
Comparing DEMO with i_Star
In Identifying Software Functional Requirement

Tarek Fatyani, Junich Iijima and Jaehyun Park
Graduate School of Decision Science and Technology, Tokyo Institute of Technology, Tokyo, Japan

{fatyani.t.aa, iijima.j.aa, park.j.ai}@m.titech.ac.jp

Keywords: Demo model, Enterprise engineering, Requirement engineering, i* (i-Star) framework, Goal modelling.

Abstract: Information systems development (ISD) has encountered a variety of challenges in terms of identifying the
requirements among multiple stakeholders. This is due to the complexity of the related information.
Therefore, an abstract model of the enterprise is needed to focus on people and their needs before developing
any information system. To respond to this need, new modeling methodologies that focus on modeling the
enterprise as a social system have got a wide acceptance. DEMO and i* are an example of these modeling
methodologies. They focus on modeling the people and the interaction between them. Although DEMO is a
based on strong theories, it is not used much as i* in requirement engineering. Therefore, this research
compares these two modeling methodology in identifying the functional requirements for developing
information system. The comparison is to highlight the strong and the weak part of both modelings. Moreover,
this research draws guidelines for improving both methodologies in modeling enterprise as a prior step in
developing information system. As a result, the concept of modeling the interaction between DEMO and i*
is different. DEMO is more formal inmodeling the interaction rather than i*. Moreover, DEMO models both
the structure and the behavior through its different diagrams. But i* does not capture the behavior. In contrast,
i* allows to model the non-functional requirements, too. Sometimes it is useful to analysis them during the
first stages of requirements analysis.

1 INTRODUCTION

Current information systems are getting more
complex in terms of the number of the stakeholders
who benefits from these systems as well as in terms
of the related information to be in the system.
Therefore, information systems development (ISD)
encountered a variety of challenges in terms of
identifying the requirements among multiple
stakeholders. How can one differentiate between
what the users want and what they really need. One
of the common problems in requirement analysis is
requirements conflicts. Therefore analyzing the
requirements is crucial for software development
(Mazón, J.N., Pardillo, Juan, 2007). Scoping and
requirements engineering are the most important
challenges that SMEs faces during information
systems development (Silva, Neto, O'Leary,
Almeida, Meira, 2014). Therefore, before the
requirement analysis stage, an abstract model of the
enterprise is needed. This model must describe the
essence of the enterprise. It should describe the
structure of the organization and its interaction with

its environment (Tuunanen, Rossi,
Saarinen,Mathiassen, 2007). Failure to do so may
lead to a requirement uncertainty (Michalik, Keutel,
Mellis, 2014).

In the last two decades, practitioners and
researchers seeked an alternative for modeling the
enterprise as a social system. This means that
enterprise consists of individuals who interact with
each other to deliver a particular product or service to
the environment.Therefore, new modeling
methodologies were developed to model the
enterprise as a prior model to any implementation.It
has proved that such a modeling with analysis
provides benefits at every stage of the requirements
engineering process (Jose, Jesús, Juan, 2007). DEMO
and i* are good examples of these methodologies.
DEMO provides a formal model of the enterprise,
including the structure and the behavior.Although
DEMO is based on strong theories, it is yet to be used
in many real-world scenarios in developing
information systems (Kervel, Hintzen, Meeuwen,
Vermolen, Zijlstra, 2011). On the other hand, i* is
widegly accepted modeling methodolgoy in many

149
Fatyani T., Iijima J. and Park J.
Comparing DEMO with iStar− InIdenti f yingSo f twareFunctionalRequirement.
DOI : 10.5220/0005886401490155
InProceedings of the Fifth International Symposium on Business Modeling and Software Design (BMSD 2015), pages149−155
ISBN : 978−989−758−111−3
Copyright c© 2015bySCIT EPRESS˘ScienceandTechnologyPublications,Lda.Allrightsreserved

fields (Yu, Giorgini, Maiden,Mylopoulos, 2011). In
particular it used in modeling the goals of the
information system before developoing it. There are
many frameworkds for develping the requirements
based on i*. It is similar to DEMO in providing a
better understanding of the decision-making process
and the rationales behind it by providing an abstract
model of the enterprise (Átila, Monique, Emanuel,
Josias, Fernanda, Jaelson, 2011).

This research aims to understand the difference in
popularity of the two methodologies i* and DEMO
by comparing them in one real case study. By this
comparison, we can highlight the pros and cons of
using DEMO. It also helps in developing a framework
for developing information system based on DEMO
similar to the frameworks that i* has.

As a result of this research, it is clear that DEMO
is implemntation independent methodology. But i* is
implementation dependent emthodology. This means
that DEMO model does not change according to the
implementation method. It is up to the designer to
select the implementation that fits the enterprise
needs. And DEMO model will not be changed before
and after the implementation unlike the i* model.
However, i* can capture not only the social aspects of
the enterprise, but also the rational aspects, too. The
rational dependency model of i* can model the
processes as they are in the implementation. This is
useful for developing the information systems.

The rest of the paper is as follows. First, literature
review provides an explanation about i* and DEMO
with their recent research in the field of requirements
engineering. Second, a real world case study is
introduced, then modeled by both i* and DEMO.
Third is the conclusion with the discussion about the
similarities and the differences between i* and
DEMO.

2 LITERATURE REVIEW

In this section, the main concepts of DEMO and i*
are explained. a running example will be used to
explain the way of modeling of DEMO and i*.
Where, customers request the enterprise a particular
IT solution. And they pay the fees for this service.

2.1 The DEMO Model

DEMO, which stands for “Design and Engineering
Methodology for Organizations”, is based on PSI
(Performance in Social Interaction)-theory.In this
theory, an enterprise (organization) is considered as
an interaction of social individual subjects. DEMO

helps in ‘discovering’ an enterprise’s ontological
model, basically by re-engineering from its
implementation.The main elements of DEMO models
are actor roles and transactions. Any transaction
within an enterprise is carried out by an interaction of
two actor roles. The first actor role is responsible for
initiating the transaction while the other actor role is
responsible for executing the transaction (Dietz,
2006).
 DEMO consists of four models. The construction
model (CM) specifies the structure of the enterprise
in relation to its environment, including the
transactions, actor roles, information banks and links
between them. The process model (PM) specifies the
details of the transactions in the CM. Though the CM
does not specify a sequence in which the transactions
are executed, the PM does while indirectly indicating
the timeline. The fact model (FM) specifies the object
classes, which consist of a fact kinds and transaction
result kinds. The action model (AM) formulates the
business rules for executing each process step in the
PM.

Figure 1: CM model of simple case.

 Figure 1 shows CM model of a simple case. CM
consists of OCD (organization structure diagram) and
TPT (transaction product table). Customer requests a
solution from IT Department store, which is
represented, by the actor role solution completer. This
actor role is the executor of T1. Therefore, a small
diamond appears at the end of the link to T1. The
solution completer then asks for the payment by
initiating the transaction T2. The grey rectangle
represents the scope of interest (IT Department store).
“A” stands for actor role. White actors are elementary
actors. And grey actors are composite actor roles.
TPT shows the product of each transaction after
completion.
 In DEMO, the ontology, infology and datalogy
levels are clearly differentiated. In the ontology level,
actors (human beings) initiate and execute
transactions that result in original facts, for example,
purchasing. At the infology level, transactions only

Fifth International Symposium on Business Modeling and Software Design

150

manipulate information from one shape to another,
for example, calculating salary. At the third level,
datalogy, transactions store and retrieve data without
any manipulation. DEMO provides a high level of
abstraction of the enterprise.
 DEMO has already proved its powerfulness in
capturing a high abstract conceptual model of the
enterprise. DEMO models can be used in process re-
engineering as well in enterprise engineering.
However, using DEMO models in a stage prior to
requirement engineering for developing information
system is still in progress. A few frameworks are
developed for developing enterprise information
system based on DEMO. Nevertheless, very few real
world case studies applied the frameworks.
Therefore, more real world case studies are needed to
enhance and justify those frameworks. For example,
DEMO processors that compile and execute the
DEMO models have been developed (Kervel,
Dietz,Hintzen, Meeuwen, Zijlstra, 2012).
 On the other hand,i* model is a previously
established framework in requirement engineering
for developing information systems (Pandey, Suman,
Ramani, 2010). By comparing i* with DEMO, we can
thus formulate a framework for developing
information system based on DEMO models.

2.2 i* (i-Star) Framework

The i* (i-star) framework is one of the most widely
adopted modeling approaches by several
communities (e.g., requirements engineering,
business process reengineering, organizational
impacts analysis and software process modeling). It
is a goal- and agent-oriented modeling and reasoning
framework that defines models that describe the
systems with the environments in terms of intentional
dependencies among strategic actors (Pandey,
Suman, Ramani, 2010). It is used for comparing many
different scenarios for the same system by changing
the dependencies between the agents (Liu, Yang,
Wang, Ye, Liu, Yang, Liu, 2014). There are two
different models: (1) the strategic dependency (SD)
describes information about dependencies and (2) the
strategic rationale (SR) defines the actor details. The
SR model complements the information provided by
the SD model by exploiting internal details of the
strategic actors to describe how the dependencies are
accomplished.
 Figure 2 shows SD of the same simple case that
represented in CM model in DEMO. Actors are
represented by circles. Customer asks the solution
provider an IT solution. Here, the solution
represented by oval to show that it is goal type. The

solution provider asks the payment from the
customer. Payment is represented by a rectangle
because it is considered a resource type.

Figure 2: SD of a simple case.

 In i*, there are four types of dependencies that are
characterized according to the dependum. The
dependum can be a soft-goal, a goal, a task or a
resource. Soft-goals are associated with non-
functional requirements (NFRs), while goals, tasks,
and resources are associated with system
functionalities (Castro, Lucena, Silva, Alencar,
Santos, Pimentel, 2012).

3 CASE STUDY

The following passage describes a case study
modeled by both DEMO and i*. Those models will
be used later for specifying the requirements to
develop information system. This section consists of
four parts. First is a textual description of the case
study. Second is explaining the objectives of
developing the information system. Third is the
DEMO model with its explanation. Fourth is i* model
with its explanation.

3.1 Background of the Selected Case

SMA offers its customers IT solutions by developing
software based on the customer’s needs or by
providing consultation. SMA is a project-based
company. Every project belongs to one client who
may have more than one project with the company.
The employees do not form a structure based on the
organization chart, rather they are flexible based on
the projects they have. This flexibility allows the
company to respond quickly to the changes in the
market.
 In every project there is one project manager
leading a team of developers. The project manager is
responsible for planning the project, as well following
it to completion.
 Based on the project, different person from project
manager would be responsible for delivering the
product to the customer. This person may also be
responsible for taking care of the payment from the

Comparing DEMO with i_Star: In Identifying Software Functional Requirement

151

customer. Otherwise, the project manager does the
delivery and receives the payment from the customer.
When a new project arrives, the project manager
begins by planning the project.
As a result of the planning, a list of tasks with their
schedules is made. After breaking down the project
into tasks, the project manager assigns the tasks to the
developers. During the execution of the project, new
tasks may pop up. Therefore, every developer may
assign a new task to himself/herself or assign it to the
other developers. All the tasks must be recorded in the
information system to be developed. This is very
important to follow up the completion of each task.
 The project manager controls the completion of
the tasks every week. The project manager then looks
at the completed tasks and the remained tasks. He/she
reassigns the tasks from developers with work
overload, to those who have less work. This provides
a work balance for every developer, to allow efficient
project completion. At the same time, the manager
may control the execution of the tasks by prioritizing
them according to their importance.
Employees receive their salaries based on their work
time. Therefore, they record the time for completing
every task they do. In addition, at the end of the
month, the accountant calculates the work time for
each employee. For each employee, there is a specific
hourly salary rate. Based on this rate, the actual
payment is calculated. The salary is the sum of work
time multiplied by the salary rate plus the reward.
 Employees may ask for bonuses or other rewards.
This is done after evaluating their performance. The
project manager analyzes the performance of all
employees based on their task completion rate.
Moreover, based on the performance analysis, the
salary rate may increase or a reward for a particular
project may be given.
 Employees are free to choose their time to work,
i.e., day or night, as long as the projects are
proceeding as scheduled. This flexibility gives them
responsibility for their time.
 To keep the level of the skills in the company up
to date, SMA frequently hires new highly qualified
developers.

3.2 Objectives of IS to be Developed

The information system to be developed has three
main objectives.
 The first objective is to follow up the execution of
all the projects. During the execution of the project,
the project manager needs to know the statutes of the
tasks and the workload for each employee. This helps

to follow up on the project to meet timeline, quality
and cost limits.
 The second objective is automation. Because the
salary of each employee is based on the tasks that are
executed by the employee, there are many
calculations needed. To reduce the cost of these
calculations, they should be automated.
 The third objective is the performance analysis. To
analyze the performance of each employee, a record
of his/her achievements should be archived. Because
each task is associated with an execution time, the
productivity of the employee may be estimated.

3.3 The DEMO Model

Based on the description in the previous two
paragraphs, the DEMO model of SMA can be
constructed as follows. Because of pages limitations,
only the organization construction diagram (OCD) of
the construction model (CM) will be detailed. The
unit of business service of SMA is the provision of an
IT solution to the customer. Therefore, the first
transaction to be identified is the (T1) project
completion. The customer (CA1) initiates this
transaction by requesting an SMA employee to
provide an IT solution. This employee will be called
the project completer (A1). A1 initiates three
transactions: (T2) project fee payment, project
planning (T3) and task completion (T4). It must be
said that T4 cannot be requested before the plan of the
project is done. Since the project manager controls the
execution of the plan, then he or she is taking the role
of task manager (A5). This actor initiates and
executes periodically (every week) the transaction
task management (T5). The execution of this
transaction leads to change the project plan.
Therefore, plan revision transaction is needed (T6).
To model the salary and the reward that are
mentioned in the description, salary payment control
(T7) and reward management (T10) transactions are
needed. To execute T7 we need to calculate the
salary. Because there is no original fact in T8 (only
calcluation), then it is infological transaction (green).
To execute T10, we need two sub transactions,
reward decision making (T9) and employee
evaluation (T11). Based on the previous paragraph
that describes the objectives of the information
system to be developed, the scope of the information
system is shown by a green rectangle. The customer

Fifth International Symposium on Business Modeling and Software Design

152

has no relationships with the information system.
This is because SMA prefers to always communicate
with the customer directly to form good human
relationships. The OCD of the CM is shown in
Figure3.

3.4 i* Model

Because the objective of the model is to develop an
information system, then only the actors who are
involved in the system will be modeled. In i*, unlike
in DEMO, we starts by modeling the actors. There are
three actors: manager, employee and accountant.
The manager has a dependency relationship with the
employee by asking him/her to achieve a particular
task. The dependency is of the task type because it is
a task. The employee has two dependency
relationships: salary and reward. Because they refer
to the money to be given from the accountant to the
employees, both dependencies are of the resource
type. To give the reward, a performance analysis is
needed. Therefore, the accountant depends on the
manager to do the performance analysis for the
employee before giving the reward. This is a resource
type dependency. The strategic dependency (SD)
model is shown in Figure 4.

For each actor in the SD, there is a rational
dependency (RD) model. In this research, only one
RD will be modeled. In Figure5, the RD for the
manager is shown. The RD shows the internal tasks
that the actor performs to respond to the external
dependencies of the other actors. In SMA, the
manager controls the tasks for each employee. The
task can be decomposed into two tasks: assigning a
task and releasing a task. These two tasks influence

the soft-goal balanced load. At the same time,
controlling the tasks is required for evaluating the
achievement of an employee. The result of the
evaluation is the performance analysis, which is
delivered to the accountant.

Figure 4: Strategic dependency model of SMA.

4 DISCUSSION AND
CONCLUSION

4.1 Discussion

First, Both DEMO and i*are social modeling
methodologies. In their models, enterprise consists of
actors (actor role in DEMO and agent in i*) that
interact with each other through relationships
(transaction in DEMO and dependency in i*).
However, the concept of actors and relationships are
different. In i*, humans are modeled by an actor with
concrete names, for example, manager, employee and

Figure 3: Actor transaction diagram of SMA.

Comparing DEMO with i_Star: In Identifying Software Functional Requirement

153

accountant. However, in DEMO, it is more abstract
such as planner and task controller. After presenting
these two models to the stakeholders, it was more
easy for them to understand i* model than DEMO.
This is because i* uses more concrete roles that are
familiar to the stakeholders. The following table
matches the actor role in DEMO with the actor in i*.

Table1: Actors in DEMO and i*.

DEMO actor role i* actor
task manager, plan reviser, reward
manager, and employee evaluator

Manager

Task completer Employee
Salary payment controller, salary
calculator, and reward decision

maker

Accountant

From the Table 1, we can see that every actor in i*
can be broken down into actor roles in DEMO.
Therefore, a composite actor role can be used in
DEMO to make it easier to be understood. Every
composite actor role can be later decomposed into its
elementary actor roles. This facilitates discussing the
model with the stockholders.

Second, there is a difference between a
transaction in DEMO and a dependency in i*. In
DEMO, transactions are divided into ontological,
infological and datalogicalcategories according to the
abstraction level. The differences between them are
clear by definition. Whereas in i*, the dependency is
divided into goal, resource, task and soft-goal.
However, the difference between goal, resource and
task is not clear. This looseness may not be important
in some situations. However, in others situations,
such as model-driven development, it is very
important (Lidia, Xavier, Jordi, 2014).For example,

in our model, both reward transaction and salary
transaction are modeled in i* as a resource. However,
task completion transaction in DEMO is modeled in
i* as a task. Therefore, no automatic transformation
between transaction in DEMO into i* could be done.

Third, i* is capable of capturing the rational
aspect of the system by RD model. Agent in i* could
be decomposed into rational elements. This facilitates
the implementation by automating them. However,
DEMO is considering only the social part of the
system. This makes it difficultfor implementing the
system in later stages.

Fourth, i* models soft-goals. This is useful for
modeling the nonfunctional requirements in the early
stages. Service quality and service speed are
examples of nonfunctional requirements. But DEMO
considers only the functional requirements.

Fifth, DEMO has four perspective models
(construction, process, fact and action) that captures
a holistic view of the enterprise. This is very
important in developing any information system
(Figueiredo, Souza, Pereira, Prikladnicki, Audy,
2014). However, i* does not have equivalent to fact
and action models of DEMO.

4.2 Conclusion

This research compares between two modelling
methodologies named DEMO and i* in modelling
enterprise as a prior stage of requirements analysis.
By the comparison between DEMO and i*, both of
them are social modeling methodologies. They focus
on human and human interaction in their modeling.
DEMO is implementation independent. Therefore,
the DEMO model does not change before or after
implementing any IT solutions. However, i* is

Figure 5: Rational dependency model of SMA.

Fifth International Symposium on Business Modeling and Software Design

154

implementation dependent methodology. DEMO
provide more formal and rigour model of the
enterprise. That makes it a good potential modelling
methodology to understand the enterprise before
implementing any IT solution. On the other hand, i*
allows us to capture both the rational and the social
aspect of the enterprise. The rational aspect is
important in developing any information system.
Therefore, DEMO should be extended to capture the
non-social aspect, too.

There are some frameworks for developing
information system based on i*. Since we showed the
strength of DEMO, the next step is to develop such a
framework like the i* has. Another point to be
considered in the future is extending DEMO to
capture the rational aspect of the enterprise like i*.
This is important for developing information systems.

REFERENCES

Mazón, J.N., Pardillo, J.,Juan, J.T., 2007. A Model-Driven
Goal-Oriented Requirement Engineering Approach for
Data Warehouses. In: ER 2007 Workshops CMLSA, FP-
UML, ONISW, QoIS, RIGiM,SeCoGIS, New Zealand,
pp. 133--142.

Silva, I.F,Neto, P.A., O'Leary, P., Almeida, E.S., Meira,
S.R.L., 2014: Software product line scoping and
requirements engineering in a small and medium-sized
enterprise: An industrial case study. J. Journal of
Systems and Software. 88, 189—206

Michalik, B., Keutel, M., Mellis, W., 2014: Coping with
Requirements Uncertainty -- A Case Study of an
Enterprise-Wide Record Management System. In: 47th
Hawaii International Conference on System Sciences
(HICSS), pp. 4024--4033. IEEE Press, Waikoloa, HI

Tuunanen, T., Rossi, M., Saarinen, T.,Mathiassen, L., 2007:
A Contingency Model for Requirements Development.
J. Journal of the Association for Information Systems.
8, 11, 569--597

Yu, E.,Giorgini,P., Maiden, N.,Mylopoulos, J., 2011:
Social Modeling for Requirements Engineering.
Massachusetts Institute of Technology, United States

Átila, M., Monique, S., Emanuel, S., Josias, P., Fernanda,
A., Jaelson, C., 2011: iStarTool: Modeling
requirements using the i* framework. In: CEUR
Proceedings of the 5th International i* Workshop (iStar
2011), pp. 163--165.

Kervel, S.V., Hintzen, J., Meeuwen, T.V., Vermolen,
J.,Zijlstra, B., 2011: A Professional Case Management
System in Production, Modeled and Implemented using
DEMO. In: 30th International Conference, ER 2011,
pp. 62--77. Brussels

Dietz, J.L.G., 2006: Enterprise Ontology: Theory and
Methodology. Springer-Verlag Berlin Heidelberg, New
York

Kervel, S.V.,Dietz, J.L.G.,Hintzen, J.,Meeuwen,
T.V.,Zijlstra, B., 2012: Ontology driven enterprise
information systems engineering. In: 7th International
Conference on Software Paradigm Trends, pp. 205--
210. Rome

Pandey, D., Suman, U., Ramani, A.K., 2010: An Effective
Requirement Engineering Process Model for Software
Development and Requirements Management. In:
Second International Conference on Advances in
Recent Technologies in Communication and
Computing, pp. 287--291. IEEE Press, Kottayam

Liu, L., Yang, C.,Wang, J.M., Ye, X.J., Liu, Y.P., Yang,
H.J., Liu, X.D., 2014: Requirements model driven
adaption and evolution of Internetware. J. Science
China Information Sciences. 57, 6, 1--19

Castro, J., Lucena, M.,Silva, C.,Alencar, F.,Santos, E.,
Pimentel, J., 2012: Changing attitudes towards the
generation of architectural models. J. Journal of
Systems and Software. 85,3, 463—479

Figueiredo, M.C., Souza,C.R.B., Pereira,M.Z.,
Prikladnicki,R., Audy,J.L.N., 2014: Knowledge
transfer, translation and transformation in the work of
information technology architects. J. Information and
Software Technology. 56, 10, 1233—1252

Comparing DEMO with i_Star: In Identifying Software Functional Requirement

155

