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Abstract: Cognitive Radio (CR) has the ability to adapt its behavior to the changing environment. In order to achieve 

this goal in real practice, a CR equipment should be able to manage and reconfigure itself flexibly and 

efficiently. Therefore, it is necessary to integrate management in the CR equipment. Benefiting from the 

dynamic full and partial reconfiguration, Zynq based devices provide more flexible features and become a 

preferable hardware platform for CR. In this paper, we briefly introduce the cognitive radio management on 

a Zynq based platform, and study the benefit and cost of offloading computations from software to hardware. 

The results show that it is possible to win both performance and power consumption by flexible 

reconfiguration. 

1 INTRODUCTION 

As the digital communication systems evolve from 

GSM and now toward 5G, the supported standards 

are also growing. The desired communication 

equipments are required to support different 

standards in a single device at the same time. The 

software defined radio (SDR) (Mitola, 1995) has 

been considered a solution to this requirement, 

because typical way to change the function of a 

communication equipment needs to redesign the 

hardware. By using the SDR, the function of the 

communication equipment can be changed by 

software reprogramming without modifying the 

hardware. 

Furthermore, Cognitive Radio (CR) (Mitola, 

2000) has been proposed to integrate new 

capabilities, which can automatically adapt its 

behavior to the changing environment. But more is 

expected, in order to efficiently manage the CR 

features, we introduce a management architecture, 

namely Hierarchical and Distributed Cognitive 

Radio Architecture Management (HDCRAM) 

(Godard, Moy and Palicot, 2006), which has been 

proposed for CR management by our team. 

In order to design CR equipments, flexible and 

efficiently reconfigurable hardware platforms are 

necessary. Zynq based platform becomes a favorable 

choice because it integrates ARM processor and 

FPGA in a single device (Xilinx, Inc., 2013, UG585), 

which provides both flexibility and performance. 

Especially, it enables dynamic full and Partial 

Reconfiguration (PR) (Xilinx, Inc., 2010, UG702). 

Benefiting from these features, Zynq based device is 

more suitable for developing CR equipment. 

CR has also been considered as an enabling 

technology for green radio communications (Palicot, 

2009).  In this paper, we investigate the performance 

and power consumption taking the software and 

hardware FIR filter as a study case on Zynq based 

ZC702 evaluation board. The results provide the 

useful information for the management of the FIR 

filter, and with the HDCRAM, it is possible to 

benefit both performance and power consumption 

from flexible full and partial reconfiguration.  

2 HDCRAM ARCHITECTURE 

2.1 Introduction 

A radio equipment consists of a set of functional 

components that are connected with each other, 

illustrated as processing elements (PEs) at the 

bottom of Figure 1. These PEs can either be 

software or hardware elements.  

18
Wu X., Palicot J. and Leray P.
Cognitive Radio Management Benefiting from Flexible Reconfiguration.
DOI: 10.5220/0005888800180023
In Proceedings of the Fourth International Conference on Telecommunications and Remote Sensing (ICTRS 2015), pages 18-23
ISBN: 978-989-758-152-6
Copyright c© 2015 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



 

 

Figure 1: An example of HDCRAM. 

 

Figure 2: An example of HDCRAM deployment. 

 

Our team has proposed a management 

architecture for Cognitive Radio in a previous work, 

namely HDCRAM (Palicot, 2013). A diagram of 

HDCRAM architecture featuring three levels is 

depicted in Figure 1. 

HDCRAM consists of two aspects: Cognitive 

Radio Management (CRM) and Reconfiguration 

Management (ReM). The CRM part is responsible 

for gathering sensing information and making 

decisions according to the information obtained 

from PEs. The ReM part is in charge of taking 

actions to reconfigure the system. It takes a bottom-

up approach in the CRM part.  Sensing information 

is submitted from the lower level to the upper level. 

When a CRM unit has made a reconfiguration 

decision, it sends the reconfiguration parameters to 

its associated ReM unit at the same level. It uses a 

top-down method in the ReM part. The 

reconfiguration commands are sent from the upper 

level to the lower level.  

HDCRAM is composed of three hierarchy levels. 

At level 1, only one cognitive radio manager and 

one reconfiguration manager can exist, because this 

is the top level. At level 2 and level 3, there are 

multiple couples of Cognitive Radio Management 

units (CRMu) and their associated Reconfiguration 

Management units (ReMu).  

The architecture featuring three levels is 

sufficient. The level 1 manages the exchange of 

different standards; the level 2 manages the 

reconfiguration of the middle scale functions; and 

the level 3 manages the PEs. 

According to this hierarchical management, a 

cognitive cycle can be on three different scales: 1) a 

local small cycle, in which the sensing, decision 

making, and reconfiguration action are processed, 

only includes the PE and its associated level 3 

management; 2) a medium cycle that involves 

multiple PEs and a level 2 management, the 

reconfiguration of a PE needs the cooperation with 

other PEs; 3) or a large cycle that concerns all the 

three levels of management. 

 

2.2 Deployment Example 

There may be many different choices to deploy 

HDCRAM. In this section, we only take one 

possible HDCRAM deployment method as an 

example, to introduce the deployment of HDCRAM, 

as shown in Figure 2.  

It comprises a GPP, a DSP, a FPGA, and a Zynq 

based device. A straightforward way is placing the 

level 1 manager on the GPP, and maybe multiple 

level 2 and level 3 management units on it. A level 2 

management unit and multiple level 3 management 

units are deployed on DSP, FPGA, as well as Zynq. 

An embedded processing core Microblaze is 

employed on the FPGA with the level 2 

management unit on it. A PE may be hardware in 

logic or software on Microblaze. Therefore, a level 3 

management unit that is in charge of managing a PE 

may also be hardware or software, or part of it is 

software executed on Microblaze and another part is 

hardware. On Zynq, similar to the PFGA, a level 2 

management unit is on PS, and a PE may also either 

be hardware on programmable logic (PL) or 

software on processing system (PS). A level 3 

management unit may also be hardware or software, 

or part of it is software executed on PS and another 

part is hardware on PL. 

Cognitive Radio Management Benefiting from Flexible Reconfiguration

19



 

 

Figure 4: A simplified architecture of the ZC702 

evaluation board. 

 

3 DYNAMIC PARTIAL 

RECONFIGURATION 

3.1 Introduction 

FPGA devices have provided the flexibility to do 

on-site device reprogramming, but a drawback of 

traditional FPGA is that it has to stop running and 

reprogram the entire logic even if a very small part 

of the logic needs to be updated. Recently, some 

FPGA families have provided a Dynamic Partial 

Reconfiguration (DPR) technique, which extends the 

inherent flexibility of the traditional FPGA. DPR 

allows designers to change the functionality of 

specific regions in an operating FPGA by 

dynamically downloading a partial configuration 

bitstream while the remaining logic continues to 

operate without interruption.  

The logic in the FPGA design is divided into two 

different types, reconfigurable logic and static logic. 

Reconfigurable logic is any logical element that is 

part of a reconfigurable region. These logical 

elements are modified when a partial bitstream is 

loaded. Static logic is any logical element that is not 

part of a reconfigurable region. These logical 

elements are never partially reconfigured and always 

active when a partial bitstream is loaded (Xilinx, 

Inc., 2010, UG702). 

As shown in Figure 3, the block portion labeled 

Reconfigurable Region represents reconfigurable 

logic and the light gray area of the FPGA block 

represents static logic. The function implemented in 

Reconfigurable Region is modified by downloading 

one of several available partial BIN files, PR1.bin, 

PR2.bin, PRn.bin, etc. 

 

Figure 3: Reconfigurable logic and static logic. 

There are many reasons why the DPR is 

advantageous over traditional full configuration. 

 Flexibility. The functionality of part of the 

FPGA can be updated at any time by locally 

or remotely loading the partial bitstream that 

is needed on the fly, which makes the 

hardware software-like. 

 Reduce reconfiguration time. Because a 

partial bitstream is smaller than the full 

bitstream, and the configuration time is 

proportional to the size of the bitstream, the 

reconfiguration time of DPR is shorter. 

Especially when the partial bitstream is quite 

small, compared with the reconfiguration of 

the entire device, DPR can significantly 

reduce the reconfiguration time, which is quite 

useful to applications requiring strict timing 

constraints. 

 Improve performance. Only a portion of the 

device is reconfigured, the static logic remains 

functioning and is completely unaffected by 

the loading of a partial BIN file. There is no 

need to stop running and reprogram the entire 

device, therefore, it does not affect the 

performance of the rest of the device.  

 Hardware sharing. DPR can realize the 

hardware reuse, which enables different 

functionalities to be implemented in the same 

portion of the device.  

 Save space and resources. By taking 

advantage of the DPR, the same system can be 

implemented in smaller devices featuring less 

resource thus reducing the size of the FPGA.  

 Consequently, reduce power consumption and 

overall cost.  

3.2 Full and Partial Reconfiguration on 
Zynq 

The ZC702 evaluation board utilizes a Xilinx Zynq-

7000 All Programmable SoC (AP SoC), which 
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Figure 5: The storage organization of the reconfiguration 

bitstreams. 

integrates a dual-core ARM Cortex-A9 as the 

processing system (PS) and a Xilinx’s 7 series 

FPGA Artix-7 as the programmable logic (PL) in a 

single device (Xilinx, Inc., 2013, UG850). 

On Zynq, there are two ways for DPR to 

reconfigure the PL, i.e., either by the internal 

configuration access port (ICAP) primitive in the PL, 

or through the device configuration (DevC) / 

processor configuration access port (PCAP) 

interface in the PS (Christian Kohn, 2013). 

ICAP can only perform partial reconfiguration in 

the PL, but PCAP supports both full and partial 

reconfiguration of the PL from the PS, which 

provides more flexibilities. Furthermore, the 

bitstreams are transferred to the PCAP interface by a 

Direct Memory Access (DMA) approach, which 

frees the processor to execute other tasks. Therefore, 

we utilize the PCAP method. 

Different functions can be designed to share the 

hardware PL by dynamic full and partial 

reconfiguration in the field. The generated full and 

partial bitstreams can be stored in a database. Each 

function has a full bitstream and several partial 

bitstreams depending on the real needs. Figure 5 

illustrates the storage organization of the BIN files 

database. 

The reconfiguration bitstreams are stored in the 

database on the host computer.  The full or partial 

bitstreams can be remotely downloaded through 

Ethernet to change the functionality of the complete 

or pre-defined regions of PL on the fly as needed. 

They can also be stored on the SD card on the 

ZC702 evaluation board if the level 2 management 

works standalone. It is also possible to dynamically 

download new full and partial bitstreams through 

Ethernet to update the database. Some partial 

bitstreams are able to be read into the on-chip 

memory in PS if they are frequently used.  

 

 

Figure 6: The HDCRAM implementation on the 

ZC702 evaluation board. 

4 CASE STUDY 

A finite impulse response (FIR) filter is a commonly 

used processing element in digital signal processing. 

It could be implemented either in software mapped 

onto the PS or in hardware mapped onto PL. 

Therefore, we would like to investigate the benefit 

and cost of the FIR filter implementation on PS and 

PL respectively, and then the results will provide 

helpful information for CRMu to make an 

appropriate decision.  

4.1 Evaluation of performance and 
power consumption of FIR filter 
implementations 

Take a 32-tap FIR filter as an example, which is 

implemented on PS and on PL respectively. The 

operations are executed in serial on PS, but on PL, 

the FIR filter could be implemented in serial or in 

parallel. 

And the hardware serial and parallel 

implementations of the FIR filter reuse the PL logic 

by taking advantage of the PR.  After generating the 

full and partial bitstreams for the PL following the 

PR design flow, we store them in the database on the 

host as shown in Figure 7. A blank full bitstream is 

also generated to clear the PL to save power if the 

PL part is not needed, which is stored in NOPL 

folder. Table 1 shows the resource available in the 

reconfigurable region and used by the FIR filter. The 

serial implementation consumes less resource, and it 

uses 2 DSP48E1s, which is 32 times less than the 
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Figure 8: Power consumption of PS. 

Table 3: Power consumption of PL. 

Function NOPL Serial Parallel 

Power(W) 0.06 0.095 0.101 

 

parallel implementation. But the serial way 

consumes more memory than the parallel approach. 

 

 

Figure 7: The full and partial bitstreams of the design. 

Table 1: Resources available and used by the FIR filter. 

Resource Available Serial Parallel 

LUT 10304 868 1096 

FD_LD 20608 1516 3108 

SLICEL 1564 141 288 

SLICEM 1012 91 187 

DSP48E1 72 2 64 

RAMBFIFO36E1 36 8 4 

 

The timing overhead of full and partial 

reconfiguration should also be considered. Because 

downloading a bitstream remotely from the host 

computer consumes longer time than that from the 

local memory, if we can benefit from remote 

reconfiguration, undoubtedly we can also benefit 

from local reconfiguration. The sizes of full and 

partial bitstreams, and the time consumed of remote 

full and partial configuration are listed in Table 2. 

Table 2: Full and partial configuration time. 

Type  Size (bytes) Time (μs) 

Full 4 045 564 215 736 

Partial 707 712 51 865 

 

We have also measured the power consumption 

of both PS and PL. The most convenient and 

simplest way to monitor the power consumption on 

ZC702 board is to use Texas Instruments' (TI) 

Fusion Digital Power Designer, which is a Graphical 

User Interface (GUI) used to monitor and display the 

real-time voltage and current of selected power rails 

of the board (Xilinx, Inc., 2013, UG850). Table 3 

lists the power consumption of PL for blank design 

and the FIR filter. 

In order to clearly and visibly observe the results, 

we have sent amount of data to the implemented 

software and hardware FIR filter. Each time we sent 

4096 32-bit integers and then repeat 2000 times. 

When the hardware approach is chosen, the data are 

transferred between PS and PL by DMA approach. 

Table 4 gives the total time consumed by software 

and hardware implementations of the FIR filter.  

Table 4: Execution time of the FIR filter. 

Software 

 (μs) 

Hardware (μs) 

Serial Parallel 

12 229 279 281 315 279 026 

 

We can see that although the hardware 

approaches consume much less time than the 

software way, the hardware parallel implementation 

is not as fast as expected more than 32 times faster 

than the serial implementation, which is because the 

overhead of data transmission between PS and PL. It 

takes some time when the data and commands are 

transmitted from user space to Linux driver and then 

to the hardware. Therefore, if only offloading the 

FIR filter from the PS onto the PL, it is better to 

choose the serial implementation, which occupies 

less resource and consumes less power while not 

losing much performance.  

The reason why we repeat 2000 times is that we 

cannot catch the power changes by TI Fusion Digital 

Power Designer when the execution time is too short. 

And even so, sometimes we still cannot catch PR 

and hardware FIR filter operations. For the sake of 

comparison and analysis, we put the operations of 

software FIR filter, PR, and hardware FIR filter 

together in Figure 8. At time 41:00, the software FIR 

filter are started execution, at around 41:25 PR is 

performed to reconfigure the PL, and at time 41:36, 

the hardware FIR filter operations are executed. The 

power risings at around 41:25 and at 41:36 are 

because the data transmission from PS to PL. We 

can see that the power increases from 0.33W to 

0.44W during software FIR filter operations, which 

lasts about 12.23s. But the additional power increase 
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of the hardware serial and parallel implementations 

is around 0.04W on PL, which is less than 0.11W on 

PS. 

4.2 Management of FIR filter by 
HDCRAM 

Based on the above results, it is possible to benefit 

both performance and power consumption by 

offloading the FIR filter from the PS onto the PL. 

Another advantage is that it frees the PS to execute 

other tasks. 

Therefore, we choose to implement the level 3 

management of the FIR filter on the PS. The 

L2_CRMu makes the decision to implement the FIR 

filter on PS or on PL in serial or in parallel based on 

the information obtained from other L3_CRMus. 

And then the L2_ReMu sends the corresponding 

reconfiguration command to the L3_ReMu of the 

FIR filter, who then maps the FIR filter onto PS by 

calling the software FIR filter function or onto PL by 

dynamic full or partial reconfiguration. 

 

 

Figure 9: Management of FIR filter. 

If the PL is occupied by other computation 

intensive PEs and has no more space for the FIR 

filter, there is no choice and the L2_CRMu decides 

to implement the FIR filter in software on PS, which 

consumes 0.11W more power and has a longer 

execution time. 

Else if the preceding PE and the succeeding PE 

of the FIR filter is implemented on PS, the 

L2_CRMu decides to implement the FIR filter on 

PL in serial mode, because it uses less resource with 

additional 0.035W power consumption and the 

performance is close to the parallel way (see Table 4) 

due to the overhead of data transmission between PS 

and PL.   

Else if the preceding PE or the succeeding PE of 

the FIR filter is implemented on PL, the L2_CRMu 

decides to implement the FIR filter on PL in parallel 

mode, because the speed is more than 32 times faster 

than the serial way and the data transmission is in 

hardware, which does not slow down the data 

processing. This way consumes 0.041W more power 

but has a higher performance. 

5 CONCLUSIONS 

In order to efficiently manage the CR features, it is 

necessary to integrate management into CR 

equipment. In this paper, we have briefly introduced 

the HDCRAM architecture as well as partial 

reconfiguration on Zynq. We have studied the 

commonly used FIR filter and the benefit and cost 

when it is implemented in PS and PL. The results 

show that we can win both performance and power 

consumption by flexible full and partial 

reconfiguration, which also provide useful 

information for the HDCRAM to make appropriate 

decisions to efficiently manage the FIR filter 

implementation. This also provides a reference to 

the implementation of potential green scenarios, 

which are our future works. 
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