure it is cor-
rect. Currently, the best way to test an Oital trans-
formation is to use traditional testing methods. Mi-
grating ontologies which are small enough that they
can be checked by hand (or verified using some other
method) can give the user a good sense of how well
the transformation will perform.

It should be possible to run the transformation
through a form of abstract interpretation which exe-
cutes the transformation in an abstract fashion in or-
der to collect specific information (Jones and Niel-
son, 2001). Such an analysis could, for example, an-
swer questions about how the transformation will af-
fect class membership.

444

2.4 About Oital

Oital is a transformation language designed specifi-
cally for specifying the migration of individuals who
are conformant to O such that they become confor-
mant to O'.

Currently, SPARQL-Update (Prud’hommeaux,
2013) is most commonly used to perform tasks which
alter an ontology. SPARQL-Update, however, is a
query-update language for RDF. Since RDF is used
as serialization of the various ontology constructs, it
does not inherently have knowledge of what those se-
rializations represent. To use SPARQL-Update to ef-
fect change on an ontology requires an understanding
of how ontologies are serialized as RDF. Ideally a user
should be able to interact with an ontology using the
same level of design abstraction as the ontology itself.

Oital works directly with classes and properties
in the ontology instead of querying triples in a triple
store. This abstracts away from how the ontology is
serialized, or stored.

The Manchester OWL syntax was used as an in-
spiration for Oital’s syntax. The hope is that, by using
a language similar to one that has been adopted by the
World Wide Web Consortium, users will have an eas-
ier time learning the new language.

2.5 Incorporating Ontology Alignment
Tools

The 2014 Ontology Alignment Evaluation Initiative
(OAEI) had 14 participants who competed in vari-
ous ontology alignment activities(Zlatan, 2014). The
work done by some of these tools to create alignment
information between ontologies can be leveraged to
automatically generate parts of an Oital transforma-
tion.

As illustrated in Figure 4, the process of generat-
ing Oital code from alignment information discovered
by third-party tools can be integrated smoothly into
the Oital development process.

An alignment is a set of correspondences which,
in turn, can be represented as a 4-Tuple. A correspon-
dence between and entity e; (defined in ontology O1)
and an entity e, (defined in ontology O;) can be ex-
pressed as a 4-tuple (e, ez, 1, n) where r is a semantic
relation and n is a real-valued confidence value.

Once alignment information has been extracted
from a third-party tool, it can be used to gener-
ate some basic Oital code. Consider the following
example correspondence which says that the class
HomoSapien from the anik ontology is equivalent to
the class Human from the mamk ontology:

Qital Development Cycle

Original

Compare origi-
Ontology [N naland updated Display
e ontologies for user
a
Updated p
5@.(““ Use as aid
Ontology
———
Anal tial
nalyze partia Create Oital
or completed | —_nput | .
: Transformation
transformation

Original

Ontology Ontology

Ontology

results Alignment

Alignment Tool) .
information

Updated

Ontology

Ontology
Query Instance
. Transformation/
re-writing Migration
Restructuring

Figure 4: Visual representation of the three phases for creat-
ing an Oital transformation. Illustrates how existing ontol-
ogy alignment tools may be used to generate partial Oital
transformations without hindering the usual development
cycle of a transformation.

(anik : HomoSapien,mamk : Human,=,1)

This correspondence can be used to generate an
Oital action taking all instances which are mem-
bers of anik:HomoSapien and migrating them to
mamk:Human. Similar conversions can be done with
any other relevant alignment information discovered
this way.

While a bit trickier, in theory, multiple third party
tools can be used in parallel to increase the likelihood
of discovering extra correspondences this way.

3 RELATED WORK

While little work has been done focusing on instance
migration in this way specifically, there are technolo-
gies already in use which can be used in a similar ca-
pacity.

As discussed in section 2.5, ontology alignment
tools do some of the work required for instance migra-
tion. Furthermore, RDF querying technologies such
as SPAQRL and ontology querying technologies such
as SeRQL can be re-purposed as well. Since this task
is so fundamental to the evolution and development of
ontologies, it is important to be able to simplify and
streamline instance migration as much as possible.

Ruiz et. al. (Ruiz et al., 2011) researched the im-
portance logic-based semantics of ontologies. Three

Facilitating Ontology Co-evolution with Ontology Instance Migration

principles are discussed which should be adhered to
when trying to align.

1. Consistency principle: the alignment should not
lead to unsatisfiable classes in the integrated on-
tology

2. Locality principle: correspondences should link
entities that have similar neighborhoods

3. Conservativity principle: the alignments should
not introduce alterations in the classification of the
input ontologies

The notion of an incongruent ontology during mi-
gration is an altered approach to ensuring these prin-
ciples are adhered to.

Fahad et al. (Fahad et al., 2011) propose a way
of improving upon state-of-the-art ontology mapping
and merging systems by lessening the amount of re-
quired human intervention. Merging creates a map-
ping so that queries used on the updated ontology can
return results from the original ontology.

Kondylakis and Plexousakis (Kondylakis and
Plexousakis, 2013) have work which tries to sidestep
the work of developing correspondences between
merging ontologies by altering the queries given to
series of evolving ontologies. A mapping is used to
extend queries against the ontologies so that the on-
tologies are considered aligned.

Stojanovic (Stojanovic et al., 2002) proposed a
way of facilitating evolution (as well as migration)
in a semi-automated manner. Stojanovic (Stojanovic
et al., 2002) partially automates the migration pro-
cess by monitoring an ontology for changes and then
taking a user through a series of resolution points for
which an evolution strategy can be chosen. The dele-
tion of a class C, for example, may prompt the user
to deal with a series of repercussions such as what to
do with orphaned sub-concepts of C, what to do with
properties of C, what to do with inherited properties
of C, what to do with the properties whose range is C,
and so on. Instead of dealing with batch analysis of
changed ontologies as the approach described in this
paper does, Stojanovic (Stojanovic et al., 2002) fol-
lows the changes as they happen and provides more
context and intent to the changes being performed.

Much of the work done in this field, such as (Sto-
janovic et al., 2002) relies on being able to access de-
pendent ontologies (I1, I, ..., I, in Figure 1). Some
also depend on user involvement at the time of evo-
lution or migration which our approach does not re-
quire.

445

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

3.1 Software Model Co-evolution and
Database Migration

The migration problem, as presented in this paper,
closely resembles the co-evolution problem found in
model driven development (MDD) work (Cicchetti
et al., 2008). Instead of dependent ontologies, MDD
seeks to co-evolve models and meta-models. When a
meta-model evolves, it becomes helpful to have tools
which help facilitate the migration of the underlying
models to the newly evolved meta-model.

The correspondence between data migration due
to database-schema evolution and instance migration
due to ontology evolution is strong. The many sim-
ilarities between the two make much of the exten-
sive research done on schema evolution relevant to the
work proposed here.

Curino et al. (Curino et al., 2013), Kondylakis and
Plexousakis (Kondylakis and Plexousakis, 2013), Fa-
had et al. (Fahad et al., 2011), and Stojanovic (Sto-
janovic et al., 2002) all discuss creating mappings
between schema, using query rewriting, and keeping
track of atomic schema changes. Each aims to make
use of these activities to achieve the task of data mi-
gration while still allowing legacy queries and without
shutting down the affected database where possible.

4 CONCLUSIONS

In this paper, we have described an approach, lan-
guage, and tool to facilitate the development of trans-
formations that migrate individuals from an original
ontology to an updated one.

The approach is based on 1) differencing the
ontologies, 2) transformation development using a
novel, domain-specific language, and 3) analysis. Fi-
nally, ontology alignment tools can be leveraged to
aid some of the development of an Oital transforma-
tion.

Vital to the efficient use of an ontology is the abil-
ity to easily effect change. Ontologies evolve and
change as they mature. Tooling designed to facili-
tate such change is a major step toward increasing the
adoption of ontologies.

Current approaches to solving this problem are of-
ten laborious, require detailed knowledge about how
ontologies are serialized and stored, or are prone to
error. Encouraging the users of a vocabulary to mi-
grate their ontologies to an updated version is made
significantly easier if that migration is given to them
is an easy to use fashion. Oital seeks to provide the
facilities to make this task manageable.

446

This approach has been used to facilitate instance
migration for two different case studies. The first took
an ontology encoding of the UML 2.1.1 and UML
2.4.1 specifications and migrated some example mod-
els. The second was to perform instance migration for
different versions of the DBpedia ontologies. DBpe-
dia is an effort to extract structured information from
Wikipedia and make it accessible (DBpedia, 2015).

Future work includes improving tooling and ap-
proaches for testing and verifying Oital transforma-
tions. Integrating ontology alignment tools with the
Oital development process to automatically generate
parts of the transformation is under development as
well.

REFERENCES

Cicchetti, A., Di Ruscio, D., Eramo, R., and Pierantonio,
A. (2008). Automating Co-evolution in Model-Driven
Engineering. In EDOC ’08,, pages 222-231.

Curino, C., Hyun, J. M., Deutsch, A., and Zaniolo, C.
(2013). Automating the database schema evolution
process. VLDB, 22(1):73-98.

DBpedia (2015). DBpedia. http://wiki.dbpedia.org/. [On-
line; accessed 4-May-2015].

Fahad, M., Moalla, N., and Bouras, A. (2011). Towards
Ensuring Satisfiability of Merged Ontology. Procedia
Computer Science, 4:2216-2225.

Gangemi, A. and Presutti, V. (2009). Ontology Design Pat-
terns. Handbook on Ontologies, pages 221-243.
Jones, N. and Nielson, F. (2001). Abstract interpretation: A
Semantics-based Tool for Program Analysis. Seman-
tic Modeling, Handbook of Logic in Computer Sci-

ence, 4:527-635.

Kondylakis, H. and Plexousakis, D. (2013). Ontology Evo-
lution without Tears. Web Semantics: Science, Ser-
vices and Agents on the World Wide Web, 19:42-58.

Prud’hommeaux, E. (2013). SPARQL Query Language for
RDF. http://www.w3.org/TR/rdf-sparql-query/. [On-
line; accessed 20-Feb-2014].

Ruiz, J. E., Grau, B., Horrocks, 1., and Berlana, R.
(2011). Logic-based assessment of the compatibility
of UMLS ontology sources. Biomedical Semantics 2.

Stojanovic, L., Maedche, A., Motik, B., and Stojanovic,
N. (2002). User-driven Ontology Evolution Manage-
ment. Knowledge Engineering and Knowledge Man-
agement: Ontologies and the Semantic Web, pages
285-300.

Zlatan, D. e. a. (2014). Results of the ontology alignment
evaluation initiative 2014. Proceedings of the 9th In-
ternational Workshop on Ontology Matching Collo-
cated with the 13th International Semantic Web Con-
ference.

