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Abstract: Dimension reduction has become an important tool for dealing with high dimensional data. Locally linear 
embedding (LLE) is a nonlinear dimension reduction method which can preserve local configurations of 
nearest neighbors. However, finding the nearest neighbors requires the definition of a distance measure, which 
is a critical step in LLE. In this paper, the Rank-order distance measure is used to substitute the traditional 
Euclidean distance measure in order to find better nearest neighbor candidates for preserving local 
configurations of the manifolds. The Rank-order distance between the data points is calculated using their 
neighbors’ ranking orders, and is shown to be able to improve the clustering of high dimensional data. The 
proposed method is called Rank-order based LLE (RLLE). The RLLE method is evaluated by comparing with 
the original LLE, ISO-LLE and IED-LLE on two handwritten datasets. It is shown that the effectiveness of a 
distance measure in the LLE method is closely related to whether it can be used to find good nearest neighbors. 
The experimental results show that the proposed RLLE method can improve the process of dimension 
reduction effectively, and C-index is another good candidate for evaluating the dimension reduction results. 

1 INTRODUCTION 

With the quick development of new services such as 
blogs, social networks and location-based services 
(LBS), the data type and amount is increasing and 
accumulating in amazing speed. The data processing 
becomes very complex especially in high 
dimensional space, because there are a large number 
of superfluous information and certain correlations 
hiding among data in high-dimensional space (Zhuo, 
2014). Data visualization is also a difficult task for 
high-dimensional data. The main goal of dimension 
reduction is to transform the high-dimensional data 
into a more compact and meaningfully expression in 
low-dimensional space, and thus reducing the 
computational cost and facilitating the visualization 
of the data structure. The lower the dimensionality, 
the less is the required space and the processing time. 
Dimension reduction is widely used in data 
compression, machine learning, pattern recognition, 
and data visualization applications (Ding, 2002).  

There are two types of dimension reduction: 
linear and nonlinear mapping. Linear techniques 
suppose that the data lie on or near a linear subspace 
of the high-dimensional space, and perform 
dimension reduction by linear transformation. 
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Typical linear dimension reduction techniques 
include principal component analysis (PCA) (Wold, 
1987), linear discriminant analysis (LDA) (Fukunaga, 
1990), independent component analysis (ICA) 
(Comon, 1992), etc. Nonlinear techniques do not rely 
on the linearity assumption and can deal with more 
complex data. Compared to linear techniques, 
nonlinear techniques for dimension reduction are 
more widely used and thus have been studied more 
intensively. There are generally two main types of 
nonlinear dimension reduction techniques: global 
techniques which attempt to preserve global 
properties of the original data in the low-dimensional 
representation, and local techniques which attempt to 
preserve local properties of the original data in the 
low-dimensional representation, the literature review 
on the research work can be referred to (van der 
Maaten, 2009). Typical nonlinear techniques includes 
isometric mapping (Isomap) (Tenenbaum, 2000), 
local tangent space alignment (LTSA) (Zhang, 2004), 
locally linear embedding (LLE) (Roweis, 2000), 
Laplacian eigenmaps (LE) (Belkin, 2003), stochastic 
neighbor embedding (SNE) (Hinton, 2002), etc. 
Isomap and SNE belong to global techniques. Isomap 
is a widely used nonlinear dimension reduction 
technique, which estimates the intrinsic geometry of 
a data manifold based on a rough estimate of each 
data point’s neighbors by using geodesic distance on 
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the manifold. SNE is a stochastic method, which tries 
to place the objects in a low-dimensional space so as 
to optimally preserve neighborhood identity. LLE, LE 
and LTSA are local techniques. LLE preserves local 
properties by representing each data point as a local 
linear combination of the nearest neighbors. LE 
constructs edge-weighted adjacency graphs of 
neighbor nodes to preserve local properties. LTSA 
uses tangent spaces learned by fitting an affine 
subspace in a neighborhood of each data point to 
represent the local geometry.  

The LLE method has been widely used in many 
applications such as image classification, image 
recognition, spectra reconstruction and data 
visualization, because it is simple to implement and 
its optimization does not involve local minima 
(Zhang, 2006; Saul, 2003). The main idea of LLE is 
to approximate nonlinear structures by gathering of 
many linear patches in the high dimensional 
manifolds. A patch consists of a data point and its k 
nearest neighbors. The correlations between the data 
point and its neighbors are mathematically expressed 
by a set of n weights which best describe the character 
of the local structure within the patch (Varini, 2006). 
LLE maps the high dimensional data point to a low 
dimensional vector using the n reconstruction weights. 
So an important problem in LLE is to find appropriate 
neighbors of a data point for defining the linear 
patches. In the original LLE method, the neighbors 
are identified by using the Euclidean distance 
measure, which may cause a data point to have 
neighbors that in fact are very distant in the intrinsic 
geometry of the data according to the literature 
(Varini, 2006). To avoid this problem, several 
improvements have been proposed. LLE with 
geodesic distance (ISO-LLE) searches for the 
neighbors with respect to the geodesic distance 
(Varini, 2006). Locally linear embedding based on 
image Euclidean distance (IED-LLE) substitutes the 
image Euclidean distance for the traditional 
Euclidean distance (Zhang, 2007). Weighted locally 
linear embedding for dimension reduction (WLLE) 
modifies the LLE algorithm based on the weighted 
distance measurement to improve dimension 
reduction (Pan, 2009). Mahalanobis distance 
measurement based locally linear embedding 
algorithm (MLLE) utilizes Mahalanobis metric to 
choose neighborhoods (Zhang, 2012). Supervised 
LLE based on Mahalanobis distance (MSP-LLE) 
combines class labeled data and Mahalanobis 
distance to choose neighborhoods and use extreme 
learning machine to map the unlabeled data to the 
feature space (He, 2013).  

Different from the methods mentioned above, in 

this paper, we have proposed an improved method 
based on LLE by using the Rank-order distance (Zhu, 
2011) to choose neighborhoods. Rank-order distance 
is a newly proposed distance measure, which 
measures distance according to the neighborhood 
rank information and has been successfully used to 
improve the clustering of high dimensional data. The 
proposed method has been successfully applied to 
two handwritten datasets. 

The rest of the paper is organized as follows: 
Rank-order distance is described in Section 2; the 
proposed RLLE method is introduced in Section 3; 
experimental results are presented in Section 4; 
finally, the conclusions are given in Section 5. 

2 RANK-ORDER DISTANCE 

Rank-order distance has been proposed to measure 
the similarity according to the neighborhood 
information (Zhu, 2011). This method is based on the 
consideration that two data points of the same type 
usually have similar neighborhood structure, while 
the data points of different type usually have 
dissimilar neighbors. The Rank-order distance is 
computed by three steps: 

Step 1. Compute neighbor lists of each data point 

iX


 using Euclidean distance. 

Step 2. Calculate the asymmetric Rank-order 
distance D(a,b) between data points a and b by: 
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where fa(i) is the i-th data point in the neighbor list of 
a, Oa(b) is the ranking order of b in the neighbor list 
of a, and Ob(fa(i)) is the ranking order of the data point 
fa(i) in neighbor list of b. It can be seen that D(a,b) is 
the sum of the ranking orders of the a’s top neighbors 
in the neighbor list of b. The smaller the Rank-order 
distance, the more similar neighborhood structure 
they have. 

Step 3. The final Rank-order distance is 
computed by: 
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The step 3 is to further normalize and symmetrize the 
distance calculated in step 2. The normalization is 
necessary since D(a,b) is biased towards penalizing 
large Oa(b), as discussed in (Zhu, 2011). 
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3 THE RLLE METHOD  

The LLE method is proposed by Roweis (2000) and 
Saul. Locally linear embedding (LLE) is an 
unsupervised learning method that attempts to gain a 
low-dimensional representation by retaining the local 
configuration of patches (a patch is defined as a data 
point and its nearest neighbors in high dimensional 
space). Although the structure of patches is preserved 
by linear fit, the global structure of the data in low 
dimensional space is obtained by splicing the patches 
together according to the relationship of the high 
dimensional data points. So the method can be used 
to solve nonlinear dimension reduction problems. In 
our RLLE method, the Rank-order distance is used to 
find the nearest neighbors instead of the Euclidean 
distance. 

Suppose that the data comprise of N real-valued 

vectors iX


. The RLLE method can be described as 

follows: 
Step 1. Find k nearest neighbors of each data 

point iX


 using the Rank-order distance defined in 

(2) in Section 2.  
Step 2. Compute reconstruction weights Wij 

between each data point and its neighbors through 
minimizing the reconstruction error which is 
measured by the following cost function: 
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 is not a part of the k nearest neighbors of iX

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So the weight Wij represents the contribution of the j-
th data point to the reconstruction of the i-th data point. 

Step 3. The vectors iY


 in low-dimensional 

space are computed using the weights computed in 
Step 2. The computation is done by minimizing the 
reconstruction error in low dimensional space: 
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, where I is the d×d identity matrix. 

 The final low dimensional representation of the 

data is stored in iY


. 

4 EXPERIMENTS 

4.1 The Datasets 

Two real datasets are used in our experiments. They 
are scanned images of handwritten digits from the 
MNIST (LeCun, 1998) and USPS (Hull, 1994). The 
MNIST dataset comprise of 60000 grayscale images 
of handwritten digits and every image has 28×28=784 
pixels (D=784). In the experiments, 5000 images are 
randomly selected as the test samples. The USPS 
contains 11000 grayscale images of handwritten 
digits with the resolution of 16×16 (D=256). We 
randomly choose 5500 images as the test samples.  

4.2 Comparison of Four Distances 

To evaluate the effectiveness of the Rank-order 
distance, it is compared with the Euclidean distance, 
image Euclidean distance (IED) as defined in IED-
LLE and geodesic distance as defined in ISO-LLE in 
representing local configurations of the manifolds. 
They are both used to select k nearest neighbors. Then 
for each data point i, the number of the nearest 
neighbors which represent the same digit as the data 
point is found, and it is denoted as ni. Finally, the 
mean of the ni for all the data points are computed.  

Table 1 and Table 2 shows the mean of the ni 
calculated using the Euclidean distance, the Rank-
order distance, the IED distance and the geodesic 
distance for MNIST and USPS datasets respectively. 
The value of k varies from 4 to 18. It can be seen from 
Table 1 and Table 2 that the mean values computed 
using the Rank-order distance for different k’s are all 
larger than the mean values computed using the 
Euclidean distance and the geodesic distance, which 
indicates that the Rank-order distance can find better 
candidates of the nearest neighbors than the 
Euclidean distance and the geodesic distance.  

From Table 1, it is found that the mean values 
computed using the Rank-order distance are all larger 
than the ones computed using the IED distance for the 
MNIST dataset. From Table 2, the mean values 
computed using the Rank-order distance are all lower 
than the IED distance for the USPS dataset. It shows 
that, compared to the IED distance, the Rank-order 
distance can find better candidates of the nearest 
neighbors for the MNIST dataset, but not for the 
USPS dataset. The IED distance uses not only the 
grey value of the pixels, but also takes into 
consideration the spatial relationship of the pixels, 
while the Euclidean distance, the geodesic distance 
and the Rank-order distance only considers the grey 
value of the pixels. The spatial relationship is stronger 
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in lower resolution images than in the high resolution 
images because the spatial distances between pixels 
are smaller in the low resolution images. This may be 
why the IED distance can produce better nearest 
neighbor candidates than the Rank-order distance in 
the USPS dataset which has a lower resolution than 
MNIST dataset. 

Table 1: The mean of the number of the nearest neighbors 
representing the same digit found using the four distance 
measures for the MNIST dataset. 

k Euclidean Rank-order Geodesic IED 

4 3.661 3.6824 3.6606 3.6756 

5 4.5476 4.5732 4.5476 4.5616 

8 7.1434 7.1904 7.144 7.1672 

10 8.8358 8.9048 8.8374 8.8698 

18 15.3808 15.5466 15.389 15.4664 

Table 2: The mean of the number of the nearest neighbors 
representing the same digit found using the four distance 
measures for the USPS dataset. 

k Euclidean Rank-order Geodesic IED 

4 3.6535 3.7304 3.654 3.7773 

5 4.5416 4.6327 4.5427 4.7029 

8 7.1195 7.2944 7.1218 7.4245 

10 8.8085 9.0325 8.8122 9.2084 

18 15.2671 15.7378 15.274 16.1193 

4.3 Evaluation of the RLLE Method 

For evaluating the effectiveness of the proposed 
RLLE method, it is compared with the original LLE 
method, the IED-LLE (Zhang, 2007) method and the 
ISO-LLE method. In Zhang’s study (Zhang, 2012), 
IED-LLE has the best experiment results in USPS 
dataset compared with MLLE, LLE. This is why the 
IED-LLE method is also selected for comparison. All 
the three methods are implemented in Matlab.  

Error-rate is usually used as an evaluation 
indicator for dimension reduction, and it is obtained 
by applying the K-Nearest Neighbor (K-NN) 
clustering method on the low dimensional 
representation of the dataset, and then computing the 
error rate of the clustering results (Saul, 2003).  

In our experiments, C-index (Hubert, 1976) is 
also selected as an evaluation indicator, which can be 
used to evaluate the dimension reduction results 
without using any clustering methods. The data in the 

low dimensional space are evaluated directly by the 
C-index to show the quality of the dimension 
reduction using the benchmark labels as the clustering 
labels. C-index is given by  

min

max min

( )

( ) ( )
in in

in in

W W N
Cindex

W N W N

−=
−

    (5) 

where Nin means the total number of intra-cluster 
edges, Wmin(Nin) denotes the sum of the smallest Nin 
distances in the proximity matrix W computed in the 
low dimensional space, Wmax(Nin) denotes the sum of 
the largest Nin distances in the proximity matrix W, 
and Win is the sum of all the intra-cluster distances. 
The C-index measures to what extent the dimension 
reduction puts together the Nin point pairs that are the 
closest across the clusters given by the benchmark 
labels. It lies in the range of [0, 1]. Usually the smaller 
the C-index, the better the clustering results is.  

There are two parameters in our experiments: 
one is the number of the nearest neighbors k, the other 
is the reduced number of features d. Using the method 
introduced in Kouropteva’s paper (Kouropteva, 2002), 
the optimal values computed for k are 5 and 8 for the 
MNIST dataset and the USPS dataset respectively. 
Besides the optimal k value, the other three k values 
used in our experiments are: 4, 10 and 18. For the 
other parameter d, the integer values from 2 through 
18 are all used in the experiments. 

4.4 Experimental Results 

Figure 1 shows the change of the error-rate produced 
by RLLE, ISO-LLE and IED-LLE compared to the 
error-rate produced by LLE for the MNIST dataset 
when k=4, k=5, k=10 and k=18. In Figure 1, ∆error-
rate denotes the error-rate of RLLE, ISO-LLE or IED-
LLE minus the error-rate of LLE. When the ∆error-
rate produced by a method is less than zero, it means 
that the method produces better results than the LLE 
method. It can be seen from Figure 1 that when k=4 
the ∆error-rates produced by RLLE are all less than 
zero except when the reduced number of features d=2, 
and the ∆error-rates of IED-LLE are all larger than 
zero except that d is within 2 to 4. When k=5, the 
∆error-rates produced by RLLE are all less than zero 
except that d is within 2 to 4, and the ∆error-rates 
produced by IED-LLE are all larger than zero. When 
k=10, the ∆error-rates produced by RLLE are all less 
than zero except that d is within 13 to 18, and the 
∆error-rates produced by IED-LLE are all larger than 
zero except that d is within 2 to 6. When k=18, the 
∆error-rates produced by RLLE are all less than zero, 
and the ∆error-rate produced by IED-LLE are all less 
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than zero except that the reduced dimension d is 
among 14 to 18. For k=4, k=5, k=10 and k=18, the 
∆error-rates of ISO-LLE are all close to zero. It can 
be seen that the proposed RLLE method can produce 
the lowest error-rate in most cases for the MNIST 
dataset. 

Figure 2 shows the change of the C-index 
produced by RLLE, ISO-LLE and IED-LLE 
compared to the C-index produced by LLE for the 
MNIST dataset. In Figure 2, ∆C-index denotes the C-
index of RLLE, ISO-LLE or IED-LLE minus the C-
index of LLE. Similar to the ∆error-rate, when the 
∆C-index produced by a method is less than zero, it 
means that the method produces better results than the 
LLE method. It can be seen from Figure 2 that when 
k=4 the ∆C-indices produced by RLLE are all less 
than zero except when d is 2, 10 or 12, and the ∆C-
indices produced by IED-LLE are all larger than zero 
except d is within 14 to 18. When k=5 and k=10, the 

∆C-indices produced by RLLE are all less than zero 
except a special case (k=5, d=2), and the ∆C-indices 
of IED-LLE are all less than zero except the cases: 
(k=5, d=2 to 12), (k=10, d=2). When k=18, the ∆C-
indices of RLLE are all less than zero except that d is 
within 16 to 18, and the ∆C-indices of IED-LLE are 
all larger than zero except that d is within 2 to 5. For 
k=4, k=5, k=10 and k=18, the ∆C-indices of ISO-LLE 
are also close to zero. So evaluated by the C- index, 
RLLE can also produce better results compared to 
LLE, ISO-LLE and IED-LLE on MNIST dataset.  

Figure 3 shows the change of the error-rate 
produced by RLLE, ISO-LLE and IED-LLE 
compared to the error-rate produced by LLE for the 
USPS dataset  when k=4, k=8, k=10 and k=18. It can 
be seen that for different values of k the ∆error-rates 
produced by RLLE and IED-LLE are all less than 
zero except a special case: (k=4, d=3). So for most 
cases, the RLLE method can produce better results  

 

Figure 1: ∆error-rate for the MNIST dataset. 

 

Figure 2: ∆C-index for the MNIST dataset. 
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Figure 3: ∆error-rate for the USPS dataset. 

 

Figure 4: ∆C-index for the USPS dataset. 

than LLE. It is also noted that most of the ∆error-rates 
produced by RLLE are larger than that produced by 
the IED-LLE method. For k=4, k=8, k=10 and k=18, 
the ∆error-rates of ISO-LLE are all close to zero. It 
can be seen that the RLLE method can produce 
smaller error-rates than LLE and ISO-LLE, but the 
error-rates produced by RLLE are larger than IED-
LLE.  

Figure 4 shows the change of the C-index 
produced by RLLE, ISO-LLE and IED-LLE 
compared to the C-index produced by LLE for the 
USPS dataset. It can be seen in Figure 4 that when 
k=4 the ∆C-indices of RLLE and IED-LLE are all less 
than zero except that d is within 2 to 3. When k=8, 
k=10 and k=18, the ∆C-indices produced by RLLE 
are all less than zero except in some special cases 
when the reduced dimension d is 2 or 18. When k=8 
and k=10, the ∆C-indices produced by IED-LLE are 
all less than zero. When k=18, the ∆C-indices of IED-

LLE are all close to zero. The ∆C-indices produced 
by RLLE are larger than IED-LLE in most cases 
when k=4, k=8 and k=10, and the ∆C-indices 
produced by RLLE are all less than the IED-LLE 
method when k=18. For k=4, k=8, k=10 and k=18, the 
∆C-indices of ISO-LLE are all close to zero. It can be 
seen that for most cases RLLE method can produce 
better C-indices than LLE and ISO-LLE, and IED-
LLE can produce better C-indices than RLLE, which 
is consistent with the results measured using error-
rate.  

4.5 Discussion 

In summary, for the MNIST dataset, the RLLE 
method can produce the best results than LLE, ISO-
LLE and IED-LLE. For the USPS dataset, RLLE can 
still produce better results than LLE and ISO-LLE in 
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most cases. Although IED-LLE can produce better 
results than RLLE when k=4, k=8 and k=10, the 
results of RLLE are usually better than these of IED-
LLE when k=18.  

It can be seen from Table 1 to Table 2 and from 
Figure 1 to Figure 4 that if a distance measure can 
find good nearest neighbor candidates, it can also 
produce good dimension reduction results combined 
with the LLE method. It can also be seen from the 
experimental results that using C-index can produce 
consistent evaluation results as using the error-rate. 
One of the benefits of using C-index is that no 
clustering process is needed after the dimension 
reduction, which may avoid the bias of the selected 
clustering algorithm in the evaluation of the 
dimension reduction results. 

5 CONCLUSIONS 

In this work, we use the Rank-order distance instead 
of the traditional Euclidean distance to find the 
nearest neighbors and then produce low-dimensional 
representation using a similar process as in LLE. It is 
shown that the proposed RLLE method can realize 
dimension reduction more effectively on the two 
image datasets compared to LLE and ISO-LLE, while 
producing competitive results compared to IED-LLE. 
It is also shown that the Rank-order distance can find 
better neighbors than the Euclidean distance and the 
geodesic distance for representing local 
configurations of the manifolds. The experimental 
results also show that C-index is another good 
indicator for evaluating the dimension reduction 
results. Our future work will focus on reducing the 
time complexity in the computation of the Rank-order 
distance. 
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