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Abstract: Self-adaptation of Multi-agent cooperative systems requires dynamic decision making and planning at 
runtime. Modeling the contextual and executable requirements of such systems as planning actions and states, 
this paper proposes a requirements-driven planning approach to self-adaptation. The planning model includes 
the states of the system context and the actions describing the behaviors of its multiple agents; the interactions 
between these agents and their environment are computed through an expansion of the requirements-driven 
planning graph, which is then used to verify whether the agents can collaborate in order to reach the desired 
goal states from their current states. In addition, the requirements are represented for Event Calculus to 
facilitate monitoring and reasoning about the actions of agents, achieving requirements driven planning at 
runtime. 

1 INTRODUCTION 

Self-adaptive systems must be capable of 
synthesising adaptation strategies at runtime to deal 
with the dynamically changing and uncertain 
environment in which they evolve. Engineering such 
self-adaptive systems, it is argued that requirements, 
architectures, and middlewares are all principal 
techniques (Salehie and Tahvildari,2009). 

Multi-Agent Systems(MAS) are cooperative 
models and distributed optimization techniques, 
which can be useful in self-adaptive systems. 
Engineering such cooperative self-adaptive systems 
requires dealing with requirements, and software 
architectures. Because of possible deviations 
between the systems agents runtime behavior and 
the requirements, self-adaptive systems shall be 
requirements-aware (Sawyer et al., 2010). 

Representation and modelling requirements, 
approaches for self-adaptive software include 
REAssuRE (Welsh et al., 2011), RELAX (Whittle et 
al., 2010) already use goal-based modelling 
notations. However, these approaches do not 
consider requirements as being contextual and 
executable. 

Contextual requirements mean that changes in 
the software context can trigger the changes of the 

predefined software requirements. Early research on 
contextual requirements (Ali et al., 2010), (Seyed 
and Minseok, 2012) only used contexts as the 
preconditions for goal decomposition or the 
triggering event in business processes modeling. 

Executable requirements mean that requirements 
should be reasoned about at runtime and interpreted 
as implemented behaviors. Bencomo et al., (2010) 
treated requirements as the firstclass runtime entities 
for software systems to reason about them and to 
relax their interpretations at runtime. However, they 
do not represent the dynamic information of 
adaptive requirements. 

To meet these challenges of contextual and 
executable requirements, this paper proposes a 
requirements-driven planning approach for the 
runtime self-adaptation. The approach consists of the 
following major elements: 

1) We support changes in the software context 
and use requirements to drive adequate planning 
at runtime; 

2) We define a requirements-driven planning 
graph model that includes states representing the 
software contexts and actions representing the 
system behaviors; 

3) We propose an algorithm for expanding the 
requirements-driven planning graph to model the 
Interactions between agents and their 
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environment as Event Calculus specifications;  
4) We use the specification to monitor whether 

the agents can collaborate to reach the desired 
goal states from their current states.  
Our major contribution here is in translating the 

requirements model into Event Calculus to facilitate 
necessary reasoning for requirements-driven 
planning at runtime. 

To illustrate the concepts and algorithms, we use 
a simple but representative scenario of two robots to 
adapt their actions through requirements-driven 
planning. One robot Nao has more capabilities in 
monitoring the environment (including the status of 
the second robot iCreate), whilst the iCreate is a 
“dumb” cleaning robot who has excellent capability 
in cleaning (its main designed purpose), speedy and 
stable movement, and fall-detection. The states for 
them are initially different, the goals (individual) 
states may mutually exclude, interfere, or support 
each other, under varying situations. Their 
interpretation of the environment observable 
behaviour can also be inconsistent, e.g., Nao has 
internal notion of whether the door is open or close 
through its image-detection capability, whilst 
iCreate don’t. Nonetheless, a cohesive plan that 
benefit both robots and the composed multi-agent 
system with respect to the collective requirements 
goals is achievable with the proposed framework. 

The remainder of the paper is organized as 
follows. Section II defines the basic concepts of 
requirements-driven planning and event calculus 
planning. Section III presents the approach and 
details the requirements-driven planning graph 
expansion and requirements extraction algorithms. 
Section IV reports the results of our experiments 
with a robotics application. Section V presents 
related work. Finally, Section VI makes some 
concluding remarks. 

2 PRELIMINARIES 

2.1 Self-adaptation Through Planning  

Plans are automatically generated by finding a path 
from the current states of system and its 
environment to goal states, which amounts to choose 
and order a sequence of actions in order to achieve 
the goal.  

In our previous work, we have applied a 
probabilistic planning algorithm, PGraphPlan, to 
support modelling uncertain requirements (Esfahani 
and Malek, 2013). Compared to a probabilistic 
planning performed offline (Little and Thibaux, 

2007), our online planning and replanning approach 
is considered more suitable for runtime requirements 
driven adaptation for two main reasons: (i) it 
represents the current states, goal states and system 
behavior as a planning model, and (ii) it induces a 
contingency plan once when the states of system 
environment or goals dynamically change. 

A task for goal-oriented requirements planning 
can be defined as follows. 

Definition 1 (Goal-oriented Requirement 
Planning Task): A goal-oriented requirement 
planning task is a triple T = <O, I, G>, where 

 O is a set of actions, 
  I is a set of the initial states,  
  G is a set of the goal states. 

In logic planning, a state is defined as an atomic 
boolean literal without any nested propositional 
expression structure. At runtime, when the goal is in 
any one of the initial states, a new planning will be 
triggered to execute some actions. The planning will 
not be terminated until any goal state is reached. 

2.2 Event Calculus Planning 

Since we are interested in runtime self-adaptive 
multi-agent systems by which some values of states 
will change during the execution process, two issues 
must be addressed. The first is to identify the states 
to monitor which could trigger plan actions in the 
next layer of actions (Tun et al., 2009). The second 
is to identify feature interactions (Tun et al., 2013), 
in other words, which planned actions shall not 
execute at the same timestamp. Two actions 
associated with the same agent cannot be executed 
synchronously, e.g., in the case of “landmark 
detection” and “face detection” associated with the 
NAO robot. 

To address these issues as we did for 
development-time diagnosing and detection of 
feature interaction problems, for runtime reasoning 
about actions and change at runtime we still use 
Event Calculus because it supports temporal 
descriptions of the events and actions. Here we give 
the basic predicates of discrete event calculus used 
in this paper (Mueller, 2004). Initiates(e, f, t) means 
that Fluent f becomes true after event e occurs at 
time t. Terminates(e, f, t) means that Fluent f 
becomes false after event e occurs at time t. 
Happens(e, t) means that Event e occurs at time t. 
HoldsAt(f, t) means that Fluent f is true at time t. In 
our paper, Fluent f indicates the states of agent or 
environment, time point t could be a real time point 
or some time stamp, and Event e indicates an action 
executed by the agents of the system. 
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3 FRAMEWORK OF 
REQUIREMENT-DRIVEN 
PLANNING 

Requirements-driven planning defines a runtime 
model for requirements in order to adapt them to 
contextual and dynamic changes of the system. The 
main elements of our requirements-driven planning 
framework are the behaviour and executable models 
(see Figure 1). 

 
Figure1: Requirements-driven planning framework. 

The input to our frameworks includes the three 
elements for the goal-oriented requirements planning 
task in Definition 1, i.e., the initial and goal states 
together with the plan actions. The current states will 
be monitored to update the initial states for re-plan. 
Additionally, the ontology represents the vocabulary 
of domains and enables us to reason about its 
concepts using subsumption, semantic equivalence 
and disjoint. The result of this reasoning is 
represented as mutex relations. Using the goal-
oriented requirement tasks and mutex relations, a 
requirements-driven planning graph (RPG) is 
obtained by an expansion algorithm. Another 
algorithm for extracting Event Calculus 
specifications follows, which is the input of 
executable engine to control the software 
components or software agents. In the subsequent 
section, we detail the elements of the framework. 

4 REQUIREMENTS-DRIVEN 
PLANNING MODELING 

4.1 Requirements-driven Planning 
Graph 

The plan actions are pre-defined to represent all 
actions that could be executed by different agents in 
the self-adaptive system.  

Definition 2 (Plan Action): A plan action a is a 
triple <pre(a); add(a); del(a)>, where 

  pre(a) is a set of the preconditions of a, 
 add(a) is a add list of a, and 
 del(a) is a delete list of a. 

The add and delete lists are sets of next-states. 
For a state s ∈add(a) and s’ ∈del(a), we say that 
execution of action a will make s true and make  s’ 
false. If all the preconditions of a plan action could 
be satisfied, it will be triggered to the effect adding 
some next-states and deleting some other next-states. 

This modeling results in a Requirements-driven 
Planning Graph (RPG), defined as follows. 

Definition 3 (Requirements-driven Planning 
Graph (RPG)): A requirements-driven planning 
graph RPG is a couple <N, E> where  

 N is a set of nodes, organized by alternating 
action and state in a layered sequence N = S0

⊕  A1 ⊕  S1 ⊕  A2 ⊕  S2    Sn in which 
– S0 are the initial states, that is S0 = I, 
– An action layer Ai includes all actions a 

whose preconditions are met in the previous 
state layer, i.e, pre(a) ⊆ Si-1,  

– A state layer Si includes all actions aj
i∈Ai 

such that Si = Si-1 ∪ ∪ add(aj
i) \ ∪ del(aj

i); 
 E is a set of directed edges E = Epre ∪ Eadd \
Edel where: 

– Epre(s, a) is the set of edges from state 
s∈ Si-1to action a∈ Ai such that s∈pre(a), 

– Eadd(a, s) is the set of edges from 
action a ∈ Ai to state s ∈ Si such that s ∈ 
add(a),  

– Edel(a, s) is the set of edges from action 
a∈Ai to state s∈Si such that s∈del(a). 

At runtime, an RPG will keep being expanded 
with actions until all goal states Sn are reached. 

4.2 Reasoning Mutex Relations using 
Ontology 

An ontology is “a specification of a representational 
vocabulary for a shared domain of discourse” 
(Gruber, 1993). The purpose of ontology is to model 
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and reason about domain knowledge. In OWL 
description logic, semantic equivalence amounts to a 
double subsumption, i.e., two concepts C and D are 
semantically equivalent, denoted C ≡ D, iff all 
instances of C belong to D and vice versa. When two 
concepts C and D do not share any instance, they are 
said to be semantically disjoint, written C  D. 

In logical planning, states are associated with 
Boolean propositions or predicates, which is 
however insufficient to represent the full 
semantics of the states for requirements driven 
planning. Hence, we extend the semantics of a 
state as follows. 

Definition 4 (State Semantics): A state 
semantics is a triple s = <prop(s), pred(s), val(s)>, 
where: 

 prop(s) is the property of s; 
 pred(s) is the predicate of s; 
 val(s) is the value of property. 

In this way, the ontological relationships can 
now be expressed on the states as following 
mutex relations. There are two state si and sj, if 
prop(si)≡ prop(sj), val(si)≡ val(sj) and pred(si) 
pred(sj), then si and sj have mutex relation, denoted as 
si◇sj. 

Extending state semantics onto the plan actions 
associated with the states, there can be three types of 
mutex relations between plan actions: inconsistent 
effects, interference and competing needs. They are 
categorized using the mutex relation between the 
state semantics belonging to the set of preconditions 
and effects of the plan actions involved. Inconsistent 
effects relation indicates that two plan actions ap and 
aq do not have inconsistent effects, which is denoted 
as ap◇ieaq. Interference relation indicates that two 
plan actions ap and aq do not have interference, 
which is denoted as ap ◇ inaq. Competing needs 
relation indicates that two plan actions ap and aq do 
not have competing needs, which is denoted as ap◇
cn aq. 

5 REQUIREMENTS-DRIVEN 
PLANNING ALGORITHM 

5.1 RPG-Expansion Algorithm 

We propose an algorithm RPG-Expansion that takes 
as input an RPG with i layers and the plan action set 
Oi and produces an RPG at the i + 1 layer if possible.  
RPG-Expansion is executed inductively until the 
goal states are included in the state layer Si. 

RPG-Expansion will be executed until the goal is 
included in the state layer Sj. The output is a 
requirement planning graph RPGi+1. 

Algorithm 1: RPG-Expansion(RPGi, Oi). 
Require: RPGi and the plan action set Oi 
Ensure: RPGi+1 or fail 
1:   Sj = Sj-1; 
2:   for all aj = <pre(aj), add(aj), del(aj)> ∈Aj do 
3:       Sj ←  Sj ∪ add(aj) 
4:       Sj ←  Sj \ del(aj) 
5:       if Gi ⊆ Sj then 
6:           return RPGi+1 
7:       end if 
8:    end for 
9:    if Sj == Sj-1 then 
10:     return fail 
11:  else 
12:     for all ap= <pre(ap), add(ap), del(ap)> ∈Oi do 
13:       for all aq = <pre(aq), add(aq), del(aq)> ∈Aj do 
14:         if ap◇

cn aq∨ap◇
ie aq∨ap◇

cn aq ==0 then 
15:           if pre(ak) ⊆ Sj then 
16:                  Aj+1 ← Aj+1 ∪ ak 
17:           end if 
18:        end if 
19:       end for 
20:     end for 
21:  end if 
22:  return RPGi+1

5.2 EC-Extraction Algorithm 

Two main functions of runtime executable 
extraction shall be realized by the EC-Extraction 
algorithm. First, the algorithm can analyze the 
substitute relation between plan actions in the same 
action layer in RPG and generate different solution 
for achieving the goal. Second, the algorithm can 
decide which of the related states should be 
monitored at every timestamp, which triggers the 
modification of the behaviour of the system to 
achieve the goal states in a changing environment. 

Event calculus (EC)  is suitable to represent self-
adaptive policies in our approach to realize the 
second function for two reasons. First, EC can 
describe all the artifacts in requirement plan graph 
without semantic lost. A state s (trigger state or 
result state) of plan action is represented as fluent in 
EC, which is denoted as f(s). A plan action a is 
represented as event in EC, which is denoted as 
EC(a). Different predicates in EC can represent the 
edges in graph. Second, EC can describe the 
sequence of two plan actions which could not 
execute at the same timestamp. The asynchronous 
relation between two plan actions ai and aj is denoted 
as AC (ai, aj).  
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Table 1shows the rules for translating an RPG 
into an executable model. 

Table 1: Rules of generating self-adaptive policies. 

Rules Description 

Rule1 For every s∈S0, InitiallyP[f(s)] is generated; 

Rule2 For every a∈Ak, ∀s∈add(a), Happens[a, ti] 
and Initiates[a, f(s), tj] (tj= ti+1) are generated;  

Rule3 If ai, aj∈Ak and AC(ai, aj), then Happens[ai, ti] 
and Happens[aj, tj] (tj= ti+2 or ti= tj+2) are 
generated; 

Rule4 For every a∈Ak (k>1), ∀s∈pre (a), if ∀a’ ∈
Ak-1, si ！ ∈ add(a’) and Happens[a, ti], then 
HoldsAt[f(s), tj] (tj=ti-1)is generated; 

Rule5 For every a ∈ Ak, ∀ s ∈ del(a), if there is 
Happens[a, t], Terminate[a, f(s), tj] (tj = tj +1) is 
generated; 

Rule6 For every s∈Sl (Sl is the last state layer ) and ∀
a∈Al, there is Happens[a, tl]( tl is the latest one 
of all a in last action layer) , if s∈G and s！∈

add(a), then HoldsAt[f(s), tj]( tj = ti +1). 
In these rules, we use time stamp as the time in 

predicates. If these self-adaptation policies are used 
in real time, then “ tj =ti +1” is replaced by “ tj >ti” 
and “ tj =ti -1” is replaced by“ tj <ti”.  

We propose an algorithm EC-Extraction for 
generating a runtime executable model. 
Algorithm 2: EC-Extraction(RPG). 

Require: RPG 
Ensure:  
1:   Set a time stamp t ← 0 
2:   Get the initial states ini 
3:   Generate Initially(ini) 
4:    t + + 
5:   for all Ak ∈ RPG do 
6:      for all ai ∈Ak do 
7:         if there is an action aj ∈list and AC(ai, aj ) then 
8:            add ai into nextlist 
9:       else add ai into list 
10:     end if 
11:    end for 
12:  for all ak =<pre(ak), add(ak), del(ak)> ∈list do 
13:    generate Happens(ak, t+1) and Initiates(ak, add(ak), t+1)
14:      for all at ∈Ak-1 do 
15:         if s∈ pre(ak) and si !∈add(at), then 
16:           generate HoldsAt(s, t) 
17:         end if 
18:       end for 
19:  end for 
20:  if nextlist is not empty then 
21:     t + + 
22:     list ← nextlist 
23:     go to 12 
24:   end if 
25:  end for 

The algorithm EC-Extraction represents how to 
translate the requirements-driven planning graph 
RPG into Event Calculus format. 

6 EXPERIENCE AND ANALYSIS 

6.1 Case Study: Multi-robots 
Cooperation 

We have been experimenting with a requirements 
planning through an early prototype demonstrator of 
cleaning scenarios with two heterogeneous robots. 
Both iRobot Create and NAO rely on discovery 
protocols to advertise their presence in the 
environment, the former uses Bluetooth discovery 
while the latter uses Bonjour. The two robots need to 
collaborate in order to secure a particular area in our 
laboratory. 

Table2 shows the 10 states mentioned in 
cleaning scenarios are described with PDDL. 

Table2: States description with PDDL. 

State Description 
s1 (light ?lab ?notdark) 
s2 (statusNao ?nao ?available) 
s3 (know ?door ?closed) 
s4 (at ?door ?post) 
s5 (at ?create ?post) 
s6 (statusCreate ?create ?wait) 
s7 (safearea ?ar) 
s8 (cleaned ?create, ?lab) 
s10 (statusDoor ?door ?closed) 
s12 not(at ?create ?post) 

Consider for example in robots cleaning scenario, 
the requirements-driven planning task Trob =<Orob, 
Irob, Grob>. The input includes Irob = {s1, s2, s6, s10} 
and Grob = {s8}. There are six actions defined in Orob 
which includes a1:detectDoor, a2:getCreatePost, 
a3:caculateSaftDistance, a4:cleanInSafe, a5:avail-
ableCreate, and a6:detectCreate. A requirements-
driven planning graph generator is realized with 
RPG-Expansion algorithm. There is a valid 
requirement planning graph RPG3 that translates Irob 

to Grob, as shown in Figure 2. 
Example1: there are two plan actions a1: 

naoDetectdoor and a6 : naoDetectCreate in a1 have 
asynchronous relation AC(a1, a6), according to rule 3 
Happens[a1, t1] and Happens[a6, t3] are generated. 

Example2: there is a plan action a4 : cleanInSafe; 
s12 ∈del(a4) and Happens[a4, t5], according to rule 5 
Terminate[a4, f(s12), t6] is generated. 
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Figure 2: RPG3 for multi-robots cooperation scenario. 

The executable adaptive model could decide that 
which of the related states should be monitored at 
every timestamp. For example, HoldsAt[f(s6),t2] 
means that the value of fluent f(s6) should be true at 
timestamp t2. If the value of fluent f(s6) is changed at 
t2, then a new requirement planning task Trob’ = 
<Orob, Irob’, Grob>will be triggered. In the condition 
of Irob’ ={s2, s3, s4, s13}, the plan action a5: 
avaiableCreate will be induced into the planning to 
achieve the goal. A new executable adaptive model 
will be generated as shown in Figure 3. 

 
Figure 3: A solution for new planning. 

6.2 Result Analysis 

A working prototype that follows the executable 
model has been implemented, as is shown in Figure 
4. 

The generation of behaviour model is realised by 
a RPG-Expansion module. The effectiveness of the 
RPG-Expansion algorithm is mainly measured by 
the mutex rate, which is the proportion of number of 
mutex relations to number of all relations among 
actions. 

Provided that there are k step of matching and 
the number of action in agent capability model is n. 
The number of mutex relations is m and the number 
of all relation among actions is ( 1) / 2n n − . With this 
assumption, mutex rate is 2 / ( 1)m n n − . 

Without the mutex relations between actions, 
traditional decision making methods for self-
adaptation need to search for a match for  all  actions 

 
Figure 4: Collaborating Robots Rlanning with Changing 
Contexts: (a) Door is open, (b) Door is closed (detected by 
Nao), (c) iCreate moves (instructed by Nao), (d) iCreate 
turns (obstacle detected). 

in planning graph. The worst case is when the 
matching succeeds at the last round, in which the 
number of matching is nk. Our approach analyzed 
the mutex relations before the decision making 
process. The average result of matching is 
2 / ( 1)mk n −  for 0 ( 1) / 2m n n≤ ≤ − ,
2 / ( 1)mk n nk− ≤ . The smaller m is, the more 
average number of matching can be reduced in our 
approach. 

7 RELATED WORK 

A number of proposals offer goal based requirement 
models for requirements-driven self-adaptive. Baresi 
et al., (2010) propose FLAGS requirements models 
which are based on the KAOS framework and are 
targeted at adaptive systems. In FLAGS, fuzzy goals 
are mostly associated with non-functional 
requirements. Souza et al., (2011) note that the 
(partial) un-fulfilment of requirements triggers 
adaptation. They introduce awareness requirements 
to refer to success, failure, performance and other 
properties of software requirements and propose to 
monitor changes in these properties and decide when 
adaptation should take place. These approaches alter 
the goal model at runtime and enforce adaptation 
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directives on the running system. Our framework 
monitors the goal state at runtime and alters the plan 
actions for self-adaptation. 

Sabatucci et al., (2013) proposed a GoalSPEC 
language for supporting evolution and self-
adaptation. In GoalSPEC every goal describes three 
elements: initial state, final state and actors. The 
actors operate a state transition from an initial state 
to n final state. In the next work, the overview of a 
framework for adaptive workflow was presented to 
find a distributed plan to address the injected goals. 
Our framework has the potential to enrich these 
works by the consideration of parallel and mutex 
relations between actions which considers all the 
reasonable solutions for current states. 

Planning-based approach shall plan future 
behaviour of the system continuously. Sykes 
proposed an implementation of Krammer (Sykes et 
al., 2008) and Magee's three-layer architecture that 
distinguishes between component-based control, 
architectural (re)configuration, and high-level task 
(re)planning (Kramer and Magee, 2007). Plans 
generated from the highest layer (i.e., goals) are 
configured by the middle layer (i.e., configurations) 
to be executed by the lowest layer (i.e., components). 
Some solutions have begun to study the task 
replanning at runtime: PLASMA (Tajalli et al., 2006) 
supports replanning and adapting the middle layer in 
a similar, layered architecture, which is to provide a 
framework that automates the generation and 
enactment of plans while the employed feedback 
loops. Requirements-Driven Feedback Loops (Chen 
et al., 2014) exerts adjusting controls to optimize 
away limiting uncertainty factors. However, current 
approaches are unable to intelligently compute new 
adaptation plans by taking into account mutex 
relations using the semantic knowledge of the 
application domains. 

8 CONCLUSIONS  

The main contribution of the paper is a semantic 
rule-based transformation from requirements model 
to event calculus specifications that can support 
runtime interaction with environment and replanning 
the multi-agent system at runtime. Comparing with 
the predefined policy-based approaches, planning-
based approach can overcome the conflicts between 
policies that are otherwise impossible for system to 
resolve for achieving the goal states collectively. 
Our replanning approach leaves out the translation 
of control actions into execution operations and 
structural adaptations, which we believe is 

reasonable for executing the known plan actions at 
runtime. 

Our future work will integrate this proposal with 
other multi-agent interaction modeling techniques 
based on the agent commitments and we will 
conduct case studies on the automated guided 
vehicle (AGV) domain that include human agents.  
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