
Cognitive Radio Management Benefiting from Flexible

Reconfiguration

 Xiguang Wu, Jacques Palicot and Pierre Leray
CentraleSupélec / IETR

Avenue de la Boulaie CS 47601, F-35576 Cesson-Sevigné CEDEX, France

{xiguang.wu, jacques.palicot, pierre.leray}@centralesupelec.fr

Keywords: Cognitive Radio, Dynamic Partial Reconfiguration, FPGA, Zynq, Management.

Abstract: Cognitive Radio (CR) has the ability to adapt its behavior to the changing environment. In order to achieve

this goal in real practice, a CR equipment should be able to manage and reconfigure itself flexibly and

efficiently. Therefore, it is necessary to integrate management in the CR equipment. Benefiting from the

dynamic full and partial reconfiguration, Zynq based devices provide more flexible features and become a

preferable hardware platform for CR. In this paper, we briefly introduce the cognitive radio management on

a Zynq based platform, and study the benefit and cost of offloading computations from software to hardware.

The results show that it is possible to win both performance and power consumption by flexible

reconfiguration.

1 INTRODUCTION

As the digital communication systems evolve from

GSM and now toward 5G, the supported standards

are also growing. The desired communication

equipments are required to support different

standards in a single device at the same time. The

software defined radio (SDR) (Mitola, 1995) has

been considered a solution to this requirement,

because typical way to change the function of a

communication equipment needs to redesign the

hardware. By using the SDR, the function of the

communication equipment can be changed by

software reprogramming without modifying the

hardware.

Furthermore, Cognitive Radio (CR) (Mitola,

2000) has been proposed to integrate new

capabilities, which can automatically adapt its

behavior to the changing environment. But more is

expected, in order to efficiently manage the CR

features, we introduce a management architecture,

namely Hierarchical and Distributed Cognitive

Radio Architecture Management (HDCRAM)

(Godard, Moy and Palicot, 2006), which has been

proposed for CR management by our team.

In order to design CR equipments, flexible and

efficiently reconfigurable hardware platforms are

necessary. Zynq based platform becomes a favorable

choice because it integrates ARM processor and

FPGA in a single device (Xilinx, Inc., 2013, UG585),

which provides both flexibility and performance.

Especially, it enables dynamic full and Partial

Reconfiguration (PR) (Xilinx, Inc., 2010, UG702).

Benefiting from these features, Zynq based device is

more suitable for developing CR equipment.

CR has also been considered as an enabling

technology for green radio communications (Palicot,

2009). In this paper, we investigate the performance

and power consumption taking the software and

hardware FIR filter as a study case on Zynq based

ZC702 evaluation board. The results provide the

useful information for the management of the FIR

filter, and with the HDCRAM, it is possible to

benefit both performance and power consumption

from flexible full and partial reconfiguration.

2 HDCRAM ARCHITECTURE

2.1 Introduction

A radio equipment consists of a set of functional

components that are connected with each other,

illustrated as processing elements (PEs) at the

bottom of Figure 1. These PEs can either be

software or hardware elements.

18
Wu X., Palicot J. and Leray P.
Cognitive Radio Management Benefiting from Flexible Reconfiguration.
DOI: 10.5220/0005888800180023
In Proceedings of the Fourth International Conference on Telecommunications and Remote Sensing (ICTRS 2015), pages 18-23
ISBN: 978-989-758-152-6
Copyright c© 2015 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Figure 1: An example of HDCRAM.

Figure 2: An example of HDCRAM deployment.

Our team has proposed a management

architecture for Cognitive Radio in a previous work,

namely HDCRAM (Palicot, 2013). A diagram of

HDCRAM architecture featuring three levels is

depicted in Figure 1.

HDCRAM consists of two aspects: Cognitive

Radio Management (CRM) and Reconfiguration

Management (ReM). The CRM part is responsible

for gathering sensing information and making

decisions according to the information obtained

from PEs. The ReM part is in charge of taking

actions to reconfigure the system. It takes a bottom-

up approach in the CRM part. Sensing information

is submitted from the lower level to the upper level.

When a CRM unit has made a reconfiguration

decision, it sends the reconfiguration parameters to

its associated ReM unit at the same level. It uses a

top-down method in the ReM part. The

reconfiguration commands are sent from the upper

level to the lower level.

HDCRAM is composed of three hierarchy levels.

At level 1, only one cognitive radio manager and

one reconfiguration manager can exist, because this

is the top level. At level 2 and level 3, there are

multiple couples of Cognitive Radio Management

units (CRMu) and their associated Reconfiguration

Management units (ReMu).

The architecture featuring three levels is

sufficient. The level 1 manages the exchange of

different standards; the level 2 manages the

reconfiguration of the middle scale functions; and

the level 3 manages the PEs.

According to this hierarchical management, a

cognitive cycle can be on three different scales: 1) a

local small cycle, in which the sensing, decision

making, and reconfiguration action are processed,

only includes the PE and its associated level 3

management; 2) a medium cycle that involves

multiple PEs and a level 2 management, the

reconfiguration of a PE needs the cooperation with

other PEs; 3) or a large cycle that concerns all the

three levels of management.

2.2 Deployment Example

There may be many different choices to deploy

HDCRAM. In this section, we only take one

possible HDCRAM deployment method as an

example, to introduce the deployment of HDCRAM,

as shown in Figure 2.

It comprises a GPP, a DSP, a FPGA, and a Zynq

based device. A straightforward way is placing the

level 1 manager on the GPP, and maybe multiple

level 2 and level 3 management units on it. A level 2

management unit and multiple level 3 management

units are deployed on DSP, FPGA, as well as Zynq.

An embedded processing core Microblaze is

employed on the FPGA with the level 2

management unit on it. A PE may be hardware in

logic or software on Microblaze. Therefore, a level 3

management unit that is in charge of managing a PE

may also be hardware or software, or part of it is

software executed on Microblaze and another part is

hardware. On Zynq, similar to the PFGA, a level 2

management unit is on PS, and a PE may also either

be hardware on programmable logic (PL) or

software on processing system (PS). A level 3

management unit may also be hardware or software,

or part of it is software executed on PS and another

part is hardware on PL.

Cognitive Radio Management Benefiting from Flexible Reconfiguration

19

Figure 4: A simplified architecture of the ZC702

evaluation board.

3 DYNAMIC PARTIAL

RECONFIGURATION

3.1 Introduction

FPGA devices have provided the flexibility to do

on-site device reprogramming, but a drawback of

traditional FPGA is that it has to stop running and

reprogram the entire logic even if a very small part

of the logic needs to be updated. Recently, some

FPGA families have provided a Dynamic Partial

Reconfiguration (DPR) technique, which extends the

inherent flexibility of the traditional FPGA. DPR

allows designers to change the functionality of

specific regions in an operating FPGA by

dynamically downloading a partial configuration

bitstream while the remaining logic continues to

operate without interruption.

The logic in the FPGA design is divided into two

different types, reconfigurable logic and static logic.

Reconfigurable logic is any logical element that is

part of a reconfigurable region. These logical

elements are modified when a partial bitstream is

loaded. Static logic is any logical element that is not

part of a reconfigurable region. These logical

elements are never partially reconfigured and always

active when a partial bitstream is loaded (Xilinx,

Inc., 2010, UG702).

As shown in Figure 3, the block portion labeled

Reconfigurable Region represents reconfigurable

logic and the light gray area of the FPGA block

represents static logic. The function implemented in

Reconfigurable Region is modified by downloading

one of several available partial BIN files, PR1.bin,

PR2.bin, PRn.bin, etc.

Figure 3: Reconfigurable logic and static logic.

There are many reasons why the DPR is

advantageous over traditional full configuration.

 Flexibility. The functionality of part of the

FPGA can be updated at any time by locally

or remotely loading the partial bitstream that

is needed on the fly, which makes the

hardware software-like.

 Reduce reconfiguration time. Because a

partial bitstream is smaller than the full

bitstream, and the configuration time is

proportional to the size of the bitstream, the

reconfiguration time of DPR is shorter.

Especially when the partial bitstream is quite

small, compared with the reconfiguration of

the entire device, DPR can significantly

reduce the reconfiguration time, which is quite

useful to applications requiring strict timing

constraints.

 Improve performance. Only a portion of the

device is reconfigured, the static logic remains

functioning and is completely unaffected by

the loading of a partial BIN file. There is no

need to stop running and reprogram the entire

device, therefore, it does not affect the

performance of the rest of the device.

 Hardware sharing. DPR can realize the

hardware reuse, which enables different

functionalities to be implemented in the same

portion of the device.

 Save space and resources. By taking

advantage of the DPR, the same system can be

implemented in smaller devices featuring less

resource thus reducing the size of the FPGA.

 Consequently, reduce power consumption and

overall cost.

3.2 Full and Partial Reconfiguration on
Zynq

The ZC702 evaluation board utilizes a Xilinx Zynq-

7000 All Programmable SoC (AP SoC), which

Fourth International Conference on Telecommunications and Remote Sensing

20

Figure 5: The storage organization of the reconfiguration

bitstreams.

integrates a dual-core ARM Cortex-A9 as the

processing system (PS) and a Xilinx’s 7 series

FPGA Artix-7 as the programmable logic (PL) in a

single device (Xilinx, Inc., 2013, UG850).

On Zynq, there are two ways for DPR to

reconfigure the PL, i.e., either by the internal

configuration access port (ICAP) primitive in the PL,

or through the device configuration (DevC) /

processor configuration access port (PCAP)

interface in the PS (Christian Kohn, 2013).

ICAP can only perform partial reconfiguration in

the PL, but PCAP supports both full and partial

reconfiguration of the PL from the PS, which

provides more flexibilities. Furthermore, the

bitstreams are transferred to the PCAP interface by a

Direct Memory Access (DMA) approach, which

frees the processor to execute other tasks. Therefore,

we utilize the PCAP method.

Different functions can be designed to share the

hardware PL by dynamic full and partial

reconfiguration in the field. The generated full and

partial bitstreams can be stored in a database. Each

function has a full bitstream and several partial

bitstreams depending on the real needs. Figure 5

illustrates the storage organization of the BIN files

database.

The reconfiguration bitstreams are stored in the

database on the host computer. The full or partial

bitstreams can be remotely downloaded through

Ethernet to change the functionality of the complete

or pre-defined regions of PL on the fly as needed.

They can also be stored on the SD card on the

ZC702 evaluation board if the level 2 management

works standalone. It is also possible to dynamically

download new full and partial bitstreams through

Ethernet to update the database. Some partial

bitstreams are able to be read into the on-chip

memory in PS if they are frequently used.

Figure 6: The HDCRAM implementation on the

ZC702 evaluation board.

4 CASE STUDY

A finite impulse response (FIR) filter is a commonly

used processing element in digital signal processing.

It could be implemented either in software mapped

onto the PS or in hardware mapped onto PL.

Therefore, we would like to investigate the benefit

and cost of the FIR filter implementation on PS and

PL respectively, and then the results will provide

helpful information for CRMu to make an

appropriate decision.

4.1 Evaluation of performance and
power consumption of FIR filter
implementations

Take a 32-tap FIR filter as an example, which is

implemented on PS and on PL respectively. The

operations are executed in serial on PS, but on PL,

the FIR filter could be implemented in serial or in

parallel.

And the hardware serial and parallel

implementations of the FIR filter reuse the PL logic

by taking advantage of the PR. After generating the

full and partial bitstreams for the PL following the

PR design flow, we store them in the database on the

host as shown in Figure 7. A blank full bitstream is

also generated to clear the PL to save power if the

PL part is not needed, which is stored in NOPL

folder. Table 1 shows the resource available in the

reconfigurable region and used by the FIR filter. The

serial implementation consumes less resource, and it

uses 2 DSP48E1s, which is 32 times less than the

Cognitive Radio Management Benefiting from Flexible Reconfiguration

21

Figure 8: Power consumption of PS.

Table 3: Power consumption of PL.

Function NOPL Serial Parallel

Power(W) 0.06 0.095 0.101

parallel implementation. But the serial way

consumes more memory than the parallel approach.

Figure 7: The full and partial bitstreams of the design.

Table 1: Resources available and used by the FIR filter.

Resource Available Serial Parallel

LUT 10304 868 1096

FD_LD 20608 1516 3108

SLICEL 1564 141 288

SLICEM 1012 91 187

DSP48E1 72 2 64

RAMBFIFO36E1 36 8 4

The timing overhead of full and partial

reconfiguration should also be considered. Because

downloading a bitstream remotely from the host

computer consumes longer time than that from the

local memory, if we can benefit from remote

reconfiguration, undoubtedly we can also benefit

from local reconfiguration. The sizes of full and

partial bitstreams, and the time consumed of remote

full and partial configuration are listed in Table 2.

Table 2: Full and partial configuration time.

Type Size (bytes) Time (μs)

Full 4 045 564 215 736

Partial 707 712 51 865

We have also measured the power consumption

of both PS and PL. The most convenient and

simplest way to monitor the power consumption on

ZC702 board is to use Texas Instruments' (TI)

Fusion Digital Power Designer, which is a Graphical

User Interface (GUI) used to monitor and display the

real-time voltage and current of selected power rails

of the board (Xilinx, Inc., 2013, UG850). Table 3

lists the power consumption of PL for blank design

and the FIR filter.

In order to clearly and visibly observe the results,

we have sent amount of data to the implemented

software and hardware FIR filter. Each time we sent

4096 32-bit integers and then repeat 2000 times.

When the hardware approach is chosen, the data are

transferred between PS and PL by DMA approach.

Table 4 gives the total time consumed by software

and hardware implementations of the FIR filter.

Table 4: Execution time of the FIR filter.

Software

 (μs)

Hardware (μs)

Serial Parallel

12 229 279 281 315 279 026

We can see that although the hardware

approaches consume much less time than the

software way, the hardware parallel implementation

is not as fast as expected more than 32 times faster

than the serial implementation, which is because the

overhead of data transmission between PS and PL. It

takes some time when the data and commands are

transmitted from user space to Linux driver and then

to the hardware. Therefore, if only offloading the

FIR filter from the PS onto the PL, it is better to

choose the serial implementation, which occupies

less resource and consumes less power while not

losing much performance.

The reason why we repeat 2000 times is that we

cannot catch the power changes by TI Fusion Digital

Power Designer when the execution time is too short.

And even so, sometimes we still cannot catch PR

and hardware FIR filter operations. For the sake of

comparison and analysis, we put the operations of

software FIR filter, PR, and hardware FIR filter

together in Figure 8. At time 41:00, the software FIR

filter are started execution, at around 41:25 PR is

performed to reconfigure the PL, and at time 41:36,

the hardware FIR filter operations are executed. The

power risings at around 41:25 and at 41:36 are

because the data transmission from PS to PL. We

can see that the power increases from 0.33W to

0.44W during software FIR filter operations, which

lasts about 12.23s. But the additional power increase

Fourth International Conference on Telecommunications and Remote Sensing

22

of the hardware serial and parallel implementations

is around 0.04W on PL, which is less than 0.11W on

PS.

4.2 Management of FIR filter by
HDCRAM

Based on the above results, it is possible to benefit

both performance and power consumption by

offloading the FIR filter from the PS onto the PL.

Another advantage is that it frees the PS to execute

other tasks.

Therefore, we choose to implement the level 3

management of the FIR filter on the PS. The

L2_CRMu makes the decision to implement the FIR

filter on PS or on PL in serial or in parallel based on

the information obtained from other L3_CRMus.

And then the L2_ReMu sends the corresponding

reconfiguration command to the L3_ReMu of the

FIR filter, who then maps the FIR filter onto PS by

calling the software FIR filter function or onto PL by

dynamic full or partial reconfiguration.

Figure 9: Management of FIR filter.

If the PL is occupied by other computation

intensive PEs and has no more space for the FIR

filter, there is no choice and the L2_CRMu decides

to implement the FIR filter in software on PS, which

consumes 0.11W more power and has a longer

execution time.

Else if the preceding PE and the succeeding PE

of the FIR filter is implemented on PS, the

L2_CRMu decides to implement the FIR filter on

PL in serial mode, because it uses less resource with

additional 0.035W power consumption and the

performance is close to the parallel way (see Table 4)

due to the overhead of data transmission between PS

and PL.

Else if the preceding PE or the succeeding PE of

the FIR filter is implemented on PL, the L2_CRMu

decides to implement the FIR filter on PL in parallel

mode, because the speed is more than 32 times faster

than the serial way and the data transmission is in

hardware, which does not slow down the data

processing. This way consumes 0.041W more power

but has a higher performance.

5 CONCLUSIONS

In order to efficiently manage the CR features, it is

necessary to integrate management into CR

equipment. In this paper, we have briefly introduced

the HDCRAM architecture as well as partial

reconfiguration on Zynq. We have studied the

commonly used FIR filter and the benefit and cost

when it is implemented in PS and PL. The results

show that we can win both performance and power

consumption by flexible full and partial

reconfiguration, which also provide useful

information for the HDCRAM to make appropriate

decisions to efficiently manage the FIR filter

implementation. This also provides a reference to

the implementation of potential green scenarios,

which are our future works.

REFERENCES

Mitola, J. (1995). The software radio architecture.

Communications Magazine, IEEE, 33(5), 26-38.

Mitola, J. (2000). Cognitive Radio---An Integrated Agent

Architecture for Software Defined Radio.

Godard, L., Moy, C., & Palicot, J. (2006, June). From a

configuration management to a cognitive radio

management of SDR systems. In Cognitive Radio

Oriented Wireless Networks and Communications,

2006. 1st International Conference on (pp. 1-5). IEEE.

Xilinx, Inc. (2013, September). Zynq-7000 all

programmable SoC. Technical Reference Manual,

UG585 (v1.6.1),.

Xilinx, Inc. (2010, April). Partial Reconfiguration User

Guide. UG702 (v12.3).

Palicot, J. (2009, June). Cognitive radio: an enabling

technology for the green radio communications

concept. In Proceedings of the 2009 International

Conference on Wireless Communications and Mobile

Computing: Connecting the World Wirelessly (pp.

489-494). ACM.

Palicot, J. (Ed.). (2013). Radio engineering: From

software radio to cognitive radio. John Wiley & Sons.

Xilinx, Inc., (2013, April). ZC702 Evaluation Board for

the Zynq-7000 XC7Z020 All Programmable SoC User

Guide, UG850 (v1.2).

Christian Kohn, (2013). Partial Reconfiguration of a

Hardware Accelerator on Zynq-7000 All

Programmable SoC Devices. XAPP1159 (v1.0).

Cognitive Radio Management Benefiting from Flexible Reconfiguration

23

