
Domain-Specific Language for Generating Administrative Process
Applications

Antonio García-Domínguez, Ismael Jerez-Ibáñez and Inmaculada Medina-Bulo
Department of Computer Science, University of Cadiz, Av. Universidad de Cádiz 10, Puerto Real, Spain

antonio.garciadominguez@uca.es, ismael.jerezibanez@alum.uca.es, inmaculada.medina@uca.es

Keywords: Model-driven engineering, domain-specific languages, business modeling, code generation.

Abstract: Some organizations end up reimplementing the same class of business process over and over from scratch: an
“administrative process”, which consists of managing a structured document (usually a form) through several
states and involving various roles in the organization. This results in wasted time that could be dedicated to
better understanding the process or dealing with the fine details that are specific to the process. Existing virtual
office solutions require specific training and infrastructure and may result in vendor lock-in. In this paper, we
propose using a high-level domain-specific language to describe the administrative process and a separate code
generator targeting a standard web framework. We have implemented the approach using Xtext, EGL and the
Django web framework, and we illustrate it through a case study.

1 INTRODUCTION

In many organizations, there is a recurrent kind of
business process which we call an “administrative
process”. These administrative processes involve
managing a document with a certain structure and
tracking it through different states. In each state, dif-
ferent parts of the document have to be viewable or
editable by people with different roles in the organi-
zation. State transitions usually happen due to human
decisions (possibly after a meeting, a review or some
kind of negotiation), deadlines or a combination of
both. The process usually concludes by reaching a
“final” state (e.g. “accepted” or “rejected”).

These processes are usually kept within a sin-
gle organization and are not particularly complex by
themselves, but their sheer number within some or-
ganizations can produce a high amount of repetitive
work. Implementing each of these processes from
scratch wastes precious time on writing and debug-
ging the same basic features (form handling, state
tracking, internal directory integration and so on)
which should have been invested in obtaining a bet-
ter understanding of the process desired by the users
and fine tuning the process-specific business logic. In
some cases, the developer tasked with implementing
the process is not familiar with some of the best prac-
tices of the target technology, needing more time and
producing less than ideal solutions.

Another problem is that even after the process is

correctly implemented, the framework the implemen-
tation is based upon may become obsolete to the point
of requiring a complete rewrite. This is compounded
by the fact that since the processes may have needed
urgent changes and tweaks, they may not be well-
documented anymore and may require careful reverse
engineering, which is time consuming and prone to
mistakes. It would have been much better if most of
the code had been produced from a process descrip-
tion: changing the target framework of several obso-
lete applications would only require writing a differ-
ent code generator and adding some customizations.

Our organization has evaluated various generic
“virtual office” solutions for implementing these ad-
ministrative processes and having them run in a high-
level process engine. While these solutions were
acceptable for the simplest cases, adding process-
specific UI and business logic and integrating them
with in-house systems would have required learning
yet another technology that may become obsolete or
lose support in the long run. It would be much bet-
ter if the resulting implementations were based upon
a standard web framework chosen by IT, so it could
be maintained by regular staff.

In this paper, we present the first version of a
technology-agnostic domain-specific language ded-
icated to concisely describing these administrative
processes. We show how it can describe an exam-
ination process and how we developed a code gen-
erator that followed the best practices of the Django

178
Garcia-Dominguez A., Jerez-IbÃąÃśez I. and Medina-Bulo I.
Domain-Specific Language for Generating Administrative Process Applications.
DOI: 10.5220/0005886801780183
In Proceedings of the Fifth International Symposium on Business Modeling and Software Design (BMSD 2015), pages 178-183
ISBN: 978-989-758-111-3
Copyright c© 2015 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

web framework (Django Software Foundation, 2015)
to implement the process as a website. The generated
website is ready to be used and can be customized by
any developer familiar with the Django framework.

2 RELATED WORK

There exist several business process management sys-
tems (BPMSs) that include some support for form-
based steps within workflows, such as Bonita (Boni-
tasoft, 2015) or Intalio (Intalio, Inc., 2015). These
engines are usually tightly integrated with a design
tool which uses a graphical notation (usually BPMN-
based) to describe the processes. This graphical no-
tation is normally extended with engine-specific an-
notations to provide the full semantics of the process,
and is persisted using XML-based formats.

While these systems can describe a much larger
class of business processes than our DSL, the result-
ing process definitions are highly dependent on the
underlying engine: migrating the same process to a
new technology may require a rewrite. Version con-
trol is still possible with XML-based formats, but
meaningful comparisons and merges require special-
purpose tools. In addition, using a BPMS effectively
requires a considerable amount of training, consult-
ing and process analysis, which may not be feasible
in smaller IT departments. Our approach focuses on a
specific kind of business process (manage a complex
document through multiple states, with different ac-
cess rules in each state) and produces a standard web
app that can be maintained as any other.

Scaling back from full-fledged BPMS engines,
there have been many attempts to simplify the devel-
opment of form-based applications. One recent initia-
tive in this regard has been the EMF Forms (Eclipse
Foundation, 2015b) Eclipse project. Using its tools,
users can define the domain model and abstract lay-
out once and then render it in various technologies,
such as SWT or JavaFX for desktop apps or Tabris
for mobile apps. On the one hand, EMF Forms al-
lows developers to specify the concrete layout for the
resulting forms, unlike our DSL, which delegates on
the generator for the presentation aspects. However,
a DSL could cover aspects that EMF Forms does not,
such as access control and state transitions.

Another related topic is domain-driven design
(DDD): an approach on software development that as-
serts that the primary focus in most software projects
should be the creation of an adequate model that
abstracts the problem domain, and the implementa-
tion of the relevant business logic around it (Evans,
2003). In this regard, several frameworks have been

implemented to support DDD, enabling rapid itera-
tions by generating a large portion of the application
from a “pure” domain model (e.g. a set of Plain Old
Java Objects or POJOs), such as Apache Isis (Apache
Software Foundation, 2015) or OpenXava (OpenX-
ava.org, 2015). In a way, a DSL conforms to the
same view of producing software from a description
of the problem domain: the only difference is that the
DSL is focused on a specific kind of problem domain,
rather than the generic approach of a DDD tool, mak-
ing it more productive in that particular case.

In the context of e-government, several works
have identified some differences in the way e-
government processes should be modeled, in compar-
ison to the business processes in the private sector.
Klischewski and Lenk argued that in the public sector,
many processes involve unstructured decision making
(whether by a single official or after a meeting) and
negotiations, so officials would need to be able to al-
ter the course of the process (Klischewski and Lenk,
2002). Later in the same work, Klischenski and Lenk
proposed a set of “Admin Points” as reusable process
patterns that could be used as a shared vocabulary for
e-government business processes. In a DSL, many of
these admin points which involve negotiation and un-
structured decision making could be modeled using
decision-based transitions.

3 LANGUAGE DEFINITION

Summarizing the discussion in the previous sections,
the design requirements for the language are:

• The description of a process should include the
information to be stored within the managed doc-
ument, the roles involved and the states that the
document goes through.

• Each state should list the roles that can view or
edit the different parts of the managed document.

• State transitions based on user decisions and dates
should be supported by default, and custom busi-
ness logic should be easy to integrate later on.

3.1 Abstract Syntax

Figure 1 shows a UML class diagram with the abstract
syntax of our DSL. An APPLICATION is divided into
ELEMENTs. There are five kinds of ELEMENTs. SITE
is the simplest one: it only declares the name of the
application (e.g. “Billing”). OPTIONS elements con-
tain key/name pairs (PROPERTY instances) that may
be useful to external generators.

Domain-Specific Language for Generating Administrative Process Applications

179

PropertyStatePermission

type
targetAll

Property

StateTransitionStatePermissions

StateElement

Group

name

SectionElement

Section

name

State

name

Field

name
type

ProcessElementProperty

name
values

Entity

name

Process

name

Role

name

Options

Site

name

Element

Application

0..n0..n

0..n
0..1

target field

0..1target group

0..1

target
section

target

0..n

assigned to ►

0..n

0..n

0..n

0..n

0..n

0..n

0..n

Figure 1: UML class diagram of the DSL’s abstract syntax.

Next are ROLEs. These represent particular
roles within the organization (such as “Accountant”).
These elements provide a name and a set of PROP-
ERTY instances which may be used by the generator to
integrate the role with in-house user directories (such
as an LDAP directory).

ENTITY elements represent data entities that must
have been created before any documents can be filled
in, such as “Country”, “State” and so on. An EN-
TITY contains FIELD instances with the information
to be stored about it. Every FIELD has a name and a
domain-specific type (such as “currency” or “identity
document”) and zero or more PROPERTY instances
providing additional information to generators.

Finally, the main and most complex kind of ele-
ment is a PROCESS. These represent entire adminis-
trative processes (e.g. “Request for Leave”). They can
contain three kinds of PROCESSELEMENTs:

• ENTITY instances, which will be specific to the
process in this case. In the “Request for Leave”
process, “LeaveReason” instances could be the
various reasons for the leave.

• SECTION instances contain the FIELDs of the
managed document, which can be optionally sub-
divided into GROUPs. A section could be “Billing
information”, and a group could be “bill item”
(containing the “Price”, “Quantity” and “Descrip-
tion” fields, for instance). This structure is useful
for generating code and specifying access rules.

Listing 1: Simplified concrete syntax for our DSL.
1 site SiteName;
2 options { (Property;)* }
3 (role RoleName { (Property;)* } | role RoleName;)*
4 (entity EntityName {
5 (Type ((Property (, Property)*))? Name;)*
6 })*
7
8 (process ProcessName {
9 (entity EntityName {

10 (Type ((Property (, Property)*))? Name;)*
11 })*
12 (section SectionName {
13 (Type ((Property (, Property)*))? Name;
14 | group GroupName {
15 (Type ((Property (, Property)*))? Name;)+
16 })*
17 })+
18 (state StateName {
19 (permissions RoleName {
20 ((editable|viewable) all;
21 | (editable|viewable) SectionName;
22 | (editable|viewable) SectionName.GroupName;
23 | (editable|viewable) SectionName.FieldName;
24 | (editable|viewable)
25 SectionName.GroupName.FieldName;
26)*
27 })*
28 (transition (Property (, Property)*) StateName;
29)* })+ })*

• STATE instances represent the states that the man-
aged document can be in. It can contain a set
of STATEPERMISSIONS for each role of inter-
est, which in turn contain STATEPERMISSION in-
stances that describe the kinds of actions that are
available to the role. A role can receive all per-
missions at once, or it can receive the ability to
edit or view a single section, group or field.
A STATE can also contain STATETRANSITIONs
to other states. A transition can activate when
all the conditions (specified using PROPERTY in-
stances) are met: these conditions could combine
explicit decisions by users (“Accepted” or “Re-
jected”), dates (“Past deadline”) or custom busi-
ness logic. Alternative paths to the same state can
be modeled with several STATETRANSITIONs.

3.2 Concrete Syntax

Since editing and version control should not require
any special-purpose tools, we have picked a textual
notation for the DSL which is mostly a one-to-one
mapping to the model entities.

Listing 1 shows a simplified version of our origi-
nal EBNF grammar for the concrete syntax. As usual,
(x)+ means “one or more x”, (x)* means “zero or
more x”, (x)? means “zero or one x” and x|y means
“x or y”. Whitespace is ignored. Literal (and) and
keywords are shown in bold, to avoid confusion. A
Property is of the form Name = Value (, Value)*.

As the grammar can fit into less than 40 lines af-
ter some simplifications, we can conclude that it is a

Fifth International Symposium on Business Modeling and Software Design

180

rather simple DSL that should be easy to learn by the
IT staff. However, it has a considerable number of
cross-references in it, so it will require good tooling
support to ensure that these references are not stale.

4 CASE STUDY

In this section, we will present a case study that uses
the DSL to describe a simple examination process
and then generate a web application that implements
it. After outlining the process itself, we will describe
the most important aspects of our implementation and
evaluate the results obtained.

4.1 Description

The process in this case study is a test, involving two
roles (“student” and “teacher”) and these steps:

1. The student starts the test by introducing their
personal information and answering the first part.
Some of the questions are free-form, some have
a predefined set of answers, and one of the ques-
tions pull answers from the database.
The teacher can already see all the partially filled-
in exams, but cannot enter any grades yet.

2. After a certain date, the second part of the test
(with two numeric questions) becomes visible and
the first part of the test is no longer editable by the
student. Students can also fill in what they think
about the test. Teachers can still see everything,
but cannot enter any grades yet.
The test can be turned in for examination before a
certain deadline: after that deadline, it is turned in
automatically and is no longer editable.

3. Once the test has been turned in, the teacher can
grade it, but the student cannot see the grade yet.

4. After the teacher confirms the final grade, the ex-
amination is “closed” and the student can now see
the grade. All fields are now read-only.

A simplified version of the DSL-based description
of the process is shown in Listing 2. Some of the dates
and field names have been shortened to save space.

Line 1 declares that the application to be generated
has the name “School”. Lines 2–5 include several op-
tions for the code generator that targets the Django
web framework: in particular, they suggest using a
certain base template that follows the organizational
image, which is included in a Django app available at
a certain URL. Line 6 declares the previously men-
tioned “student” and “teacher” roles.

Listing 2: DSL-based examination process.
1site School;
2options {
3django_base_template = "template/base.html";
4django_extra_apps = "template = https ://.../";
5}
6role student; role teacher;
7
8process exam {
9entity Answers3 { string answer; }
10section personal {
11fullName studentname;
12identityDocument(label="National ID:") nid;
13email(label="Email") mail;
14}
15section test {
16group part1 {
17string(blank="True") q1;
18choice(values="A1,A2,A3",blank="True") q2;
19choice(table="Answers3",blank="True") q3;
20}
21group part2 {
22currency(label="Q4 (euros):",blank="True") q4;
23integer(label="Q5 (integer):",blank="True") q5;
24}
25choice(values="Good ,OK,Bad",blank="True") opinion;
26}
27section evaluation { float grade; }
28
29state initial {
30transition(decision_by="student",
31after_date="2015/03/01 -14:00:00",
32before_date="2015/03/07 -14:00:00") part1;
33}
34state part1 {
35permissions teacher { viewable all; }
36permissions student { editable personal ,
37test.part1; }
38transition(after_date="...") part2;
39}
40state part2 {
41permissions teacher { viewable all; }
42permissions student {
43viewable test.part1;
44editable personal , test.part2 , test.opinion;
45}
46transition(decision_by="student",
47before_date="...") evaluation;
48transition(after_date="...") evaluation;
49}
50state evaluation {
51permissions teacher { viewable all;
52editable evaluation; }
53permissions student { viewable personal , test; }
54transition(decision_by="teacher") closed;
55}
56state closed {
57permissions teacher { viewable all; }
58permissions student { viewable all; } }
59}

The rest of the listing from line 8 onwards is dedi-
cated to the “exam” process. An entity “Answers3”
is declared at line 9: its instances are used for the
answers for question 3. In lines 10–27, the fields
of the document are organized into three sections.
The “test” section is divided into two groups and one
additional field: using groups simplifies access con-
trol specifications later on. The optional fields have
“blank” set to “True”.

Lines 29–58 describe the 5 different states the pro-
cess can be in. The “initial” state is a special case:
it represents the state before the process starts, and
its transitions describe who can start the process and
when. The other 4 states match the four stages of the

Domain-Specific Language for Generating Administrative Process Applications

181

Figure 2: Generated web app: process list.

Figure 3: Generated web app: process form.

examination which were described before.

4.2 Implementation

The parser and editor for the language in Section 3
have been implemented using Xtext (Eclipse Founda-
tion, 2014). From an EBNF grammar, Xtext generates
a metamodel with the abstract syntax of the language
and a set of Eclipse plugins which provide a parser
and an advanced editor with live syntax checking and
highlighting, autocompletion and an outline view.

We have also implemented a separate code gener-
ator that takes an APPLICATION described with our
DSL and produces a web application in the Django
framework. The generator is written in the Epsilon

Generation Language (Eclipse Foundation, 2015a),
which provides modularity and the ability to have
“protected regions” that are preserved when overwrit-
ing an existing file. Our current version of the EGL
source code for the Django generator has 3045 LOC.

The code generator produced from the example in
Section 4.1 a ready-to-use Django site backed by a
PostgreSQL relational database (shown in Figure 3).
Thanks to the use of several advanced features in
Django, the site only required around 1000 lines of
Python code, 400 lines of HTML templates and 264
lines of documentation and support scripts.

4.3 Current Limitations

The DSL, its tooling and the evaluated generator cur-
rently present several limitations. One self-imposed
limitation is that they do not aim to produce 100%
of the required code: the generated code will always
need to be customized in some way, due to special
needs on the user interface, custom business logic
that has to be added, or unexpected integrations with
legacy systems. Following the accepted approach in
the existing literature (Fowler, 2010), we have cho-
sen to keep the DSL small and focused on describing
administrative processes.

The DSL is focused on describing the current pro-
cess, and does not have any provisions for migrat-
ing running processes to a new version with different
states or very different information. Our current ap-
proach is to delegate on the target framework of the
generator: for instance, since version 1.7 the Django
framework has built-in data and schema migrations.

Since we transition to a new state as soon as its
conditions are met and ignore all other transitions in
the old state, we implicitly only allow one state to
be active at a time. While this makes the DSL less
general than a full-fledged business process modeling
language such as BPMN (Object Management Group,
2014), largely based on Petri nets, it is on par with
some of the “virtual office” platforms we evaluated
and the legacy applications it is intended to replace.

States do not enforce preconditions, invariants or
postconditions yet, beyond simply checking that the
mandatory editable fields have been filled in. We in-
tend to add support for the most common conditions
to the DSL in the short term: the most advanced cases
will be delegated to a protected region, which will
have to be filled in by the developer.

Fifth International Symposium on Business Modeling and Software Design

182

5 CONCLUSIONS

A simpler class of business processes (administrative
processes) are very common in many organizations
today: these processes basically consist of managing
a form through many states, involving various roles in
the organization. Implementing the basic logic and in-
frastructure for them again and again wastes precious
time that could be used on understanding better the
process and implementing the fine details correctly.

This paper has presented an approach to improve
the efficiency of implementing these solutions, while
avoiding lock-in into a particular technology: using
a high-level domain-specific language (DSL) for de-
scribing the process and writing a separate code gen-
erator for each target technology. The approach has
been illustrated by describing an examination pro-
cess, and has been implemented with Xtext (Eclipse
Foundation, 2014) on the DSL side and EGL (Eclipse
Foundation, 2015a) on the code generation side. The
code generator produces a ready-to-use site that fol-
lows the best practices of the Django web frame-
work (Django Software Foundation, 2015), acceler-
ating the implementation of the process.

Our results have several limitations. The gener-
ated code is ready to be used, but will normally need
to be customized to fully meet the needs of the users:
we have preferred to keep the DSL and code genera-
tors small and focused. Additionally, the DSL is not
intended to replace general-purpose workflow-based
notations: it is specifically designed for the simpler
administrative processes. Finally, we have only eval-
uated our approach through internal case studies.

We have several lines of work ahead. As we de-
velop more advanced case studies, we will expand the
DSL with concepts such as limits on number of pro-
cesses per user or state pre/postconditions. In addition
to refining the tooling, we will look into performing
live validation of the structure of the process itself and
providing graphical visualizations. We will also de-
velop code generators for other web frameworks that
are common in our organization (e.g. Symfony 2).
Over the medium term, we will conduct studies with
developers within and beyond our organization, eval-
uating the usability and productivity of our approach.

ACKNOWLEDGEMENTS

This work was funded by the research project “Mejora
de la calidad de los datos y sistema de inteligen-
cia empresarial para la toma de decisiones” (2013-
031/PV/UCA-G/PR) of the University of Cádiz.

REFERENCES

Apache Software Foundation (2015). Apache Isis. http://
isis.apache.org/. Last checked: March 3rd, 2015.

Bonitasoft (2015). Homepage of the Bonita BPM
project. http://www.bonitasoft.com/. Last
checked: March 3rd, 2015.

Django Software Foundation (2015). Home page of the
Django web framework. https://djangoproject.
com. Last checked: March 6th, 2015.

Eclipse Foundation (2014). Xtext project homepage. http:
//www.eclipse.org/Xtext/. Last checked: March
2nd, 2015.

Eclipse Foundation (2015a). Epsilon project homepage.
https://eclipse.org/epsilon/. Last checked:
March 5th, 2015.

Eclipse Foundation (2015b). Homepage of the EMF
Forms project. https://www.eclipse.org/ecp/
emfforms/. Last checked: March 3rd, 2015.

Evans, E. J. (2003). Domain-Driven Design: Tackling Com-
plexity in the Heart of Software. Addison Wesley,
Boston, first edition.

Fowler, M. (2010). Domain Specific Languages. Addison-
Wesley Professional, first edition.

Intalio, Inc. (2015). Homepage of the Intalio|BPMS
project. http://www.intalio.com/products/
bpms/overview/. Last checked: March 3rd, 2015.

Klischewski, R. and Lenk, K. (2002). Understanding
and modelling flexibility in administrative processes.
In Electronic Government, volume 2456 of Lecture
Notes in Computer Science, pages 129–136. Springer.

Object Management Group (2014). Business Process
Model and Notation 2.0.2. http://www.omg.org/
spec/BPMN/2.0.2/. Last checked: March 2nd, 2015.

OpenXava.org (2015). OpenXava homepage.
http://www.openxava.org/web/guest/home.
Last checked: March 3rd, 2015.

Domain-Specific Language for Generating Administrative Process Applications

183

