
Linking Business Process and Software System

Lerina Aversano, Marco di Brino, Paolo di Notte, Domenico Martino and Maria Tortorella
Department of Engineering, University of Sannio, P.zza Roma, Benevento, Italy

aversano@unisannio.it, tortorella@unisannio.it

Keywords: Business Process Modelling, Software modelling, Linking Process and software components.

Abstract: Enterprise necessitates to follow the rapid evolution of its business processes and rapidly adapt the existing
software systems to its arising needs. A preliminary requirement is that the software subsystems are available
and interoperable. A widely diffused solution is moving the adopted software solutions toward an evolving
architecture, such as the one based on services. The objective of the research presented in this paper is to
support the reuse of the existing software systems in a Service Oriented Architecture. The proposed solution
is based on the idea that a Service Oriented Architecture can be obtained from a wide range of existing pieces
of software. Such code components can be extracted from the existing software systems by identifying those
ones supporting the business activities. Then, the paper proposes an approach for identifying the parts of
software candidate to support a business process activity and it is based on the recovering of the links existing
between the model of a business process and the supporting software systems. .

1 INTRODUCTION

The continuous changes of business requirements
force enterprises to continually evolve the software
systems they use for supporting the execution of their
business processes. In this context, maintenance ac-
tivities are required for adapting the software systems
to the business process changes.

A business process consists of a set of activities
performed by an enterprise to achieve a goal. Its
specification includes the description of the activities
and relative control and data flow. The software sys-
tem supporting it is generally an application providing
used during the execution of the business process ac-
tivities. It is clear that a software component can be
impacted, more or less significantly, from each busi-
ness process change. The identification of the compo-
nents impacted by the business change requirements
is not always obvious to the maintenance workers.
This is true especially when the change is expressed in
terms of business activities with reference to the busi-
ness context, or when the maintenance workers have
not adequate information regarding the software sys-
tem and its components with reference to such a kind

context.
Therefore, it is very important an appropriate

identification and comprehension of the relations ex-
isting between business process activities and soft-
ware system components. Such a kind of comprehen-
sion provides a great help to the maintenance workers
that are called to handle the change requests.

Considering the continuous change in the world of
the information technology, there is an increasingly
diffusion of Service Oriented Architecture, SOA. Its
main strength is the easiness with which a service can
be made available and used. This aspect suggests that
the architecture of the old systems can be evolved to-
wards a new system based on a service-oriented ar-
chitecture.

Many approaches have been proposed in litera-
ture suggesting guidelines to identify services dur-
ing the migration of legacy systems toward a service-
based architecture (Khadka et al., 2013b) (Cetin et al.,
2007). Nevertheless, in the authors knowledge, few
papers propose the technical steps to be executed
for achieving this goal. In (Balasubramaniam et al.,
2008) an architecture-based and requirement-driven
service-oriented reengineering method is discussed.

192
Aversano L., di Brino M., di Notte P., Martino D. and Tortorella M.
Linking Business Process and Software System.
DOI: 10.5220/0005887001920198
In Proceedings of the Fifth International Symposium on Business Modeling and Software Design (BMSD 2015), pages 192-198
ISBN: 978-989-758-111-3
Copyright c© 2015 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

This method assume the availability of architectural
and requirement information. The services are iden-
tified by performing the domain analysis and busi-
ness function identification. Other approaches pro-
pose to evaluate services by performing either code
pattern matching and graph transformation (Matos
and Heckel, 2008), or feature location (Chen et al.,
2005) or formal concept analysis (Chen et al., 2009).
A detailed survey of the service identification meth-
ods is discussed in (Khadka et al., 2013a). In (Sneed,
2006), an automatic approach to evaluate candidate
services is proposed. Candidate services are consid-
ered as groups of object-oriented classes evaluated in
terms of development, maintenance and estimated re-
placement costs. In (Sneed et al., 2012), a tool is pre-
sented for supporting the reuse of existing software
systems in a SOA environment by linking the descrip-
tion of existing COBOL programs to the overlying
business processes.

This paper proposes a method for linking the pro-
cess description with the components of a software
system candidate to be reused in a service oriented ar-
chitecture. The method exploits a formal description
of a business process based on the BPEL language
and calculates its textual similarity with the source
code of the examined software system. The BPEL
language has been chosen for the low effort needed to
describe a business process by using it.

Section II describes the proposed approach and
supporting tool; Section III describes the obtained ex-
perimental results; and concluding remarks and future
works are discussed in the last Section.

2 APPROACH TO
TRACEABILITY RECOVERY

The approach proposed aims at retrieving the trace-
ability links between the business process activities
and supporting software system components. It is
based on the extraction of the identifiers of business
process model and software components. It is com-
posed of two processing phases:

• In f ormationextraction phase, regarding the ex-
traction of semantic information from both busi-
ness process and software system source code;

• Traceabilityrecovery, aiming at discovering the
matching existing between the business informa-
tion and software system components.

Figure 1: Overview of the approach fro traceability link re-
covery.

2.1 Information Extraction

The execution of this phase requires the implementa-
tion of a two parsers for analysing Java and BPEL
files, and extracting all the needed information for
performing the next traceability recovering. With
this in mind, the JavaCC (Java Compiler Compiler)
parser generator (htt ps : // javacc. java.net/) was
used. This tool reads a grammar specification and
converts it into a Java program performing the top-
down parser of a file written in the language based on
the defined grammar. Then the regular expressions,
context-free grammars and semantic rules were de-
fined for describing both BPEL standard 2.0 and Stan-
dard Edition 7 for Java.

The implementation of the BPEL parser permits to
construct the syntactic tree of the model description,
which is the graph that allows expressing easily the
process of derivation of a sentence using a grammar.
The abstract syntax tree provides a structured view of
the modelled business process, and excludes all the
detailed information.

Figure 2 shows an example of a parse tree. It de-
scribes the business activities as brother nodes, while
the son nodes indicate the artifacts needed for execut-
ing a business activity.

Figure 2: BPEL AST example.

Linking Business Process and Software System

193

After AST creation, further operations are planned
for the correct insertion of comments. To identify the
association between comments and code representing
activities, it is necessary to make a visit to the tree
in order to associate each comment node to the first
brother node, which must not be a comment node.
Once the association has been found. The analysis of
the BPEL AST allows the identification of the identi-
fiers for describing the business process.

The Java parser aims at constructing the symbol
table of a supporting Java software systems, used
to keep track of the source program constructs and,
in particular, the semantics of identifiers, referred to
packages, classes, methods, instance variables and lo-
cal method variable declarations.

Figure 3: Java Symbol Table example.

The symbol table contains one record for each
identifier, with some fields for its various attributes,
such as its lexeme, type (e.g. identifier), identifier
type that can be simple (integer, real, boolean, etc.),
structured (vector or record) or a computational mod-
ule, such as a function or procedure.

Figure 3 shows that the symbol table structure is
hierarchical. On the first layer, there is a list of all
packages declared in the project under consideration.
Each record of this first layer contains a reference to
another list, regarding the classes defined in the pack-
age in question. The set of all classes forms the sec-
ond layer of the symbol table. Therefore, each class
contains any references to objects declared in its inte-
rior, such as the methods and instance variables, and
inner class. Each method can have another layer that
represents the set of local variables it declares . Each
inner class can be considered as a normal class, which
may declare other methods, inner classes and instance
variables. The procedure is iterated and accordingly
the number of layers grows each time depending on
the level of depth that will reach the analysis of the
project concerned.

A preprocessing phase analyzes only the com-
ments present within the various classes. Once it has

been identified one, it is saved in a map, which will
also allow saving the order of appearance of the var-
ious comments. After the preprocessing phase, the
map is passed as an argument to the parser itself that
analyses the comments for identifying additional se-
mantic information coded in the code.

For each identifier, the symbol table records:

• idName: the name of the identifier to be saved;

• kind: the type of the identifier analyzed (class,
method, package, etc ...);

• scope: the visibility of identifier (public, pro-
tected, private, etc ...);

• args: the method arguments;

• typeRet: the return type of the method or the type
of a variable;

• comments: all comments associated with that
identifier.

2.2 Traceability Recovery

After constructing the AST for BPEL and symbol ta-
ble for Java, they are visited in a post-order manner
for collecting the information necessary for the con-
tinuation of the analysis.

All the steps that follow are summarized in the
chart drawn in Figure 4.

Figure 4: Information extraction phase.

The Information Extraction activity visits the AST
BPEL and creates an array of BPEL activities, called
Activity. Each Activity objects includes the BPEL file
name, the task name and the set of terms related to
the most important information; as an example, name
and operations are kept for the invoke activities, while
portType and partnerLink are considered wit refer-
ence to the reply and receive activities.

On the other side, the Java symbols table is en-
tirely in order for identifying all the keys that corre-
spond to the methods. Once one of it has been iden-
tified, a string set that contains the method name, any
local variables name and inner classes that are con-
tained within it, is created. Every single set of strings
is in turn stored within a new map, which has as key
a counter of the various set just created.

In accordance with the convention for identifiers
nomenclature, when a term composed of two or more

Fifth International Symposium on Business Modeling and Software Design

194

words is met, besides the full name, the individual
terms are also included in the relevant collection of
terms. Before being inserted in the collection, each
term is normalized, i.e. all its characters are ren-
dered tiny and all of the other symbols different from
character and number are deleted. For example, if
a method is called GetCustomerName(), the terms
GetCustomerName, get, customer and name are in-
cluded in the collection of terms. On the contrary,
round brackets are non considered.

According to the above, different subsets of terms
are created. For the invoke activity of the BPEL
model, the following sets are created:

• a set including the terms contained in the argu-
ment called operation;

• a set including the terms contained in the argu-
ment called name;

• a complete set including the terms contained
in the arguments called operation, name,
partnerLink, inputVariabile and out putVariable.

The sets created for the reply and/or receive activ-
ities re the following:

• a set including the terms contained in the argu-
ment called portType;

• a set including the terms contained in the argu-
ment called partnerLink;

• a complete set that including the terms con-
tained in the arguments called portType and
partnerLink.

The terms of terms created for the Java methods
are the following:
• a set including the terms of the considered

method;

• a complete set including the names of the consid-
ered method, the names of its local variables and
any inner classes, together with the single split
words of the terms.
If no direct link is found between BPEL business

activities and Java software methods, it is necessary
to make a finer analysis. The first thing that is pos-
sible to do is the refinement of the terms, which re-
quires their removal from the stopwords, or words that
have no additional information content. In addition,
for any term contained in the BPEL and Java full sets
the set of synonyms are considered. The WordNet li-
brary, which is a lexical-semantic database for the En-
glish language, developed from Princeton University,
is useful for performing this task.

For each term within the set of created words, a
vector of synonyms is generated, which is added to
the starting sets of terms.

2.2.1 Creating traceability matrix

After the creation of the sets of terms related to Java
methods and BPEL activity, it is possible to proceed
with the calculation of similarity between them, in or-
der to properly fill the traceability matrix.

The coefficient used for the calculation of simi-
larity is the Jaccard index. It is also known as the
coefficient of Jaccard similarity, and it is a statistical
index used to compare the similarity and diversity of
sample sets. It is defined as the size of the intersection
divided by the size of the union of the sets of samples:

J (A,B) =
|A∩B|
|A∪B| (1)

The value of this coefficient is defined in a range
of values going from 0 to 1 (extremes included). In
our case, |A| represents the single set of terms ob-
tained from the analysis of a Java method, while |B|
is the single set of terms obtained from the analysis
of a BPEL activity. Therefore, we have n sets of type
|A| and m sets of type |B|, where n represents the to-
tal number of methods identified taken from the Java
parser and m the total number of activities extracted
from BPEL.

At this point, after calculated the coefficients, it
is possible to generate the traceability matrix, which
will be contained in an Excel file.

Generally, the traceablity matrix is composed as it
follows :

• row: the i− th row represents a method extrapo-
lated from the Java parser, identified by a name
but also by the package name and the name of its
class;

• column: the j − th column represents a basic
BPEL activity extrapolated from the correspond-
ing parser. It is identified by the BPEL file name
containing the name of the activity and an argu-
ment called name;

• intersect: the i, j cell (i identifies the row and j
the column) represents the value of Jaccard index.
Simply, the value of this cell is calculated on the
sets of terms previously obtained by Java method
i and BPEL activity j.

2.2.2 Reporting matches

Whenever there is a correspondence between a Java
method and a BPEL activity, the relative Jaccard in-
dex in the matrix is marked with a different color.

The most frequent case is that the analyzed Java
method name is contained inside the parameter called
operation (for invoke activity) or the parameter called

Linking Business Process and Software System

195

portType (for reply/receive activities). For this rea-
son, these first sets created based on information ob-
tained from the BPEL activity are compared with each
single set created on the basis of the analysis of the
Java method name. A statistical study showed a real
correspondence exists between a BPEL activity and a
Java method if the similarity result has a value either
greater of 0.85 or included between 0.33 and 0.55.

If the calculated index is not included in the in-
dicated range, the analysis is done with all the sets
created on the basis of the name contained inside
the parameter called name (for invoke activity) or
parterLink (for reply/receive activity). Even in this
case, the Jaccard index is calculated between thesets
of BPEL terms and the ones created with the Java
methods; similarly, it exists a real correspondence be-
tween BPEL activity and Java method if the result has
a value either greater of 0.85 or included between 0.33
and 0.55.

If the result is not in this range, the complete set is
analyzed. The Jaccard index is calculated for all com-
binations of the complete set; afterwards, the greater
index of the column is selected and the correspon-
dence is marked if the index is great o equal to 0.33
(for invoke activity) or greater o equal to 0.55 (for
reply/receive activity).

If in a column (associated with an activity) just
one value different from 0 exists, it is marked a cor-
respondence between the related Java method and
BPEL activity, even if the value is not within any indi-
cated range. This case is considered because that par-
ticular activity can be put in correspondence just with
that Java method, even if the possibilities are low.

A prototype supporting tool has been imple-
mented to process Java and BPEL sources code and
produces a traceability matrix as output. Table 1 con-
tains a sample output of the prototype. Each line rep-
resents a Java method of the analysed software sys-
tem. The rows list: package name (com.example),
Java class name (TestProcess) and method name (e.g.
getIn f o()). Each column, instead, represents a BPEL
activity. It is possible to see: file name with extension
.bpel (process.bpel), type of activity (e.g. invoke) and
activity name (e.g. getIn f o). The row-column inter-
section of this matrix contains the value of the Jac-
card index, that is the numerical value of the corre-
spondence that exists between BPEL activity and Java
method.

In this example, the first analysis is done between
the activity entitled getIn f o and all Java methods
identified by the parser. It is possible to notice that be-
tween the value of the parameter called name of this
activity and the Java method called getIn f o() there is
a strong correspondence; in fact, their similarity in the

Table 1: Example of matrix produced by prototype tool.
process.bpel process.bpel process.bpel
INVOKE RECEIVE INVOKE

(”getInfo”) (”receiveIn”) (”callHelp”)
com.example
TestProcess 1 0 0,009

getInfo()
com.example
TestProcess 0,1818 0,865 0
setInput()

com.example
TestProcess 0,3228 0,1243 0,076

update()

traceability matrix includes the value 1, which is the
greatest possible. This correspondence is indicated
with color red within the Excel file.

The second analysis concerns activity receiveIn.
Unlike the previous case, there is not an exact corre-
spondence between this BPEL activity and any Java
method. In any case, there is still a very high value
(0,865) with the method called setInput(). This value
will be compared from the set of Java method with
one of all sets created for this type of activity, which is
the set that contains the name of portType argument,
the set that contains the name of partnerLink argu-
ment or the complete set with all information relat-
ing this activity. This correspondence will turn brown
within the Excel file.

Finally, from the analysis of the last activity
callHel p, it is possible to notice that the Jaccard val-
ues are very low, so the prototype will not highlight
any possible match between this activity and any Java
methods. Consequently, in the Excel file these values
remain to their default color that is black.

3 RESULTS

The approach presented in the previous section has
been validated in three case studies with the aim of
assessing its effectiveness. Specifically three Java
projects have been selected.

The first one is downloaded from the web; it deals
with the management of a dealership. Originally, it
was composed of 1066 Java files (code lines 124459)
and 33 BPEL files but to facilitate the correctness ver-
ification of the results (operation done by hand) and
the interpretation of the same results, only a five real
interesting files have been selected.

The second and the third projects regard Java web
project. The first one is written for private purpose;
while the second one for managing a university exam.
For these projects we asked to a third person to write
the BPEL file modeling the business process starting

Fifth International Symposium on Business Modeling and Software Design

196

from their knowledge without considering the source
code. Also these last projects are small enough to per-
mit a right manually verification.

The traceability matrix which contains the Jaccard
indexes was generated For each projects. For every
project we calculated:

• false positives: correspondences detected but not
real;

• true positives: correspondences detected and real;

• false negatives: no correspondences found but ac-
tually present;

• true negatives: no correspondences found and not
really present.

Table 2 contains a summary of the results ob-
tained for the first case study. The low value of false
negatives (just one) indicates that, when the corre-
spondence exists, the proposed approach detect it cor-
rectly. The 15 occurrences of false positives are due
to correspondences that do not exist: it is possible that
the analyzed activity have a nomenclature similar to
the one of a Java method, but there is no real corre-
spondence between them.

Table 2: Experimental results for Dealership.

Case False False True True
Study Positives Negatives Positives Negatives

Dealership 15 1 60 13769

Table 3: Precision, Recall, F-Measure for Dealership.

Precision Recall F-Measure

0.8 0.98 0.88

Table 4 shows a sinthesys of the results achieved
for the second case study. In this case, a high num-
ber of false positives was obtained. The analysis of
the correspondent Java source code indicates the use
of meaningless names given to the various methods in
the different classes. In particular, names are not rel-
evant to the reference responsibilities (functionality).

Table 4: Experimental results for Groupon.

Case False False True True
Study Positives Negatives Positives Negatives

Groupon 9 1 6 3413

Finally, Table 6 contains the results of the OnLine
shop case study. It shows a discrete number of ex-
act matches. Unlike the previous case, the cause of

Table 5: Precision, Recall, F-Measure for Groupon.

Precision Recall F-Measure

0.4 0.86 0.55

false positive was not associated with the inadequate
nomenclature, but with the presence of some terms
that subsequently brought with them a number of syn-
onyms negatively influencing the results.

Table 6: Experimental results for Online shop.

Case False False True True
Study Positives Negatives Positives Negatives

Online Shop 2 2 5 3981

Table 7: Precision, Recall, F-Measure for Online shop.

Precision Recall F-Measure

0.71 0.71 0.71

3.1 Observation

Additional tests have been performed for considering
the comments in the BPEL and Java files.

For associating a single comment to the BPEL ac-
tivity, further nodes have been added to the AST. To
capture the association between comments and rela-
tive source code, a visit of the tree is performed with
the aim of associating every comment node to the
first brother node, which obviously must not be in
turn a comment node. Once the association has been
found, a new record containing the comment is in-
serted within of the TreeMap of the considered node.

The validation of this variation of the approach
was executed by considering the same 3 projects pre-
viously used. Comparing the new Jaccard indexes
with the previous ones, it was found a deterioration
of the results. This is due to considerable increase of
terms included in the various sets. Thus, because of
the considerable decrease of common terms in pro-
portion to the totals, many of the real correspondence
existing between Java method and BPEL activities
(i.e. true positives) are not found. Thi experience
shows that it is not suggested to consider comments
for the creation of the set of terms for identifying a
correspondence between BPEL and Java terms.

Linking Business Process and Software System

197

4 CONCLUSIONS AND FUTURE
WORK

The paper presented an approach aiming at facilitat-
ing the reuse of the existing software systems that
support business processes. In particular, this facili-
tation is provided by the ability of detecting the cor-
respondences existing between source code compo-
nents and activities, or processes, modelled by using
the BPEL language.

The method implementation entailed the use of
two parsers. The information extracted by using the
parsers have been expanded and refined for being
used in the traceability link recovery. The evaluation
and selection of such correspondences has been per-
formed by using the statistical indexes and similarity
measure defined in the paper. A first analysis also in-
cluded the comments in the code but it was observed
that their use leads to worse results.

The preliminary results obtained by the proposed
approach are encouraging and represent a starting
point, for the identification of parts of the code from
an existing software system with the aim defining new
services to be used in a service oriented architecture.
The approach is just based on the nomenclature used
for naming methods and activities and does not anal-
yse in details of the analysed software system. The
values of precision, recall, f −measure indicated in
Tables 3, 5, 7 show the potential of the proposed ap-
proach.

The future work can concern the refinement of the
selection of the correspondences in the matrix (refin-
ing the values in the range used for the analysis of
Jaccard indexes), expanding test cases and extends the
analysis also to WSDL files .

REFERENCES

Balasubramaniam, S., Lewis, G. A., Morris, E. J., Simanta,
S., and Smith, D. B. (2008). SMART: applica-
tion of a method for migration of legacy systems to
SOA environments. In Service-Oriented Computing -
ICSOC 2008, 6th International Conference, Sydney,
Australia, December 1-5, 2008. Proceedings, pages
678–690.

Cetin, S., Altintas, N. I., Oguztüzün, H., Dogru, A. H.,
Tufekci, O., and Suloglu, S. (2007). A mashup-based
strategy for migration to service-oriented computing.
In Proceedings of the IEEE International Conference
on Pervasive Services, ICPS 2007, 15-20 July, 2007,
Istanbul, Turkey, pages 169–172.

Chen, F., Li, S., and Chu, W. C. (2005). Feature analysis for
service-oriented reengineering. In 12th Asia-Pacific
Software Engineering Conference (APSEC 2005), 15-
17 December 2005, Taipei, Taiwan, pages 201–208.

Chen, F., Zhang, Z., Li, J., Kang, J., and Yang, H. (2009).
Service identification via ontology mapping. In Pro-
ceedings of the 33rd Annual IEEE International Com-
puter Software and Applications Conference, COMP-
SAC 2009, Seattle, Washington, USA, July 20-24,
2009. Volume 1, pages 486–491.

Khadka, R., Saeidi, A., Idu, A., Hage, J., and Jansen, S.
(2013a). Legacy to soa evolution: A systematic liter-
ature review. In In A. D. Ionita, M. Litoiu, & G. Lewis
(Eds.) Migrating Legacy Applications: Challenges in
Service Oriented Architecture and Cloud Computing
Environments.

Khadka, R., Saeidi, A., Jansen, S., and Hage, J. (2013b).
A structured legacy to SOA migration process and its
evaluation in practice. In IEEE 7th International Sym-
posium on the Maintenance and Evolution of Service-
Oriented and Cloud-Based Systems, MESOCA 2013,
Eindhoven, The Netherlands, September 23, 2013,
pages 2–11.

Matos, C. M. P. and Heckel, R. (2008). Migrating legacy
systems to service-oriented architectures. ECEASST,
16.

Sneed, H. M. (2006). Integrating legacy software into a
service oriented architecture. In 10th European Con-
ference on Software Maintenance and Reengineering
(CSMR 2006), 22-24 March 2006, Bari, Italy, pages
3–14. IEEE Computer Society.

Sneed, H. M., Schedl, S., and Sneed, S. H. (2012). Link-
ing legacy services to the business process model. In
6th IEEE International Workshop on the Maintenance
and Evolution of Service-Oriented and Cloud-Based
Systems, MESOCA 2012, Trento, Italy, September 24,
2012, pages 17–26. IEEE.

Fifth International Symposium on Business Modeling and Software Design

198

