
A Controlled Experiment for Evaluating the Comprehensibility of
UML Action Languages

Omar Badreddin1, Maged Elaasar2 and Abdelwahab Hamou-Lhadj3
1Department of Electrical Engineering and Computer Science, Northern Arizona University, Flagstaff, Arizona, U.S.A

2Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada
3Department of Electrical and Computer Engineering, Concordia University, Montreal, Quebec, Canada

Keywords: UML, Model Driven Development, Alf, Object Orientation, Model Oriented Programming Languages.

Abstract: Action Languages represent an emerging paradigm where modeling abstractions are embedded in code to
bridge the gap with visual models, such as UML models. The paradigm is gaining momentum, evident by
the growing number of tools and standards that support this paradigm. In this paper, we report on a con-
trolled experiment to assess the comprehensibility of those languages and compare it to that of object-
oriented (OO) programming languages. We further report on the impact of also having access to the UML
notation on the comprehensibility of those languages. Results suggest that action languages are significantly
more comprehensible than traditional OO languages. Furthermore, there was not a significant improvement
in comprehensibility when the UML notation was used along with both OO and action language code. We
conclude that action languages are a promising alternative to traditional OO languages for specifying de-
tails, yet seem to be as comprehensible as high-level visual models.

1 INTRODUCTION

The UML lacks formal execution semantics for
many of its elements (Bernhard, 2014). For example,
UML use case modeling notation does not map di-
rectly to any executable semantics. Careful investi-
gation of many other modeling notations reveals
similar execution semantic gaps (Wladimir, 2013).
A UML action language gives unambiguous execu-
tion semantics to a subset of UML. An example of
such language is Alf, a textual action language for
Foundational UML (fUML) (OMG, 2015).

Action languages and UML share some
commonalities. Both of them are an attempt to deal
with the ever-increasing complexities of system
development through abstraction. UML provides a
visual notation that abstracts away the structure and
behaviour of the system. It also promises some level
of portability, as UML models can typically be used
to generate source code for multiple platforms.

Action languages, such as Alf, are designed to be
high-level executable languages. Like UML, they
allow the definition of the key abstractions of the
system, but they also provide mechanisms to specify
the system’s detailed behaviour similar to traditional
OO languages. For example, in an action language,

the developer can declaratively define the concepts
of a system with classes, their inter-relationships
with associations, and their behaviour with state
machines. The detailed activities performed in each
state can be specified imperatively with executable
code.

Action languages engage users in a familiar
textual and executable environment (without the
need for forward or reverse engineering processes
between model and code). They bare many
similarities with modern OO languages like Java and
C++, which provides significant value for rapid
system prototyping. While the comprehensibility of
the UML notation has been well investigated before
(Helen et al., 2001), to our knowledge, there is no
study that investigates the comprehensibility of
UML action languages compared to OO languages.
More particularly, we are interested in investigating
the following research question:

RQ1: How do the emerging UML action languages
compare to traditional OO languages in terms
of comprehensibility?

This question investigates whether or not there is
a significant difference in the way software
engineers understand action languages compared to
OO languages. In addition, we are interested in

52
Badreddin, O., Elaasar, M. and Hamou-Lhadj, W.
A Controlled Experiment for Evaluating the Comprehensibility of UML Action Languages.
DOI: 10.5220/0005657700520064
In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2016), pages 52-64
ISBN: 978-989-758-168-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

investigating if there is added value in combining
the UML visual notation along with action or OO
languages. For this, we ask the following research
question:

RQ2: What is the incremental impact on
comprehension when combining the visual
UML notation with action language or OO
languages?

To answer these questions, we designed a controlled
experiment where participants were given samples
of code expressed in action languages and OO
languages that were extracted from an open source
software project (Umple, 2015). The participants
were asked to complete a set of tasks, ranging from
answering simple comprehension questions, to
performing debugging activities. The experiment
used two action languages and two OO languages.
Also, relevant models in UML notation were also
made available to assess the added value on
comprehension.

Our findings show that action language code is
more comprehensible when compared with OO
code. Furthermore, the experiment did not show any
significant increase in the comprehension of either
OO or action code when coupled with UML models.

The remaining parts of the paper are organized as
follows. In Section II, we provide background on the
two action languages that are used in this
experiment. We present, in section III, the
experiment’s setup and design based on the
guidelines for reporting experiments in software
engineering proposed in (Jedlitschka et al., 2008). In
Section IV, we present the results and analyze them
quantitatively and qualitatively. We discuss threats
to validity in Section V. In section VI, we review
related work. Finally, we conclude and outline future
work in Section VII.

2 BACKGROUND ON ACTION
LANGUAGES

Action languages are typically textual and support
abstractions such as classes, associations, multiplici-
ties, and state machines. We believe there are two
main motivations behind the emergence of action
languages. First, action languages help bridge the
gap between less abstract object-oriented languages,
and more abstract modeling notations. For example,
in a UML model, one can define classes, their rela-
tionships (e.g., with associations) and their behav-
iour (e.g., with state machines). However, in a typi-
cal object-oriented programming language, such as

Java or C++, one is unable to directly manipulate
those abstractions. For example, one cannot express
associations between classes or the exact multiplici-
ties of collection properties. Also, while it is possi-
ble to specify state machines as the behaviour of
classes in UML, one cannot express the same level
of abstraction in the corresponding OO code. (Note
that the mapping of such modeling abstractions to
object-oriented languages varies from one approach
to the other.) The developer has to learn how such
abstractions are mapped to a programming language
to be able to manipulate them in the OO code. This
leads to a wide gap between programming and mod-
eling languages.

The second motivation for action languages is a
growing realization of the software developers’
preference to use familiar textual environments
(Lethbridge et al., 2010); (Badreddin et al., 2012).
Code, unlike models, has a serial nature and might
be easier to maintain with any text editors.
Developers do not need to worry about layout, as is
the case with visual notation. In addition, wide
adoption of code repositories (e.g., Git Repository)
means that code remains the main development
artifact (Lethbridge et al., 2010).

One can argue that the first trace of the
emergence of textual modeling language is Human-
Usable Textual Notation (HUTN) (Louis et al.,
2008). This effort was sponsored by OMG (Object
Management Group), but later lost momentum and
has been abandoned. More recently, in 2008, OMG
issued a Request For Proposal (RFP) for a concrete
syntax for a UML action language, which was
referred to, at that time, as UAL (OMG, 2012). The
RFP requirements included support for the
Foundation subset of UML (fUML). Two proposals
were submitted, one from IBM and one from Mentor
Graphics. The two proposals were later combined
and named Alf, Action Language for Foundational
UML (Planas et al., 2012).

In parallel, multiple industry and academic
efforts were investigating textual modeling, textual
representations for UML, and action languages. For
example, TextUML (Chaves, 2015) provides an
equivalent modeling capability where models are
represented textually. SOIL (Büttner and Gogolla,
2011) is a language that allows the embedding of
OCL-like statements into programming languages.
Another notable effort is Umple (Umple, 2015), a
language that embeds UML modeling abstractions
textually in object-oriented code.

In this work, we selected Alf and Umple as two
instances of action languages. Alf was selected
because it is sponsored by OMG, which has in

A Controlled Experiment for Evaluating the Comprehensibility of UML Action Languages

53

October 2013 published an updated standard for the
language (OMG, 2015), with promising and growing
tool support (Lazăr et al., 2015). Umple was selected
because it provides tooling for an executable action
language environment that is open sourced. Both
choices enabled us to setup our experiment’s
environment with necessary tools.

The following two subsections provide a brief
background on both Alf and Umple. The
background is only sufficient for the purpose of
introducing the experiment. The reader is
encouraged to refer to other publications on Alf
(Perseil, 2011) and Umple (Badreddin, 2010) for
more information.

To demonstrate how the two action languages
work, we reuse a subset of the example used in the
latest Alf published standard on page 379 (OMG,
2015), which itself is borrowed from a book named
Executable UML: A Foundation for Model Driven
Architecture (Mellor and Balcer, 2002). Our
example model consists of two classes, Order and
Customer (Figure 1). A customer may have one or
more orders, and an order may or may not be
associated with a customer.

Figure 1: Example in UML Notation (OMG, 2015).

2.1 Alf Action Language

Alf represents the Order class as in Figure 2 below.

active class Order {
 public orderID: arbitrary_id;
 public dateOrderPlaced: date;
 public totalValue: Money;
 public recipient: PersonalName;
 public deliveryAddress:
MailingAddress;
 public contactPhone:
TelephoneNumber;
..

Figure 2: Example Alf code.

The representation is very similar to Java and
C++. This is an intentional design objective of Alf
and is meant to enhance adoption by software
developers who are already familiar with OO
languages. What is new in Alf is that it supports the
representation and manipulation of modeling
abstractions. The Alf code snippet in Figure 3 shows
how the association between Order and Customer is

represented:

public assoc R3 {
 public places: Order[1..*];
 public 'is placed by':
Customer[0..1]; }

Figure 3: Example Alf association.

Typical object-oriented languages do not support
such explicit representation of associations. Alf, in
addition, provides syntax for manipulating state
machines. The class Order is an active class,
meaning that its behaviour is specified by a state
machine, which Alf also defines as part of its textual
syntax. The state machine is defined on page 380 of
the Alf published standard (OMG, 2015). The Alf
standard includes mechanism to specify imperative
statements in various places including the states’
entry/exit/doActivity actions. Such statements are
similar to those expressible with high-level
programming languages like Java and C++.

2.2 Umple Action Language

Umple’s syntax is similar to Alf and very similar to
object-oriented languages. The difference between
Alf and Umple is in the syntactic representation of
modeling abstractions and in the approach of bridg-
ing the gap between them and the code. Figure 4 is
Umple’s representation of the same class diagram in
Figure 1.

class Order {
 1..* -- 0..1 Customer;
 int orderID;
 date dateOrderPlaced;
 recipient;
 address deliveryAddress;
 .. }

Figure 4: Example Umple code.

Notice that Umple, unlike Alf, allows the
definition of the association between Order and
Customer to be in either the Order class (Figure 4)
or the Customer class. Both Alf and Umple,
however, allow the definition of the association to be
separate of either class. Also, property types in
Umple can be implicit. For example, property
recipient has an implicit default type of String in
Figure 4. Also unlike Alf, Umple does not provide
its own expression syntax but uses that of modern
high level programming languages as-is.

The representation of state machines in the two
languages is different. Alf provides syntax for
specifying state machines and their various
expressions (e.g., the transitions’ guards and the

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

54

entry/exist/do behaviours) declaratively. Umple, on
the other hand, provides syntax for defining state
machines but relies on the embedding OO language
syntax to specify the various expressions. This
difference is significant, and this is the motivation
for utilizing two languages to represent action
languages. Nevertheless, the specifics of the
distinction between these two languages is not of
concern with respect to this experiment.

3 EXPERIMENT DESIGN

The goal of this experiment is to evaluate the com-
prehensibility of action languages in comparison to
traditional OO programming, and to evaluate the
added comprehension value of typical visual nota-
tions such UML. An important presumption here is
that an action or an OO language does not replace
the need or role of a visual UML notation for key
system components, relationships, and behaviour.
Therefore, part of this experiment is designed to
evaluate the comprehension added value of the UML
visual notation.

3.1 Experiment Artifacts

In this experiment, we use two systems specified in
two action languages (Alf and Umple), two OO
languages (Java, and C++), as well as UML. This
means we have 10 artifacts in total. We discussed
the rationale for using Alf and Umple in the previous
section. We selected Java and C++ because of their
popularity and wide use in practice. Also, these lan-
guages do not differ significantly in syntax or ab-
straction level, which helps keep our experiment
design balanced. UML is used as a reference nota-
tion for visual modeling.

The two systems used in this experiment are
extracted from the Umple's open source project
(Umple, 2015). The first one is a subset of the UML
class diagram metamodel and the second one is a
subset of the UML state machine metamodel. These
two systems are selected because they provide a
suitable mix of modeling abstractions (e.g., classes,
properties, etc.) and their implementations (e.g.,
constructors, getters, setters, etc.). The size of these
systems is suitable for the purpose of the experiment
as well. The systems can also be effectively
represented using the different notations being
evaluated in this experiment, i.e., Alf, Umple, Java,
C++, and UML.

We have opted to use a subset of the UML class

and state machine metamodels to keep the
experiments simple. Also, we focused on the
abstract syntax metamodels and not the visual
(concrete syntax) specifications.

The experiment artifacts were first examined by
three independent researchers who are not involved
in this study. The researchers checked the
experiment artifacts for consistency, i.e., made sure
that the artifacts are semantically equivalent. They
also checked the coding and modeling styles to
ensure that typical ones are used. The reviewers sent
their recommendations to us. We then evaluated
them and updated the artifacts as necessary. This
process was iterative until all three researchers
agreed that the models and code are consistent and
representable.

Table 1 summarizes the key properties of the
experiment artifacts. The table lists the number of
lines of code for Java, C++, Umple and Alf. For
UML, the number of modeling elements is listed.

Table 1: Number of lines for experiment artifacts, and
number of model elements for UML.

System Java C++ Umple Alf UML
Class diagram
metamodel

196 192 151 157 129

State machine
metamodel

172 180 140 142 117

The artifacts were presented to the participants as
follows: Both Java and C++ code snippets were
presented in an Eclipse IDE, showing the typical
code canvas, outline view, and problems view. Both
Umple and Alf were presented in a custom-designed
eclipse environment. The environment was
developed to match those of Java and C++. Alf and
Umple's environments contained code canvas with
typical highlighting of code, outline view, as well as
problem view. However, advanced editing and code-
assist features that are available to Java and C++
were not available to Alf and Umple. We are not
concerned about such limitations in the case of Alf
and Umple. First, the experiment duration is
relatively short, and our observations indicate that
participants do not get to use advanced editing
features in any significant manner. In addition, such
limitations do not affect our hypotheses, since any
bias will only make our conclusions stronger.

UML visual models were presented as images
only (i.e., not in a UML tool). The images were
approximately the same size as the code canvases
used. Two UML models were used that represent
subsets of the class and the state machine
metamodels. We arrived at those subsets by

A Controlled Experiment for Evaluating the Comprehensibility of UML Action Languages

55

removing what we judged to be ambiguous or less
familiar, elements. For example, we removed
elements that represent protocol state machines. In
addition to the modeling abstractions selected, the
experiment artifacts included implementation code.
For brevity, the UML models and implementation
code are not shown here. However, such models and
Java-version of the implementation code are
published as part of Umple’s open source project
(Umple, 2015).

Java and C++ implementations of both
metamodels were developed by us (the Java one was
in the context of the Umple project), and reviewed
by three independent researchers to ensure
consistency and reasonable implementation choices.
Each reviewer was asked to report inconsistencies
and implementation concerns to us. We either
implemented the change, or revaluated the
comments of the reviewer by involving a third
reviewer. Eventually, all three reviewers agreed that
the two representations were consistent and were
semantically equivalent to the corresponding subsets
of the UML metamodels.

The Alf implementation of the two systems was
more challenging for two reasons. Alf is an
emerging standard where the syntax is being
continuously revised. We adopted the syntax
published in the OMG standards as of October, 2013
(OMG, 2013) and stuck to it, even though we are
aware of other variations and proposals that are
underway. The second reason is because Alf is not
widely adopted yet, and it was not possible to look at
existing code to find out whether there is a
consensus on common coding patterns. We selected
what we found to be the most natural syntax
alternative and used it for both systems.

The effort to build Umple representations of the
two systems was relatively simpler for us. Umple's
code is published as an open source project (Umple,
2015) and contains an implementation for class and
state machine metamodels.

3.2 Participants

The experiment involved 32 participants that we
divided into two groups. All participants received
the same artifacts. The only difference was whether
the participants had the visual notation of the system
in UML or not. This way, we can evaluate the effec-
tiveness of the action languages as compared to the
OO languages, as well as assess the added value of
having UML notations in combination with the sys-
tem code (C++, Java, Umple and Alf).

We should note that we did not consider

assessing the comprehensibility of UML artifacts
alone. This decision was motivated by the following:
UML is not meant to replace the need for code,
whether this code is OO or Action Language; UML
is typically used in conjunction with code, which is
the paradigm used by most UML modeling tools,
such as IBM’s Rational Software Architect and
Papyrus. Instead, we were interested in answering
the question (RQ2) of whether UML notation adds
to the comprehensibility of textual languages. We
discuss this in the results section of this paper.

The participants were software engineering or
computer science students as well as software
engineering practitioners. In total, 32 participants
were recruited, out of which 14 had a PhD degree in
a related field, two had a Master degree, and the rest
had a Bachelor degree. We collected their
experience and background levels on a scale from 1
(beginner level) to 5 (expert level). Their average
knowledge of Java was the highest (3.3/5.0),
followed by C++ (3.1/5.0), followed by UML
(2.7/5.0), followed by Umple and Alf (1.7/5.0).

We analyzed the data using different participant
slices. One slice was based on education levels:
those with a PhD only, those with a Master degree
only, and those with a Bachelor degree only.
Another slice is based on the level of knowledge of
the languages under study. We found the results of
analyzing the data for these slices not significantly
different than the results for the entire population.

Participants were recruited randomly using
convenient sampling techniques. Recruitment was
announced on multiple news boards. Appointments
were scheduled based on participants’ availability.
Selection criteria included having a degree in
software engineering or a related field, having
familiarity with UML and action languages, and
having worked as a professional software engineer
for at least one year. Participation was both
anonymous and voluntary. The identity of
participants was never collected. Throughout the
study, we reminded the participants that they can
stop participation at any step. Participants were not
compensated for their participation. The experiment
is conducted after proper approvals had been
obtained.

3.3 Questions and Task Lists

We designed a total of eight questions and four tasks
that range from simple comprehension questions, to
performing tracing and debugging tasks. The ques-
tions were uniform across the different artifacts.
However, there were only minor variations in word-

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

56

ing of the questions and tasks between those posed
for C++ and Java and those posed for Alf and Um-
ple. The variations were minimal and we do not
expect such variations to affect the results of the
experiment. In fact, during the pilot study, our re-
viewers made comments that made us do such minor
wording changes.

The questions and tasks for the first system were
significantly different than the questions and tasks
for the second system. This is simply because the
two systems are significantly different. This
difference is by design and is intentional. However,
we maintained some level of relevance in the two
sets. We made sure that the number of questions and
tasks and their relative complexity are similar. This
enabled us to analyze the results for both systems
consistently. Table 3 shows an excerpt of the set of
questions and tasks used for the state machine
system.

Table 2: Exceprt of Questions for the State Machine
metamodel.

 Question / Task
Q1 How many activities can a state have?
Q2 How many transitions can be associated with a state?

Q3
Can you create a transition from one state to multiple
states?

T1
Create a state machine to represent the UML model in
figure 1.

T2
Create a guard condition to resolve the ambiguity in
this model. Note you may first need to identify the
ambiguity in the model.

T3
Is this model complete or incomplete? If it is
incomplete, suggest a way to complete the model and
implement the change.

Each participant attempted the questions and
tasks of the two systems (see next subsection). The
first system was the class diagram metamodel,
whereas the second system was the state machine
metamodel. We believe that the learning effect of
the first system had minimal impact on the second
system due to the different nature of the systems
(class diagram is for structural modeling vs. state
machine diagram is for behavioural modeling). Not
all participants were assigned all artifacts. Also, the
assignment of artifacts to participants was not left up
to the participants. Rather, it was controlled by us
with the intention to make the experiment design
balanced.

Participants were not given the question lists in
advance to minimize the risk they may look at other
questions while attempting to answer the current
question. Participants were given the choice between
a Windows laptop and a Mac laptop. Their

preference was always accommodated. This is
because we wanted to make sure that a familiar
environment is provided for each participant.
However, participants were not allowed to use their
own laptops. This was due to the effort required to
set up the environment, the experimental artifacts
and the recording software. The questioning sessions
were audio recorded. Time was measured starting
from the end of posing a question until the
participant finished answering the question. We also
recorded the laptop screen in video from the
beginning of the experiment and until the end.

At the onset of the experiment, participants were
asked a number of profiling questions about their
background, prior knowledge of C++, Java, Alf,
Umple and UML. We also collected information on
their software engineering courses and work
experience. The objective of this profiling
information is to analyze it along with the
experimental data and examine any bias caused by
the experiences of the participants. We disqualified
participants who did not meet the minimum
participation requirements.

We should mention that at the beginning of the
experiment, participants were shown three short
videos introducing UML, Alf, and Umple concepts.
However, we did not expect it would influence the
experiment results much in favour of those
languages.

3.4 Study Design

In this section, we state the research questions, vari-
ables, and analysis methods used in this experiment.

RQ1: How do the emerging UML action languages
(Umple and Alf) compare to traditional
object-oriented languages (Java and C++) in
terms of how easy to understand and use?

We state the following hypothesis:

H1: A system specified in Umple or Alf is more
comprehensible than an equivalent
specification of the system in Java or C++.

In other words, participants take on average less
time to answer questions when presented with a
version of a system implemented in an action
language as opposed to a Java or C++.

The corresponding null hypothesis is:

H1o: Action languages and object orientation do
not differ in comprehensibility.

H1 is a baseline. If we can reject the null
hypothesis then we can be confident that there is a
difference in comprehensibility.

A Controlled Experiment for Evaluating the Comprehensibility of UML Action Languages

57

Variables: The independent variables are the
notation of the two systems used in this study with
values: 'C++', 'Java', 'Alf', and 'Umple'. The focus
was on measuring the comprehensibility of the
languages. Comprehension was measured by eight
questions and four bug fixing tasks. The dependant
variables used to measure comprehension are:

 Time: The time taken to respond to a question or
provide a fix for the task, measured in seconds.

For the fixes, the participants continued to edit
the code until the correct answer is reached. This is
either when the participant recognizes that he or she
had accomplished the task, or when we recognized
that the bug is fixed and notified the participant.

 Quality: The quality of the answer or the fix,
which is a subjective measure. This is collected
for meta-analysis, and is assessed by two
independent reviewers. If the evaluation of the
two reviewers does not match, a third reviewer is
involved to make a decision based on his or her
judgement, as well as the evaluation of the two
previous reviewers.

Analysis: We use descriptive statistics to compare
the time it takes to answer the questions or perform
the fixes using C++/Java to the time it takes to do
the same in Umple/Alf. We also use a two-tailed t-
test to measure the statistical significance between
the average times it takes using both paradigms. As
confirmatory evidence (in case of significant
departure from the normality requirements of the t-
test), we apply the Mann-Whitney test (U-test).

RQ2: What is the added value of the visual UML
notation when used with action language or
OO languages?

We state the following hypothesis:

H2: UML visual notation enhances
comprehension when used with action or object-
oriented code.

The corresponding null hypothesis is:

H2o: UML notation does not enhance
comprehension when used with action or object-
oriented code.

Variables: Similar to the previous questions, we use
independent variables, which are the notations of the
two systems used in this study with values: 'C++',
'Java', 'Alf', and 'Umple'. We measure
comprehension the same way as before. The only
difference is that this time, we provide the UML
notation with the artifacts. We compare the answers
provided by participants that used UML notation
with those of the participants that did not use UML

notation (RQ1).
Analysis: We used descriptive statistics to compare
the time it takes to answer the questions and perform
the tasks using C++/Java/Umple/Alf with UML
notation to the time it takes to do that without UML
notation. Similar to the previous question, we also
used a two-tailed t-test to measure the statistical
significance between the average times with or
without UML. The Mann-Whitney test (U-test) was
used in case of significant departure from the
normality requirements of the t-test.

3.5 Design Validation – Pilot Study

In order to initially verify and validate the design of
the experiment as well as identify potential flaws in
the design, we conducted a pilot study. The pilot
study was conducted using eight other participants,
who were selected based on availability and soft-
ware engineering background. The pilot data was
excluded from the analysis.

This pilot study was very instrumental in refining
many aspects of the experiment. For example, we
found that some of the original wording of the
questions was not clear. It was also found that
participants tend to become less active by the end of
the experiment. The question wording was corrected
and reviewed independently again. The reduced
activity was mitigated by reducing the number of
questions and giving participants a break between
the two systems.

4 RESULTS AND ANALYSIS

In the course of the experiment, each participant was
given two rounds of questions and tasks correspond-
ing to the two systems. Each participant spent on
average 70 minutes. The shortest duration was 49
and the longest was 83 minutes, this included a 5-
minute break between each system (round) and the
time the participants took to read and sign the con-
sent documents.

Participants were given a laptop that guided them
through the experiment. An HTML application was
developed so that participants can click next when
they are finished with their answer. Video and audio
recording software was running in the background.
The audio is recorded to provide hints in case of
exceptional situations occurring. For example, the
audio was used in case the experiment operations
were interrupted by the request of the participant.
The video recorded the screen, and was used to
measure the time durations for each question. The

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

58

distribution of artifacts was balanced, so that equal
number of participants answered questions on equal
number of notations.

The overall average for answering the questions
and performing the bug fixing tasks was 47.1
seconds. This is in line with our pilot study, and is in
line with our design objectives, which is keeping the
questions and tasks relatively simple so they each
can be answered within 3-minute on average. The
standard deviation was 15.6 seconds. Figure 5
summarizes the experiment results.

Figure 5: Overall experiment results.

From Figure 2, a few patterns immediately become
evident. First, the average results for both the 'With
UML' and 'Without UML' cases are almost identical
for both the action languages and the OO languages.
This suggests that having UML notation does not
improve comprehension, which is an unexpected
result. We discuss our interpretation of this result in
the discussion section of this paper.

Also evident from this quantitative analysis is
that Java seems to have slightly outperformed C++
(likely due to the experience of the participants).
Also both Alf and Umple have performed better than
the OO languages. This seems to suggest that being
at the model level provides comprehension and
usability benefits to action languages.

Furthermore, (as shown in Table 4), the standard
deviation (SD) for the OO languages (16.6 seconds)
was higher than the SD for the action languages
(12.1 seconds). This we believe is due to participants
having different levels of experience with those OO
languages, while almost similar experience with
actions languages. Also, the SD for both systems,
‘With UML’ and ‘Without UML’, is 15.6 seconds.
This implies that differences between the two sys-
tems were not significant, which is counter-intuitive.
We discuss our interpretation of this result in the
discussion section of this paper.

Table 5 shows the time averages of answering
the questions. One objective of the design of this

experiment is to keep the questions and tasks of
comparable complexity. The smallest average for a
question or task was 30.4 seconds, and the largest
was 65.5, with a SD of 10.1.

Table 3: Results summary.

 Without UML With UML
 C++ Java Alf Umple C++ Java Alf Umple
Average 55.4 49.3 40.9 42.9 53.6 51.5 41.2 42.7
SD 18.1 16.8 16.1 11.6 18.8 16.3 15.7 11.7
Overall
Average

47.1 47.1

Overall
SD

15.6 15.6

The following sections examine subsets of the
data sets. We apply standard statistical tests to check
our hypotheses. For the following analysis, the entire
data is analyzed, including the 'With UML' and
'Without UML' data sets.

Table 4: Summary of Questions averages.

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 T1 T2 T3 T4
W/O
UML

41 43 29 30 39 53 54 56 40 48 66 69

W/ UML 45 55 32 35 40 53 41 47 50 68 40 62
AV 43 49 30 33 39 53 47 51 45 53 53 66

4.1 Examining Data for C++ and Java

The objective of this analysis is to test if there is a
statistically significant difference between the data
sets for both C++ and Java. This is important be-
cause if there is, then we should assume that the two
data sets come from distinct populations. If not, and
this is our hope, then both Java and C++ come from
the same population and we can confidently use
their data as representation for object- oriented tech-
nology.

Using a two-tailed t-test to measure the statistical
significance, there is no significant difference in the
data sets for the 'Without UML' set (p = 0.92) and
'With UML' data set (p = 0.88).

As confirmatory evidence (in case of significant
departure from the normality requirements of the t-
test), we also applied the Mann-Whitney test (U-
test). We received similar findings. We note here
that there is no reason not to assume normality in the
case of the data sets for C++ and Java. However,
other studies have recommended that normality
should be assumed only when the data set is large,
and the sample is representative of the entire
population (Jarque and Bera, 1980). Representations
assumptions have not been tested for our sample.
Our data sets are not large enough to justify

0,0

20,0

40,0

60,0

Without UML With UML

A Controlled Experiment for Evaluating the Comprehensibility of UML Action Languages

59

normality assumption.

4.2 Examining Data for C++/Java and
Alf

Now that we have confirmed that both C++ and Java
data come from the same population, they can be
treated as a single data set. This significantly simpli-
fies the analysis. In this section, we analyze the data
sets for C++/Java and Alf.

We run a two-tailed t-test to measure the
statistical significance between the average of C++
and Java on one side, and Alf on the other side. The
test indicates that the data for Alf is significantly
lower than that of C++ and Java (p=1.5x10-8). This
means that participants took significantly less time
to respond to questions when the system is
represented using Alf notation.

Similarly, and as confirmatory evidence (in case
of significant departure from the normality
requirements of the t-test), we also applied the
Mann-Whitney test (U-test), Alf's data set is still
significantly lower than that of C++ and Java (p =
8.7x10-9) with a W value of 2722. So using this test
we also arrive at the same conclusion.

4.3 Examining Data for C++/Java and
Umple

We are not expecting to find significant difference in
the case of C++/Java and Umple data sets. The de-
scriptive analysis suggests that both Alf and Umple
performance were comparable, despite Umple being
a little worse that Alf (a standardized language).

Two-tailed t-test to measure the statistical
significance between the average of C++ /Java on
one side, and Umple, on the other side, indicate that
Umple's performance is better. The t-test indicates
that the data for Umple is significantly lower than
that of C++ and Java (p=1.1x10-8).

The Mann-Whitney test (U-test) indicate that
Umple's data set is still significantly lower than that
of C++ and Java (p = 9.2x10-7) with a W value of
2073. So using this test we also arrive at the same
conclusion.

Therefore, we can reject the null hypothesis, H01
and state that:

H1: A system written in Umple or Alf is more
comprehensible than an equivalent implementation
of the system in Java or C++.

4.4 Examining Data for Alf and Umple

Using a two-tailed t-test to measure the statistical
significance, Alf and Umple do not have significant-
ly different average times (p=0.9). This is true for
the 'With UML' and 'Without UML' data sets, and
for both sets combined. A Mann-Whitney test (U-
test) confirms the same findings (P = 0.07) and a W
value of 4612.2.

We have conducted additional tests on the data,
which did not conflict with any of our findings. For
example, we conducted standard deviation analysis
and sign tests analysis (Mohammad, 2011). The
standard deviation analysis classifies the data points
into two categories; one where the data falls within
the mean +/- the standard deviation, and the second
where the data points falls beyond this range. The
concept is that if the data were significantly different
than the mean, then a significant percentage would
fall beyond the specified range. Our objective was to
examine if there is any hidden evidence in the data,
especially between Alf and Umple. We also
conducted the same tests on subsets of the data. For
example, we divided the data based on whether it is
a comprehension question or bug fixing data. Our
tests and analysis did not suggest any significant
difference between Alf and Umple.

4.5 Examining Data for ‘with UML’
and ‘without UML’

To test the second hypotheses, we analyze the data
for ‘with UML’ and data for ‘Without UML’ for all
artifacts and all participants.

From the results shown in Table 3, we do not find
any statistically significant difference. The two-
tailed t-test does not result in any statistical differ-
ence between the ‘with UML’ and ‘Without UML’
data sets (P=0.99).

Therefore, we can reject the second hypothesis,
and state that:

H2o: UML visual representation does not enhance
comprehension when used with action language or
object-oriented code.

4.6 Discussion

The main finding of this experiment is that action
languages have a significant comprehensibility bene-
fits when compared to OO systems. This is particu-
larly true for highly abstracted systems such as those
used in this experiment (i.e. metamodels). Another
finding is that the availability of UML models does

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

60

not seem to have an impact on the comprehension of
such systems. We interpret these two key findings as
follows.

The comprehension benefits of the action
languages code are both significant and consistent.
This is to be expected especially for such model-
intensive systems. In fact, one can argue that any
software system that is large enough will have
significant model-like abstractions. The abstractions
could be explicit, i.e. represented by UML or an
action language, or could be implicitly specified in
code.

The presence of UML artifacts did not have a
significant effect on the results. In the case of OO
languages, we attribute this to the fact that there is a
significant representational gap between the UML
notation, and its equivalent mapping in C++ and
Java. This made participants focus more on the code
in answering the questions. However, for the action
languages, the interpretation of this result is that
those model-based programming languages
successfully bridged the gap with UML; hence, the
UML notation did not offer much added
comprehensibility value.

5 THREATS TO VALIDITY

Threats to validity of the experiment and how we
tried to mitigate them are described in this section.

A. Presentation Format

It is possible that the experiment design sidelined
the value of the UML notation. We note that UML
models were presented as static images. Participants
could not interactively navigate the model. On the
other hand, participants were more engaged with the
code (object-oriented or action languages). This
different in presentation may have affected the par-
ticipants’ engagement with the UML models. We
tried to mitigate that by managing the complexity of
the systems, to reduce the need for interactivity. We
also kept the UML diagrams concise and legible.

5.1 Number of Participants

Thirty-two (32) participants is relatively a small
number. However, we used statistical analysis on the
data and that yielded strong evidence. We also did
not notice any significant difference when running
parametric (t-test) and non-parametric test (Mann-
Whitney test). However, it is still possible that a
larger, more representative sample may have yielded
different results.

5.2 Participant Experience

Our participants were relatively knowledgeable
about object oriented languages and UML. It is pos-
sible that their knowledge may have influenced the
results of this experiment. To mitigate this risk, we
collected profiling information and tested partici-
pants’ responses against their knowledge. We were
not able to find any evidence that more knowledgea-
ble participants answers were different statistically
from not-as-knowledgeable participants’ responses.
We analyzed the data for each of the 16 participants
independently and harmonized their results based on
their level of experience. We also looked for any
possible significant deviation from the entire exper-
iment averages but could not find any. We used the
t-test, Mann-Whitney test, as well as the sign test
and the standard deviation analysis (Mohammad,
2011).

Despite the participants were potentially more
knowledgeable about UML than the general
software engineering community, they had
comparably little background on Alf or Umple.
None of the participants reported that their previous
knowledge in Alf or Umple was higher than C++ or
Java. This means that if participants’ experiences
and knowledge had an effect on the experiment, it
would have been to the benefit of OO languages.

5.3 Non-Representative Systems

This is an external validity threat that our systems
are not representative of the real software artifacts.
We accept this threat, and in fact, our sample sys-
tems were more model-intensive than the typical
software artifact. Our samples are an incomplete
system, taken and modified from a real software
artefact (Umple code). We therefore concur with this
threat. One should be aware of this threat when gen-
eralizing the results of this experiment.

5.4 Non-Representative Complexity

It is also possible that the systems were not complex
enough to realize the comprehensibility value of the
UML graphical notation, nor the verboseness of the
textual notation. Unfortunately, it was hard to assess
the required complexity level in this experiment
upfront. We considered the UML metamodel that is
notoriously known to be complex to be representa-
tive. However, a variation of this experiment could
be designed with more complex systems.

A Controlled Experiment for Evaluating the Comprehensibility of UML Action Languages

61

5.5 Question and Tasks Interpretation

This is an internal validity threat for our experiment.
The threat is that participants may have interpreted
the questions in a way that affects the experiment
results. For example, a participant may have taken
more time to comprehend the question or a task,
rather than time to reflect on the problem using the
notation under the study,. This threat was mitigated
by randomly assigning the participants to the differ-
ent configurations. We also piloted the questions and
tasks, and also had three researchers review our
questions and tasks to minimize this threat.

5.6 Use of Pairwise Comparison

We used pairwise comparisons when analyzing our
data sets. For example, we separately compared pair
of data sets for all of our configurations. We under-
stand that the more we use this type of analysis, the
greater the chance of a Type I error (i.e. rejecting the
Null hypothesis when it is actually true). Multi-way
comparisons are more suitably tested using a test
such as ANOVA, especially when there is more than
one configuration. However, this approach is only
relevant when the P value is close to the significance
threshold, and this did not apply to our analysis. Our
P values were far from the significance threshold,
either being very low or very high. Therefore, we
did not see the need to run ANOVA tests.

6 RELATED WORK

In a prior work, we have investigated conceptional
and notational alternatives related to the design and
implementation of Action Languages (Badreddin et
al., 2014) (Burton-Jones, 2008). One key contribu-
tion of this work is a bottom-up Action Language
design approach to facilitate language adoption and
improve notation comprehension. In another prior
work, we have investigated the challenges for empir-
ical studies of software engineering tools and tech-
nologies at different stages of maturity (Badreddin,
2013). We find the most challenging studies are
those that attempt to evaluate tools, approaches, or
notations, prior to any wide adoption. The study
reported in this paper falls into this category. Action
languages are nowhere near consistent and wide
adoption by professionals.

The literature however has many works reported
on empirical evaluations of different notations
(Burton-Jones, 2006). Hendrix evaluated the
comprehension level of code control structures by

also measuring the time span the participants took to
answer comprehension questions (Hendrix et al.,
2002). This is similar to the approach adopted in our
experiment. Briand el al. (Briand et al., 1997)
evaluated two different ways of presenting
information. They found no evidence that “good
structured design is easier to understand than bad
structured design”. Gemino and Wand investigated
the use of mandatory subtypes versus optional
properties in entity-relationship model (ERM)
(Gemino and Wand, 2005). Similar to our study,
they created two equivalent models and measured
participants’ comprehension. They conclude that
mandatory relationships lead to improved
comprehensibility despite apparent increase in
model complexity.

Rather than focusing on comprehension,
usability studies focuses on the ease of manipulation
and interaction with a tool or a notation. Hornbæk
investigated current practices and challenges in
conducting usability studies (Hornbæk, 2006). David
Chin has investigated the usability of system models
and user models (Chin, 2001). In his study, he also
finds little empirical investigations of the usability of
models. In this work, he provides rules of thumb for
experimental design, useful tests for covariates, and
common threats to experimental validity. Chin also
proposed reporting standards including effect size
and power, which we have adopted to a large extent
in this experiment.

7 CONCLUSION AND FUTURE
WORK

In this work, we compared the newly emerging
UML action languages with the more established
object-oriented languages in terms of comprehensi-
bility. Through a controlled experiment, we found
the former to be much more comprehensible than the
latter, judged by the time it took participants to an-
swer comprehension and bug fixing questions on
two different software systems. We also assessed
whether having access to UML notation beside the
either object-oriented or action language would re-
sult in added benefits to comprehension. However,
we did not notice any significant impact in this ex-
periment. We explain this for action languages by
the fact that their code is already at the model level.
However, it was surprising for the object-oriented
code case. We offered insights into the results and
outlined possible threads to validity.

We further note that we did not analyze the
comprehension questions separately from the bug

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

62

fixing ones. In other words, we did not explore
whether there is any significant difference if the data
was sliced along the category of the question. We
leave this analysis to future work. We also did not
analyze how participants arrived at their answers.
We do not know whether participants have used the
UML models only, the code only, or both, to answer
questions. This particular analysis is also left to
future work.

REFERENCES

OMG (2015) Action Language for Foundational UML
(Alf), Concrete Syntax for a UML Action Language.
Available: http://www.omg.org/spec/ALF/

Mellor, Stephen J., et al. "An action language for UML:
proposal for a precise execution semantics." The Uni-
fied Modeling Language. «UML»’98: Beyond the No-
tation. Springer Berlin Heidelberg, 1999. 307-318.

Sunyé, Gerson, et al. "Using UML action semantics for
executable modeling and beyond." Advanced Infor-
mation Systems Engineering. Springer Berlin Heidel-
berg, 2001.

Purchase, Helen C., et al. "Graph drawing aesthetics and
the comprehension of UML class diagrams: an empiri-
cal study." Proceedings of the 2001 Asia-Pacific sym-
posium on Information visualisation-Volume 9. Aus-
tralian Computer Society, Inc., 2001.

Purchase, Helen C., et al. "UML class diagram syntax: an
empirical study of comprehension." Proceedings of the
2001 Asia-Pacific symposium on Information visuali-
sation-Volume 9. Australian Computer Society, Inc.,
2001.

Timothy C. Lethbridge, Andrew Forward, Omar Ba-
dreddin. Problems and Opportunities for Model-
Centric vs. Code-Centric Development: A Survey of
Software Professionals, in the proceedings of C2M:
EEMDD 2010.

Büttner, Fabian, and Martin Gogolla. "Modular embed-
ding of the object constraint language into a program-
ming language." Formal Methods, Foundations and
Applications. Springer Berlin Heidelberg, 2011. 124-
139.

Rose, Louis M., et al. "Constructing models with the hu-
man-usable textual notation." Model Driven Engineer-
ing Languages and Systems. Springer Berlin Heidel-
berg, 2008. 249-263.

Object Management Group (OMG). "Concrete Syntax for
a UML Action Language RFP", accessed 2012,
http://www.omg.org/cgi-bin/doc?ad/2008-9-9.

Planas, Elena, et al. "Alf-Verifier: an eclipse plugin for
verifying Alf/UML executable models." Advances in
Conceptual Modeling, 2012. Springer Berlin Heidel-
berg, 2012.378-382.

Chaves, R. "TextUML", accessed 2015,
http://abstratt.com/

Perseil, Isabelle. "ALF formal." Innovations in Systems
and Software Engineering 7.4 (2011): 325-326.

Badreddin, Omar. "Umple: a model-oriented programming
language." Software Engineering, 2010 ACM/IEEE
32nd International Conference on. Vol. 2. IEEE, 2010.

Object Management Group (OMG), Concrete Syntax For
A UML Action Language: Action Language For
Foundational UML (ALF), 2015. Available:
http://www.omg.org/spec/ALF/1.0.1.

Mellor, Stephen J., and Marc J. Balcer. Executable UML:
a foundation for model-driven architecture. Addison-
Wesley Professional, 2002.

Dzidek, Wojciech J., Erik Arisholm, and Lionel C. Briand.
"A realistic empirical evaluation of the costs and bene-
fits of UML in software maintenance." Software Engi-
neering, IEEE Transactions on 34.3 (2008): 407-432.

"Umple language online." accessed 2015,
www.try.umple.org.

Jarque, Carlos M., and Anil K. Bera. "Efficient tests for
normality, homoscedasticity and serial independence
of regression residuals." Economics Letters 6.3
(1980): 255-259.

S. Mohammad. "From once upon a time to happily ever
after: Tracking emotions in novels and fairy tales".
2011. ACL HLT 2011pp. 105.

D. Hendrix, J. H. Cross II and S. Maghsoodloo. "The
effectiveness of control structure diagrams in source
code comprehension activities". 2002. IEEE
Trans.Software Eng.pp. 463-477.

L. C. Briand, C. Bunse, J. W. Daly and C. Differding. "An
experimental comparison of the maintainability of ob-
ject-oriented and structured design documents". 1997.
Empirical Software Engineering vol 2, pp.291-312.

 Friedenthal, Sanford, Alan Moore, and Rick Steiner. A
practical guide to SysML: the systems modeling lan-
guage. Access Online via Elsevier, 2011.

 Badreddin, Omar. Model Orientation Experiment Specifi-
cation. Accessed 2014. Available:
http://obahy.files.wordpress.com/2014/02/experiment-
specification.docx.

Chin, David N. "Empirical evaluation of user models and
user-adapted systems." User modeling and user-
adapted interaction 11.1-2 (2001): 181-194.

Badreddin, Omar, and Timothy C. Lethbridge. "Model
oriented programming: Bridging the code-model di-
vide." Modeling in Software Engineering (MiSE),
2013 5th International Workshop on. IEEE, 2013.

Badreddin, Omar Bahy, Andrew Forward, and Timothy C.
Lethbridge. "Model oriented programming: an empiri-
cal study of comprehension." CASCON. 2012.

Badreddin, Omar. "Empirical evaluation of research proto-
types at variable stages of maturity." User Evaluations
for Software Engineering Researchers (USER), 2013
2nd International Workshop on. IEEE, 2013.

Rumpe, Bernhard. "Executable Modeling with UML. A
Vision or a Nightmare?." arXiv preprint
arXiv:1409.6597 (2014).

Schamai, Wladimir, Peter Fritzson, and Chris JJ Paredis.
"Translation of UML state machines to Modelica:

A Controlled Experiment for Evaluating the Comprehensibility of UML Action Languages

63

Handling semantic issues." Simulation (2013):
0037549712470296.

Planas, Elena, et al. "Alf-Verifier: an eclipse plugin for
verifying Alf/UML executable models." Advances in
Conceptual Modeling. Springer Berlin Heidelberg,
2012. 378-382.

Jedlitschka, Andreas, Marcus Ciolkowski, and Dietmar
Pfahl. "Reporting experiments in software engineer-
ing." Guide to advanced empirical software engineer-
ing. Springer London, 2008. 201-228.

Lazăr, C. L., I. Lazăr, B. Pârv, S. Motogna, and I. G.
Czibula. "Tool Support for fUML Models." Int. J. of
Computers, Communications & Control 5, no. 5
(2010): 775-782.

Gemino, Andrew, and Yair Wand. "Complexity and clari-
ty in conceptual modeling: comparison of mandatory
and optional properties." Data & Knowledge Engi-
neering 55.3 (2005): 301-326.

Hornbæk, Kasper. "Current practice in measuring usabil-
ity: Challenges to usability studies and re-
search." International journal of human-computer
studies64.2 (2006): 79-102.

Badreddin, Omar, Timothy C. Lethbridge, and Andrew
Forward. "Investigation and evaluation of UML Ac-
tion Languages." Model-Driven Engineering and
Software Development (MODELSWARD), 2014 2nd
International Conference on. IEEE, 2014.

Burton-Jones, Andrew, and Peter N. Meso. "Conceptualiz-
ing systems for understanding: an empirical test of de-
composition principles in object-oriented analysis." In-
formation Systems Research 17.1 (2006): 38-60.

Burton-Jones, Andrew, and Peter Meso. "The effects of
decomposition quality and multiple forms of infor-
mation on novices' understanding of a domain from a
conceptual model." Journal of the Association for In-
formation Systems 9.12 (2008): 1.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

64

