
Extending Graphical Part of the Interaction Flow Modeling
Language to Generate Rich Internet Graphical User Interfaces

Sarra Roubi1, Mohammed Erramdani1 and Samir Mbarki2
1High School of Technology, Mohamed First University, Oujda, Morocco

2Department of Computer Science, Ibn Tofail University, Kenitra, Morocco

Keywords: Model Driven Engineering, Interaction Flow Modeling Language, Transformation, Model, Meta Model,
User Interface.

Abstract: Rich Internet Applications (RIAs) combine the simplicity of the hypertext paradigm with the flexibility of
desktop interfaces. However, RIAs are complex applications and their development requires designing and
implementation which are time-consuming and the available tools are specialized in manual design. In this
paper, we present an approach for the model driven generation of Rich Internet Application using the
Interaction Flow Modeling Language (IFML). The approach exploits the new language IFML recently
adopted by the Object Management Group by extending first the graphical part of the Meta Model to fit the
RIAs’ needs. We used frameworks and technologies known to model-driven engineering, such as Eclipse
Modeling Framework (EMF) for Meta Models, Query View Transformation (QVT) for model
transformations and Acceleo for code generation. The approach allows to quickly and efficiently generating
a RIA focusing on the graphical aspect of the application.

1 INTRODUCTION

HTML-based Web applications have shown their
limitations especially when it comes to integrate
complex activities to be performed via Graphical
User Interfaces (GUI). Rich Internet Applications
(RIAs), were proposed as a response to these
necessities and have combined the richness and
interactivity of desktop interfaces into the web
distribution model.

The Model Driven Engineering has been
introduced to master complexity and ensures
consistency of applications and has shown its
efficiency. Besides, it helps improving the quality of
applications as well as time savings and increasing
the productivity.

Indeed, several researches have applied model-
driven techniques to the specification of software
application and precisely interfaces and user
interaction. Among them, the ones focusing on Web
interfaces like OOH-Method (Gmez et al., 2001),
WebML (Ceri et al., 2002), HERA (Vdovjàk et al.,
2003) and RUX-Model (Linaje et al., 2007).
Furthermore, some approaches apply model driven
techniques for multi-device UI modeling, such as

TERESA (Berti et al., 2004), MARIA (Paterno et
al., 2009), IFML (Brambilla et al., 2014)…

However, none of them specifically addresses
the needs of RIAs in terms of Graphical aspects and
its connection with the application layers respecting
a given Design Pattern such as Model View
Controller, Model View Presenter...

In this paper, we propose a model-driven
approach and the idea is to focus on the graphical
aspect of the application on the one hand, and the
complete abstraction of the input model from any
technical knowledge of the targeted platform on the
other hand. This guarantees the translation of the
user’s expectation from a simple model to an
automatically generated RIA that respects a MVP
pattern and provides well designed graphical user
interfaces. To do this, we used the OMG standard
language called Interaction Flow Modeling
Language (IFML). We propose an extension of the
IFML suitable for graphical characteristics of RIAs,
respecting the MVP pattern, and we describe the
process and the proposed Meta Models, the
extensions added and the transformation process
with QVTo standard.

The paper is organized as follows section 2
reviews the related work; Section 3 summarizes the

Roubi, S., Erramdani, M. and Mbarki, S.
Extending Graphical Part of the Interaction Flow Modeling Language to Generate Rich Internet Graphical User Interfaces.
DOI: 10.5220/0005650601610167
In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2016), pages 161-167
ISBN: 978-989-758-168-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

161

Model Driven Engineering and introduces the IFML.
Section 4 and 5 present respectively the work
elaborated and the running example and Section 6
concludes.

2 RELATED WORK

This work is related to several works that dealing
with conceptual modeling of software applications.
Among these works, there are those focusing on the
Web: The Web Modeling Language (WebML)
(Ceri, 2002), defined as a conceptual model for data-
intensive Web. Also, we find the OO-HDM
(Schwabe and Rossi, 1995), a UML-based approach
for modeling and implementing Web application
interfaces. Moreover, WebDSL (Groenewegen et al.,
2008) is a domain-specific language consisting of a
core language with constructs to define entities,
pages and business logic. In addition, we find HERA
(Vdovjàk et al., 2003) which is a model-driven
design approach and specification framework
focusing on the development of context-dependent
or personalized Web information system.

Some researches apply model based approaches
for multi-device user interface development. Among
them we can cite: TERESA (Transformation
Environment for inteRactivE Systems
representations) (Berti et al., 2003) and MARIA
with (Paterno et al., 2009). Also, UsiXML (USer
Interface eXtended Markup Language)
(Vanderdonckt, 2005).

Another related work on applying MDA
approach for Rich Internet Applications is found in
(Martinez-Ruiz et al., 2006). The approach is based
on XML User Interface description languages using
XSLT as the transformation language between the
different levels of abstraction

Other recent proposals in the Web Engineering
field represent the RIA foundations (Urbieta et al.,
2007) by extending existing Web engineering
approaches. We also find combination of the UML
based Web Engineering (UWE) method for data and
business logic modeling with the RUX-Method for
the user interface modeling of RIAs was proposed as
model-driven approach to RIA development
(Preciado et al., 2008).

Also, an MDA approach for AJAX web
applications (Gharavi et al., 2008) was the subject of
a study that proposes a UML scheme by using the
profiling for modeling AJAX user interfaces, and
report on the intended approach of adopting
ANDROMDA for creating an AJAX cartridge to
generate the corresponding AJAX application code,

in ICEFACES, with back-end integration. A Meta
Model of AJAX has been defined using the
AndroMDA tool.

3 MODEL DRIVEN
ENGINEERING (MDE)

3.1 Transformation Process in MDE

In MDE, every artefact, including the source code, is
considered as a model element, and the whole
development process can be seen as a set of related
transformations from one model to the next one in
order to automate the system’s implementation from
its requirements. This brings up the three different
layers of abstraction that can be described as follow:

 Computing Independent Model (CIM): It
represents a high level specification of the
system’s functionality. It shows exactly what the
system is supposed to do, but hides all the
technology specifications.

 Platform Independent Model (PIM): It allows
the extraction of the common concept of the
application independently from the platform
target.

 Platform Specification Model (PSM): It
combines the specifications in the PIM with the
details required of the platform to stipulate how
the system uses a particular type of platform
which leads to include platform specific details.

Once the Meta Models developed, MDE provides
the transition between the CIM, PIM and PSM
models through the execution of models
transformation. A transformation converts models
with a particular perspective from one level of
abstraction to another, usually from a more abstract
to less abstract view, by adding more detail supplied
by the transformation rules. There are two types of
transformations in the MDA approach:
 Model To Model: it concerns the transition from

CIM to PIM or from PIM to PSM.
 Model To Text: it concerns the generation of the

code from the entry model (the PSM) to a
specific programming language as a target.

For the Model To Model transformation, using the
modeling approach is designed to have a sustainable
and productive models transformation,
independently of any execution platform. This is
why the OMG has developed a standard for this
transformation language which is the MOF 2.0 QVT
(OMG - Object Management Group (MOF, MDA,

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

162

XMI, QVT, UML, MOFM2T) -
http://www.omg.org/.) standing for Query View
Transformation. QVT is hybrid character
(declarative / imperative) consisting of three
languages: QVT-Relation, QVT-Operational and
QVT-Core.
1

Figure 1: Query View Transformation Architecture.

The declarative part is defined by the Relation
and Core languages with different levels of
abstraction, while the Imperative part is defined by
the operational language. Finally, a black box is
defined in the MOF 2.0 QVT standard that enables
escaping the whole transformation/library or its parts
that are difficult or impossible to implement in pure
QVT. See Figure 1.

For this work, we used the QVT-Operational
mappings language implemented by Eclipse
modeling Framework (www.eclipse.org).

For the code generation phase under the MOF
Model To Text (MOFM2T) specification, there are
a number of tools aimed at the automation of
applications development. The principle being to
parse the representation of the model in XML file
format Metadata Interchange (XMI) (Schwabe and
Rossi, 1995) and apply a number of templates for
transforming models conforming to a MOF
metamodel into text; source code. Optionally, the
developer will have to add or edit source code
portions to complete its application code. Acceleo,
among others, is an implementation of the
“MOFM2T” standard, from the Object Management
Group (OMG). It is used in our work for final
transformation and code generation of the RIA with
explicit Graphical User Interface.

3.2 The Interaction Flow Modeling
Language

The Interaction Flow Modeling Language (IFML) is
designed for expressing the content, user interaction
and control behaviour of the front-end of software
applications. In other words, it supports the platform
independent description of graphical user interfaces
for software applications that can be accessed or
deployed on various systems as desktop computers,
laptop computers, PDAs, mobile phones, and tablets.
Besides, an IFML model should supports several

design perspectives, among them:
 The view structure specification, which consists

on the definition of view containers, their nesting
relationships, their visibility...

 The view content specification that treats the
content and data entry elements contained within
view containers.

 The events specification that can be produced by
the user’s interaction, by the application, or by an
external system and may affect the state of the
user interface.

 The parameter binding specification, which
consists on the definition of the input-output
dependencies between view components and
between view components and actions.

Figure 2 shows a simple example of IFML model
where the user can search for a product by entering
some criteria in the Product Search Form. The
matching items are shown in a list. The selection of
one item causes a delete action to be triggered on it.
When the deletion is completed, the updated list of
products is displayed again. IFML concepts can be
stereotyped to describe more precise behaviours
(Brambilla et al, 2014).

Figure 2: IFML excerpt of the running example: Contact
Agenda.

4 THE MODEL DRIVEN
PROPOSED PROCESS

Within the MDE context, several frameworks,
modeling technologies and transformation languages
can be used for different domains and purposes.
Among them, we find IFML, EMF, QVT and
Acceleo.

In this section, we describe first the extension of
the IFML to fit the RIA modeling. After that, we
defined an MVP Meta Model for RIA, then we
present the transformation rules to generate the final
application. Indeed, we propose a model-driven
development process to enable the automatic
generation of a fully working RIA starting from a
simple model.

Extending Graphical Part of the Interaction Flow Modeling Language to Generate Rich Internet Graphical User Interfaces

163

4.1 Extending IFML for RIA

Using IFM for modelling the graphical user interface
makes it possible to clarify the interaction between
the pages and navigation. However, we found that
the part defining the graphical part of the application
in terms of components and layouts did not provide
sufficient information. Also, the RIA propose rich
graphical interfaces that bring the richness of
desktop applications to the Web. We notice also that
the interactive dimension and speed of execution are
particularly taken into account in these Web
applications.

That's why we thought of extending the IFML
language to suit the needs of the development of
RIAs and respect the Design Pattern on
implementing platforms.

Figure 3: IFML Extension: Adding properties to Simple
fields to identify the suitable RIA component.

Indeed, these extensions reflect specifically the
graphic part of RIAs, that is to say, the components
and their properties. As shown in Figure 3, we added

to “SimpleField” properties to identify which
component type suits the best and describes
efficiently the user-defined action based on the
user’s “operating” with the interface. Our major
purpose is to keep the task as simple as possible and
abstract any technical specification so the approach
can be easily used by any stakeholders with or
without technical knowledge of the platform target.
So the FieldActionType gives the information about
the action to be performed on the component; Click,
Input, Selection... Then, properties help to pick the
right component, a button or a link, a text field or a
text area...

4.2 RIA Proposed Meta Model

We defined the PSM metamodel for the RIA
adopting the MVP as a core architectural pattern
(e.g., the JavaFX implementation platform in the
case of this article). As shown in the Figure 4, we
have the three packages:
 ViewPackage, containing meta-classes to

represent Views and the graphical components
taking into account the hierarchy in it.

 ModelPackage, representing the domain or the
business layer of the application and is made up
of Methods and Beans.

 PresenterPackage, containing the presenters to
ensure the connection between the tow layers of
the MVP pattern.

Note that the View/Presenter layers are responsible
for describing the structure and content of views in
terms of behavioral elements while the navigation
flow is ensure through the presenter’s handler that
are connected to the specified services from the
model layer.

Figure 4: MVP proposed Meta Model for RIA.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

164

In the view part, the scene is composed of
graphical components, named controls that could be
containers as Roots. From the IFML input and the
extension added, we can have more specific
information about the component to add and which
container it belongs to. We added a hierarchical
relationship between graphical components base on
their type. We also thought about the composite
relationship that can connect containers with simple
components.

4.3 Transformation Process

4.3.1 Model to Model Transformation

Once the Meta Modeling phase established, we
defined the transformation rules. Since we have
defined the extended IFML and PSM for MVP RIA
Meta Models, we need to define the Model To
Model transformation using the QVTo standard
respecting a defined algorithm.

The entry point of the transformation is the main
method. This method makes the correspondence
between all elements of the IFML model of the input
model and the elements of type JavaFXPackage
output model. For instance, for each
interactionFlowModel we create the equivalent
ViewPakage that will gather all the graphical aspect
of the RIA. To that, we connect the Preseter and the
Model also creates for the IFML model.The Figure 5
below shows an excerpt of the Transformation
program:

Figure 5: Query View Transformation Code excerpt.

4.3.2 Model to Text Transformation

When the model file for RIA is generated, the next
step is to be able to generate the whole code of the

application. To do this, we used the OMG standard
Acceleo, whose operating principal is to use
templates to generate code from a model. The
realization of a new generation module therefore
requires the creation of templates. So, we defined
templates with Acceleo to automatically transform
models obtained in the first transformation phase.

The execution of these templates we developed
gives the source code of the application with Java
files for the views, the presenters and the models.
With these generated files we are able to create an
MVP JavaFX project that give us the graphical
interface with all the components as desired and also
all the connections with the application’s three
layers.

5 RUNNING EXAMPLE

In order to validate our approach, we applied it to
generate a simple Contact application for searching
and editing contacts information. The application
enables its users to: View the contacts in a list, select
a contact and edit its information.

We provide the design model, instance of the
extended IFML, as described above, which is
basically the only input file to our generator. The
Figure 6 shows the input model.

Figure 6: Input model for the contact application.

Once the application has been sufficiently
modelled using the extended IFML, the generated
file, as shown in Figure 7, is a model respecting the
Meta Model for RIA implementing the MVP Design
Pattern. This file will be considered as the input for
the code generator and will provide all the source
code files needed for the application to be almost
running. The graphical aspect of the application and
the user interaction are the major focus on this
approach.

Extending Graphical Part of the Interaction Flow Modeling Language to Generate Rich Internet Graphical User Interfaces

165

Figure 7: The generated file for the MVP RIA of the
Contact Application.

The generated file represents the input file for the
code generator that was developed using Acceleo.
The idea is to generate the files for a MVP Rich
Internet Application focusing on the graphical
aspect. Here after in Figure 8, the main view of the
generated application based on the IFML extended
model only.

Figure 8: The main view of the generated MVP RIA
Contact Application.

The second view of the application consists on
editing the contacts detail as a result of the click
event on the list. Information sent are relative to the
contact selected. Figure 9 shows the view of the
edition of the contact details.

Figure 9: The edition view of the generated MVP RIA
Contact Application.

6 CONCLUSION AND
PERSPECTIVES

In this paper we presented an extension of OMG’s
standard IFML (Interaction Flow Modeling
Language) for Rich Internet Application
development based on a Model Driven Development
process. Furthermore, we defined a Meta Model for
RIA that respects the Model View Presenter pattern
and developed the transformation engine that allows
the automatic generation of the output model. This
generated modeled represents an input to a Model
To Text generator and give an almost complete RIA
ready to be deployed, focusing on the graphical
aspect of the application on one hand, and the user
event handling on the other.

The major contribution in the proposed approach
is the simplification of the IFML and the abstraction
of technical details, besides the addition of the
extension part that describes efficiently the graphical
components to be chosen to accomplish the user’s
expectation of the application. By using this Model
Driven method the RIA can be easily generated
without having to know all the technical
specification of the execution platform.

Future works will cover the implementation of
more refined code generator and the application of
the proposed method to estimate how this approach
scales in large projects. Also, we aim at enrich the
IFML and target several platform for mobile,
desktop and Web application starting from the same
input model.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

166

REFERENCES

Berti, S., Correani, F., Mori, G., Paterno, F., and Santoro,
C., 2004. Teresa: a transformation-based environment
for designing and developing multidevice interfaces.
In CHI Extended Abstracts, pages 793–794.

Brambilla, M. et al., 2014. Extending the Interaction Flow
Modeling Language (IFML) for Model Driven
Development of Mobile Applications Front End To
cite this version : Extending the Interaction Flow
Modeling Language (IFML) for Model Driven
Development of Mobile Applications Front End.

Brambilla, M., Fraternali, P., et al, 2014. The interaction
flow modeling language (ifml), version 1.0. Technical
report, Object Management Group (OMG),
http://www.ifml.org.

Ceri S., Fraternali, P., Bongio, A., Brambilla, M., Comai,
S., and Matera, M., 2002. Designing Data-Intensive
Web Applications. The Morgan Kaufmann Series in
Data Management Systems. Morgan Kaufmann
Publishers Inc.

Gharavi, V., Mesbah, A., Deursen, A. V., 2008. Modelling
and Generating AJAX Applications: A Model-Driven
Approach. Proceeding of the7th International
Workshop on Web- Oriented Software Technologies,
New York, USA (Page: 38, Year of publication, ISBN:
978-80-227-2899-7).

Gmez, J., Cachero, C., Pastor, O., 2001. Conceptual
modeling of device-independent web applications.
pages 26–39.

Groenewegen, D., Zef Hemel, Lennart C. L. Kats, and
Eelco Visser, 2008. Webdsl: a domain-specific
language for dynamic web applications. In Gail E.
Harris, editor, OOPSLA Companion, pages 779–780.
ACM.

Linaje, M., Preciado, J. C., and Sanchez-Figueroa, F.,
2007. A Method for Model Based Design of Rich
Internet Application Interactive User Interfaces. In
Proceedings of International Conference on Web
Engineering, July 16-20, 2007, Como, Italy, pages
226–241.

Martinez-Ruiz, F. J., Arteaga, J. M., Vanderdonckt, J., and
Gonzalez-Calleros, J. M., 2006. A first draft of a
model-driven method for designing graphical user
interfaces of Rich Internet Applications. In LA-Web
06: Proceedings of the 4th Latin American Web
Congress, pages 3238. IEEE Computer Societ.

Paterno, F., Santoro, C., and Spano, L. D., 2009. Maria: A
universal, declarative, multiple abstraction-level
language for service-oriented applications in
ubiquitous environments. ACM Trans. Comput.-Hum.
Interact., 16(4).

Schwabe, D. and Rossi, G., 1995. The object-oriented
hypermedia design model. Communications of the
ACM, 38(8), pp.45–46.

Schwabe, D., Rossi, G., 1995. The object-oriented
hypermedia design model. pages 45–46.

Urbieta, M., Rossi, G., Ginzburg, J., and Schwabe, D.,
2007. Designing the Interface of Rich Internet
Applications. In Proc. LA-WEB’07, pages 144–153.

Vanderdonckt, J., 2005. A MDA-compliant environment
for developing user interfaces of information systems.
In CAiSE, pages 16–31.

Vdovjak, R., Frasincar, F., Houben, G. J, and Barna, P.,
2003. Engineering Semantic Web Information Systems
in Hera. Journal of Web Engineering, 1(1-2):3–26.

Extending Graphical Part of the Interaction Flow Modeling Language to Generate Rich Internet Graphical User Interfaces

167

