
Feature Detection and Description using a Harris-Hessian/FREAK
Combination on an Embedded GPU

Max Danielsson1, Thomas Sievert1, Håkan Grahn1 and Jim Rasmusson2

1Blekinge Institute of Technology, Karlskrona, Sweden
2Sony Mobile Communications, Lund, Sweden

Keywords: GPU, Feature Detection, Feature Description, Mobile Devices.

Abstract: GPUs in embedded platforms are reaching performance levels comparable to desktop hardware, thus it be-
comes interesting to apply Computer Vision techniques. We propose, implement, and evaluate a novel feature
detector and descriptor combination, i.e., we combine the Harris-Hessian detector with the FREAK binary
descriptor. The implementation is done in OpenCL, and we evaluate the execution time and classification
performance. We compare our approach with two other methods, FAST/BRISK and ORB. Performance data
is presented for the mobile device Xperia Z3 and the desktop Nvidia GTX 660. Our results indicate that the
execution times on the Xperia Z3 are insufficient for real-time applications while desktop execution shows
future potential. Classification performance of Harris-Hessian/FREAK indicates that the solution is sensitive
to rotation, but superior in scale variant images.

1 INTRODUCTION

Feature detection and description are crucial compo-
nents of Computer Vision (CV) algorithms, applied in
a wide array of different areas. Digital cameras pro-
duce images of increasingly high resolution, which
implies that they store more information, and become
increasingly expensive to evaluate. As such the de-
mand for more efficient algorithms grows ever higher.

Feature detection and feature description are two
separate problems. SIFT (Lowe, 1999) and SURF
(Bay et al., 2006) are two of the most popular ap-
proaches at solving both problems. As the field has
grown, researchers often aim to solve one or the other.
As more unrelated detection and description methods
are proposed, naturally the number of unique com-
binations also increases. However, little research is
made on whether different characteristics of detectors
are more or less suitable with certain characteristics
of descriptors.

As technology advances, so does the comput-
ing power of embedded devices. Since cellphones
- which are by default equipped with cameras - to-
day make use of powerful Graphical Processing Units
(GPUs), the potential of feature detection and descrip-
tion applications has increased. Vision algorithms no
longer need to be as computationally cheap, as a GPU
can reduce the amount of energy needed per Floating

Point Operation (FLOP) (Timm et al., 2010).
This paper presents a novel combination of

the Harris-Hessian detector (Xie et al., 2010) and
the FREAK descriptor (Alahi et al., 2012), im-
plemented for a GPU using OpenCL. The Harris-
Hessian/FREAK combination is then evaluated re-
garding the classification performance, the execution
performance, as well as the temperature effects on an
embedded device, i.e., a cellphone.

2 BACKGROUND AND RELATED
WORK

The study on how to interpret digital images is com-
monly referred to as Computer Vision. This is a wide
field with applications including, e.g., object recog-
nition, image restoration and scene reconstruction.
Within the field computer vision, feature detection
refers to methods of trying to locate arbitrary features
that can afterwards be described and compared. These
features then need to be described in such a manner
that the same feature in a different image can be com-
pared and confirmed to be matching. Typically, ar-
eas around the chosen keypoint are sampled and then
compiled into a vector, a so called feature descriptor.

Danielsson, M., Sievert, T., Grahn, H. and Rasmusson, J.
Feature Detection and Description using a Harris-Hessian/FREAK Combination on an Embedded GPU.
DOI: 10.5220/0005662005170525
In Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2016), pages 517-525
ISBN: 978-989-758-173-1
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

517

2.1 Feature Detection

Scale-Invariant Feature Transform (SIFT) (Lowe,
1999) was proposed in 1999, and has become some-
what of an industry standard. It includes both a detec-
tor and a descriptor. The detector is based on calcu-
lating a Difference of Gaussians (DoG) with several
scale spaces.

Partially inspired by SIFT, the Speeded-Up Ro-
bust Features (SURF) (Bay et al., 2006) detector was
proposed, which uses integral images and Hessian de-
terminants. SURF and SIFT are often used as base
lines in evaluations of other detectors.

The detector chosen for our experiments was pro-
posed by (Xie et al., 2010) and is inspired by (Miko-
lajczyk and Schmid, 2004), particularly their use of
a multi-scale Harris operator. However, instead of in-
creasing the scale incrementally, Xie et al. examined a
large set of pictures to determine which scales should
be evaluated so that as many features as possible only
are discovered in one scale each. Then, weak cor-
ners are culled using the Hessian determinant. As the
fundamental operators are the Harris operator and the
Hessian determinant, it is called the "Harris-Hessian
detector".

2.2 Feature Description

SIFT, SURF, and many other descriptors use strate-
gies that are variations of histograms of gradients
(HOG). The area around each keypoint in an image
is divided into a grid with sub-cells. For each sub-
cell, a gradient is computed. Then, a histogram of the
gradients’ rotations and orientations is made for each
cell. These histogram then make up the descriptor.
SURF, while based on the same principle, uses Haar
wavelets instead of gradients. The resulting descrip-
tor vectors of a high dimension (usually >128) which
can be compared using, e.g., Euclidean distance.

Calonder et al. proposed a new type of descriptor
called Binary Robust Independent Elementary Fea-
tures (BRIEF) (Calonder et al., 2010). Instead of us-
ing HOGs, BRIEF samples one pair of points at a time
around the keypoint, then compares their respective
intensities. The result is a number of ones and ze-
ros that are concatenated into a string, i.e., forming
a "binary descriptor". They do not propose a single
sampling pattern, rather they consider five different
ones. The resulting descriptor is nevertheless a binary
string. The benefit of binary descriptors is mainly that
they are computationally cheap, as well as suitable for
comparison using Hamming distance, which can be
implemented efficiently using the XOR operation.

Further work into improving the sampling pattern

of a binary descriptor has been made, most notably
Oriented FAST and Rotated BRIEF (ORB) (Rublee
et al., 2011), Binary Robust Invariant Scalable Key-
points (BRISK) (Leutenegger et al., 2011), and Fast
Retina Keypoint (FREAK) (Alahi et al., 2012).

The descriptor we use in this paper is FREAK
(Alahi et al., 2012), where machine learning is used
to find a sampling pattern that aims to minimize the
number of comparisons needed. FREAK generates
a hierarchical descriptor allowing early out compar-
isons. As FREAK significantly reduces the number
of necessary compare operations, it is suitable for mo-
bile platforms with low compute power.

2.3 OpenCL

OpenCL1 is an open framework for executing pro-
grams on heterogeneous computers, its model is well
suited for execution of programs on GPUs. It is very
similar to the Nvidia specific CUDA framework. It
was chosen for this project because it is supported
on both desktop and embedded devices such as the
Adreno 330 and Nvidia GTX 660 allowing us to run
the same implementation in multiple environments.

3 OUR APPROACH:
HARRIS-HESSIAN + FREAK

3.1 Harris-Hessian Detector

The detector consists of two steps: Discovering Harris
corners (Harris and Stephens, 1988) using the Harris-
affine-like (Mikolajczyk and Schmid, 2004) detec-
tor on nine pre-selected scales as well as two ad-
ditional scales surrounding the most populated one,
then culling weak points using a measure derived
from the Hessian determinant.

The Harris-Hessian detector was proposed by Xie
et al. (Xie et al., 2010) in 2009 and elaborated by them
in 2010. It is essentially a variation of the Harris-
Affine detector combined with a use of the Hessian
determinant to cull away "bad" keypoints. As the
name suggests, the detector consists of two steps: The
Harris step and the Hessian step.

The Harris step finds Harris corners (see Figure 1)
at gradually larger scales (denoted σ), then reexam-
ines the scales around the σ where the largest amount
of corners were found. This σ is said to be the charac-
teristic scale of the image. To reduce the likelihood of
discovering the same corners in multiple scales, Xie

1Offical webpage of the OpenCL standard:
https://www.khronos.org.

ICPRAM 2016 - International Conference on Pattern Recognition Applications and Methods

518

Figure 1: A demonstration of some of the steps in the Har-
ris algorithm. From left to right: Input image, Gaussian
blur, derivative along the y axis, Harris corner response (be-
fore non-max suppression). Original image By POV-Ray
(Rendered in POV-Ray by user:ed_g2s.) [CC BY-SA 3.0
(http://creativecommons.org/licenses/by-sa/3.0)], via Wiki-
media Commons.

et al. empirically evaluate a large set of images to de-
termine the proper scales to examine. This approach
is the main contrast to the work of Mikolajczyk and
Schmid (Mikolajczyk and Schmid, 2004). After all
the scales have been explored, the resulting corners
make up the set S, called scale space.

In the Hessian step, the Hessian determinant value
for each discovered corner in S is evaluated in all
scales. If the determinant reaches a local maximum
at σi compared to the neighbouring scales σi−1 and
σi+1 and is larger than a threshold T2, it qualifies as a
keypoint of scale σi. Otherwise, it is discarded. The
purpose of the Hessian step is to both reduce false de-
tection and confirm the scales of the keypoints.

3.2 FREAK Descriptor

FREAK is a part of a class of descriptors coined "bi-
nary", due to the fact that their information is pre-
sented as bit strings. This property is especially use-
ful to achieve computationally efficient - and simple -
comparisons. Given two binary descriptors produced
by the same algorithm, one can use the Hamming dis-
tance to measure how many of their respective bits
differ. The resulting value is a measurement on how
similar the described points are, a smaller value indi-
cates a greater similarity.

To describe a keypoint, a binary descriptor sam-
ples areas around it, and compares their intensities in
a pairwise manner. Each bit in the descriptor’s bit
string signifies the comparison of one sampling pair.
Each binary descriptor varies in three aspects: which
areas around the keypoint to sample, how to adjust on

the account of rotation, and which areas to use as pairs
in the final comparison step. Generally, the further the
sampled area is from the keypoint, the larger it is, to
account for coarseness.

Alahi et al. suggest an intuitive explanation as
to why binary descriptors work by comparing them
to the manner in which the human eye works (Alahi
et al., 2012). Following this line of reasoning, they
propose a circular sampling pattern of overlapping ar-
eas inspired by the human retina. They then - option-
ally - define 45 pairs using these areas and examines
their gradients, to estimate the orientation of the key-
point. With the new orientation, the pattern is rotated
accordingly and areas are re-sampled.

From this point they use machine learning to es-
tablish which pairs of areas result in the highest per-
formance for the descriptor bit string. Interestingly,
the pairs discovered by this process are a coarse-to-
fine distribution similar to what the eye does when
looking at a scene, called saccadic search. Using this
motivation, the sampling pairs are sorted into four
cascades with 128 pairs each, starting with coarse
(faraway) areas and successively becoming finer and
finer. The number 128 is specified in order to facilitate
parallel instructions both the intensity comparisons,
and the Hamming distance operation. This finally re-
sults in a bit-string with 512 elements, which enables
the Hamming distance to be performed in four cas-
cades.

4 IMPLEMENTATION

The implementation is written in standard C99 and
OpenCL 1.1 (Munshi, 2011). stbi_image2 and
lodepng3 are used for image decoding/encoding,
ieeehalfprecision4 for half-float encoding, and
Android Java to create an application wrapper on the
Android platform.

The solution was initially built for the x86_64
platform to run on a Intel i7 and Nvidia 660 series
graphics card. When the program was done and work-
ing it was ported to the Xperia Z3. The program was
compiled, built and installed using the CLI tools in
the Android SDK and NDK toolset.

4.1 Data Representation

The program we have written performs calculations
in a raster data format. We choose to represent the

2Sean Barret http://nothings.org/
3Lode Vandevenne http://lodev.org/lodepng/
4Developed by James Tursa.

Feature Detection and Description using a Harris-Hessian/FREAK Combination on an Embedded GPU

519

scalar cell values in the range of 0.0 to 1.0 as float-
ing point values, this is a common normalization in
image handling and is suitable for optimal precision
with IEEE 745 floats. This might not be relevant for a
32-bit value, but can be significant when using 16-bit
values.

4.2 Algorithm Overview

The program is built into a number of discrete steps
where each step performs a task on the incoming data
and creates either an output with the same size and
construction as the input or reduced set of data. The
separation of tasks takes form as individual OpenCL
kernels and executions on the GPU. This separation
simplifies debugging but adds a potential overhead.
In many cases there is a potential performance gain in
minimizing the number of calls to the GPU to mini-
mize inter-device communication delays, but for em-
bedded devices this delay is normally low.

The implementation is split into two large parts,
the Harris-Hessian detector and the FREAK descrip-
tor. The implementation of the Harris-Hessian detec-
tor is focused on GPU execution, same as the original
paper (Xie et al., 2011). The FREAK implementation
runs on the host CPU and directly sourced from the
work of Alahi et al. (Alahi et al., 2012), which has
been published under a BSD license5.

Our implementation of the Harris-Hessian is de-
signed by us primarily based on the paper by Xie et
al. (Xie et al., 2011). Some aspects of the implemen-
tation had to be reinvented when it was built, mean-
ing that while we consider the resulting transforma-
tions equivalent, the way it is performed is unlikely to
match the original work. It is also difficult to estab-
lish how differently the two implementations perform
as the results are not sufficiently detailed in (Xie et al.,
2011) for comparison.

4.3 Harris-Hessian

Gaussian blurring is a central part of the Harris-affine
algorithm since it is performed four times, in two
places (see Figure2), for every given sigma. The
Gaussian blur kernel reads from an image buffer as
well as a smaller buffer that contains the Gaussian
filter. The filters are pre-calculated on the host and
transferred to the GPU before execution. The Gaus-
sian blur consists of two axis aligned blurs, first along
the X axis and then along the Y.

The Hessian kernel takes three input buffers:
ddxx, ddxy and ddyy, and generates a fourth output

5Source code https://github.com/kikohs/freak

Gaussian Blur D Derivative

Second Moment

blurreddesaturated

ddx ddy

xx xy yy

Gaussian Blur Gaussian Blur Gaussian Blur

xx xy yy

Harris Corner Response

Harris Corner Suppression

harris response

harris suppression

Harris Corner Count

Derivative

Derivative

ddxx

ddxy

ddyy

Hessian

hessian det

corner count

strong responses

Generate Keypoints

keypoints

Figure 2: Data flow in Harris-Hessian. Solid boxes indicate
kernel executions and the dotted boxes are buffers or data.
Green boxes are input and orange are the resulting output
for a given sigma. Red boxes are the results sent to the de-
scriptor. The larger dotted border indicates sigma iteration,
anything within this border is re-performed for each sigma.

buffer, hessian det. The algorithm is a direct trans-
lation of the theoretical formula. The Harris corner
response kernel also takes three in buffers: xx, xy,
and yy, and it writes to a fourth, harris response.
Similarly, it is a straight-forward implementation of
the formula.

The corner count step contains a gather aspect for
the total number of found keypoints. This is achieved
through the use of an atomic integer counter. It is
generally more efficient than counting the sum on
the CPU due to a lower amount of data that has to
be transferred from the GPU to the CPU. However,
the data transfer overhead may be low on an embed-
ded device such as the Snapdragon 800 with on-chip
shared memory.

4.4 FREAK

FREAK was only implemented and tested on the
CPU. While a GPU implementation could potentially
prove useful for certain use cases, it is outside the
scope of this study.

Since the algorithm is sequential, the implementa-
tion of FREAK is straight-forward and resembles the
original provided by Alahi et al. (Alahi et al., 2012).
The main difference is that our implementation does
not utilize Single Instruction Multiple Data (SIMD)
instructions, and we do not offer the choice of tak-
ing rotational or scale invariance into account - it is
always done. Further, Alahi et al. provide the algo-
rithm with the sampling pattern that was learned as
an alternative to the one generated and hard-coded by
them. This functionality was deemed unnecessary for
the purpose of the study.

In the FREAK paper (Alahi et al., 2012) the au-

ICPRAM 2016 - International Conference on Pattern Recognition Applications and Methods

520

thors specify that the algorithm requires a Gaussian
filter. In practice, however, the implementation uti-
lizes a computationally simpler box filter. This is a
common replacement in the Computer Vision field
since the box filter is considered sufficiently similar
for Gaussians of low sigmas, and it can be computed
in constant time.

4.5 Improving Execution Time

Below we outline three possible optimizations that
may improve the execution time of our algorithm.
The first thing we suggest is changing all the data
storage to Texture Sampler and texture data formats.
Reading the documentation for the Adreno 330 indi-
cates that such samplers utilize the L1 cache which
normal buffers does not. It is expected that such a
shift might have rather fast returns.

Secondly, the Adreno 330 supports Half-Floats.
Switching all possible data-stores to this smaller data
format will reduce memory use and should improve
performance at the expense of precision.

Finally, the Gaussian blur, which takes up 80% of
the total execution time, could be optimized by per-
forming multiple passes of previously blurred images,
early in the pipeline. The negative impact of the pro-
gram would be an increased memory usage. This op-
timization is only applicable to the early blur, mean-
ing 1/4 of all blurs, as later stages are dependant on
other transformations performed on the image. Op-
tionally, recursive blurring as presented by Deriche
(Deriche, 1993) could potentially be a faster way of
executing Gaussian blur on the GPU.

5 METHODOLOGY

This study concerns implementing and exploring the
properties of a feature detector and descriptor on
Sony’s Xperia Z3. The objective is to evaluate if real-
time feature detection is possible on mobile hardware.
In our evaluation, we address the execution time, the
heat properties of the Xperia Z3, and the classifica-
tion performance. We use two platforms in our evalu-
ation: (i) an Xperia Z3 mobile phone, and (ii) a desk-
top computer with on Intel i5 and a GTX660. We
will also provide an analysis of the implementation,
detailing the strengths, weaknesses, and future work.

5.1 Execution Time and Temperature

All execution time measurements were performed us-
ing the image shown in Figure 3. The image con-
tent does not affect Harris-Hessian algorithms signif-

icantly, but can have a major impact on the FREAK
algorithm. The reason is that different images have a
different number of keypoints, and the FREAK algo-
rithm scales linearly with the number of descriptors.

Figure 3: Our test image (resolution 800x600) featuring a
series of posters.

When running the temperature tests the phone was
placed on a table, standing up with the back leaning
towards a surface touching a small part of the phone.
The intention was to give the back some open space,
simulating the phone being held by two hands when
taking a picture. The room held a normal room tem-
perature of around 20 degrees Celsius. We let the
Xperia Z3 execute the Harris-Hessian/FREAK on an
image indefinitely, while tracking the temperature on
the chip and the clock frequency of the processing
units.

5.2 Detector and Descriptor
Performance

When evaluating the detector and descriptor perfor-
mance, we execute Harris-Hessian/FREAK, ORB,
and FAST/BRISK on a set of images, and then per-
form matching using Hamming distance. Further, we
employ a ratio test which evaluates the ratio between
the two smallest match distances and discards any
match that is greater than a given threshold. This test
concludes that if two matches are too similar, they are
not unique enough to be meaningful and thus removes
false matches. The proper magnitude of this threshold
varies with the use case. In our experiment we choose
a fixed value of 0.7 with the purpose of minimizing
the amount of false matches. The FREAK descriptor
for two images is using the Hamming distance, which
in the case of binary strings can be simplified into a
bit-wise XOR operation and bit counting.

In the results we present a selection of images that
highlight the different characteristics of the compared

Feature Detection and Description using a Harris-Hessian/FREAK Combination on an Embedded GPU

521

 0 500 1000 1500 2000 2500 3000 3500 4000

kernel gaussx

kernel gaussy

kernel derivate

harris corner suppression

hessian

harris corner response

kernel desaturate

find keypoints

harris count

smme kernel

build descriptor

Time (Milliseconds)

1996.60

3305.42

130.68

75.26

70.41

43.56

3.47

0.05

18.99

40.77

248.61

 0 500 1000 1500 2000 2500 3000 3500 4000

kernel gaussx

kernel gaussy

kernel derivate

harris corner suppression

hessian

harris corner response

kernel desaturate

find keypoints

harris count

smme kernel

build descriptor

Time (Milliseconds)

51.19

71.07

6.59

3.64

8.35

5.99

0.13

0.22

1.06

1.30

63.65

Figure 4: Execution times on Xperia Z3 (left) and on a PC with an Intel i5 and GTX 660 (right) for individual kernels and for
FREAK, named ”build descriptor”, values are from the median of 10 runs.

algorithms. We show the number of matches made as
a function of the distance between the keypoints, and
highlight up to the three first false matches for each
algorithm. Additionally we present the total number
of matches made at a distance threshold where a max-
imum of three false matches has been discovered.

5.3 Test Image

All execution time tests where performed using the
image shown in Figure 3. Image content does not af-
fect Harris-Hessian algorithms significantly, but can
have a major impact on the FREAK algorithm. The
reason for this is that different images inherently have
a different number of keypoints and the FREAK im-
plementation scales linearly with the number of de-
scriptors. There are also no limitations implemented
in how many descriptors are encoded, something that
would be very relevant in a final implementation as
it does not only effect the execution time, but storage
requirements for the descriptor.

The FREAK data for two images is naively com-
pared one-to-one using the Hamming distance which
in the case of binary strings - the output of FREAK -
can be simplified into a bit-wise XOR operation and
bit counting.

When comparing descriptors the best match is
evaluated for final utility. It common to apply a
threshold value, setting a minimum distance between
keypoints for a valid match. Another common filter,
used by for example (Alahi et al., 2012), is to calcu-
late the ratio between distance of the best and second
best match, the value indicates how unique a match is,
this ratio is calculated as r = s/b where r is the ratio, s
is the second best match and b is the best. A low ratio
indicates that the keypoints is unique. What threshold
to use is very application specific and varies between
cases. It is possible to develop heuristics to dynam-
ically calculate suitable values but that is out of the
scope for this paper.

6 EXPERIMENTAL RESULTS

6.1 Execution Times and Temperature

When measuring the execution time, we executed the
application ten times and then selected the median of
those ten runs. Running the final program using the
test image in Figure 3 on an Xperia Z3 we have an
execution time of roughly 6 seconds6. Out of these 6
seconds around 5 seconds are spent on the Gaussian
blur passes, see Figure 4.

The time spent inside of kernels for Harris-
Hessian is measured to 5477ms in a given run and
5705ms is reportedly spent from the start of the first
kernel to the end of the last. Execution of FREAK
takes roughly 228ms, the reported number of key-
points processed is 24357, same for all tests as it is de-
terministically the same number for the same image.
It is to be noted that the execution time of the pro-
gram did not increase or decrease significantly during
the entire span of the experiment.

In contrast, the same application running on a con-
ventional PC with and Intel i5 and GTX660 the aver-
age execution time for the application is 252ms, in-
cluding image decoding from a jpeg, and 161ms for
running Harris-Hessian where 150ms is spent inside
of kernels. For the given image FREAK takes 60ms.
This means that the application is running at roughly
4-5 frames per second depending on use-case making
it near real-time.

Regarding temperature, it appears that the Xperia
Z3 does not have any issues with heat when running
the Harris-Hessian/FREAK application continuously.
When we start the program, the Xperia Z3 that has re-
mained idle for a significant amount of time, resting
at around 38 degrees Celsius. We run the application
for 60 minutes, and found that the temperature was

6Can be lowered to 5.5s by adjusting work group sizes,
but we set the work group size equal on both platforms.

ICPRAM 2016 - International Conference on Pattern Recognition Applications and Methods

522

in working zone around 50 degrees for the GPU sen-
sors. Further, we did not see any tendency to reduce
the clock frequency of the phone due to too high tem-
perature.

6.2 Classification Performance

We present our performance data as follows. For each
pair of compared images, the results of the respective
algorithms are displayed. Along with visualizations
of the matches, we present a graph showing the to-
tal number of matches as a function of the permitted
Hamming distance between matching keypoints. Ad-
ditionally, we show the number of matches made by
the algorithms at the distance threshold where they
discover up to three false matches. The images we
present are chosen from a larger set of data because
we find they highlight differing characteristics be-
tween the different approaches.

Figure 5 presents an example of near-duplicate
images. Harris-Hessian/FREAK clearly outperforms
both FAST/BRISK and ORB. An interesting attribute
compared specifically to ORB, apart from a higher
number of matches, is which keypoints are being
matched. ORB mainly matches points that are
far away from the camera - and subsequently at a
low scale - whereas Harris-Hessian/FREAK matches
points more evenly distributed in the images. One ex-
planation for this could be that the Harris-Hessian de-
tector discovers a wider range of keypoints compared
to the FAST-based detectors.

Figure 6 shows a matching with a rotated image.
The rotation invariance of ORB is very good, while
FAST/BRISK and Harris-Hessian/FREAK struggle
to produce any matches at all. FREAK uses a similar
strategy as BRISK for rotation compensation, while
ORB has a fundamentally different approach involv-
ing machine learning. In all our tests ORB has been
significantly more robust with regard to rotation.

7 CONCLUSIONS

In this paper, we have presented a novel combination
of a feature detector and a descriptor, i.e., the Harris-
Hessian detector and the FREAK descriptor. The
Harris-Hessian/FREAK combination is implemented
in C and OpenCL, in order to execute performance
critical parts of it on the GPU. The target platform is a
mobile embedded device, i.e., a Sony Xperia Z3 mo-
bile phone. Therefore, we evaluate execution times,
temperature, as well as classification performance in
relation to the ORB and BRISK feature detectors/de-
scriptors.

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 20 40 60 80 100 120

T
ot

al
 M

at
ch

es

Threshold

Threshold above match ratio of 0.7

BRISK ORB HH+F

 0

 50

 100

 150

 200

 250

 300

BRISK ORB HH-F

N
r

M
at

ch
es

<= 3 mismatches and < 0.7 match ratio

23

112

237

Figure 5: Near-duplicate images of buildings. The distribu-
tion of points indicates that Harris-Hessian/FREAK is more
scale invariant than its competitors.

The results show that Harris-Hessian/FREAK ex-
cels at matching near-duplicate images. This is to be
expected, since Xie et al. had these kinds of cases
in mind when developing their Harris-Hessian detec-
tor (Xie et al., 2010). Furthermore, FREAK seems
more sensitive to rotation than ORB, which is not in
line with findings in (Alahi et al., 2012) where they
claim that FREAK’s performance is comparable to
ORB’s. While other evaluations of binary descrip-

Feature Detection and Description using a Harris-Hessian/FREAK Combination on an Embedded GPU

523

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70

T
ot

al
 M

at
ch

es

Threshold

Threshold above match ratio of 0.7

ORB HH+F

 0

 50

 100

 150

 200

 250

 300

BRISK ORB HH-F

N
r

M
at

ch
es

<= 3 mismatches and < 0.7 match ratio

0

185

4

Figure 6: Comparison of a logotype with rotation. ORB’s
rotational invariance performs much better in this case, as
neither of its competitors manage to find matches.

tors have been made (Bekele et al., 2013), they do not
directly address the descriptors’ rotational invariance.

The results presented here indicate that further inves-
tigation is necessary. However, our results only give
an indication, since the images with rotation all in-
clude features that are comprised of text. To further
strengthen the validity of such claims, one would need
a more rigorous experiment.

To summarize, our initial observations indicate
that the Harris-Hessian detector combined with the
FREAK descriptor is a promising approach from a
performance point of view. While there are some
types of images that ORB matches significantly bet-
ter, the performance seems, in general, to be compara-
ble to contemporary approaches. The source code for
our Harris-Hessian/FREAK implementation is found
at https://github.com/autious/harris_hessian_freak.

ACKNOWLEDGEMENTS

This work was partly funded by the "Industrial Excel-
lence Center EASE - Embedded Applications Soft-
ware Engineering", (http://ease.cs.lth.se), and the re-
search project "Scalable resource-efficient systems
for big data analytics" funded by the Knowledge
Foundation in Sweden (grant: 20140032).

REFERENCES

Alahi, A., Ortiz, R., and Vandergheynst, P. (2012). FREAK:
Fast Retina Keypoint. In 2012 IEEE Conf. on Com-
puter Vision and Pattern Recognition, pages 510–517.

Bay, H., Tuytelaars, T., and Gool, L. V. (2006). SURF:
Speeded Up Robust Features. In Computer Vision –
ECCV 2006, number 3951 in LNCS, pages 404–417.

Bekele, D., Teutsch, M., and Schuchert, T. (2013). Evalua-
tion of binary keypoint descriptors. In 20th IEEE Int’l
Conf. on Image Processing (ICIP), pages 3652–3656.

Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010).
BRIEF: Binary Robust Independent Elementary Fea-
tures. In Computer Vision – ECCV 2010, number 6314
in LNCS, pages 778–792.

Deriche, R. (1993). Recursively implementating the Gaus-
sian and its derivatives. report.

Harris, C. and Stephens, M. (1988). A Combined Corner
and Edge Detector. volume 15, page 50, Manchester.
The Plessey Company plc.

Leutenegger, S., Chli, M., and Siegwart, R. (2011). BRISK:
Binary Robust invariant scalable keypoints. In IEEE
Int’l Conf. on Computer Vision, pages 2548–2555.

Lowe, D. (1999). Object recognition from local scale-
invariant features. In Seventh IEEE Int’l Conf. on
Computer Vision, 1999, pages 1150–1157 vol.2.

Mikolajczyk, K. and Schmid, C. (2004). Scale & Affine In-
variant Interest Point Detectors. International Journal
of Computer Vision, 60(1):63–86.

ICPRAM 2016 - International Conference on Pattern Recognition Applications and Methods

524

Munshi, A. (2011). The OpenCL Specification Version: 1.1
Document Revision: 44.

Rublee, E., Rabaud, V., Konolige, K., and Bradski, G.
(2011). ORB: An efficient alternative to SIFT or
SURF. In IEEE Int’l Conf. on Computer Vision, pages
2564–2571.

Timm, C., Gelenberg, A., Weichert, F., and Marwedel, P.
(2010). Reducing the energy consumption of em-
bedded systems by integrating general purpose GPUs.
Technical Report TR829, TU Dortmund, Dept. of
Computer Science.

Xie, H., Gao, K., Zhang, Y., Li, J., and Liu, Y. (2010). GPU-
based fast scale invariant interest point detector. In
2010 IEEE Int’l Conf. on Acoustics Speech and Signal
Processing (ICASSP), pages 2494–2497.

Xie, H., Gao, K., Zhang, Y., Tang, S., Li, J., and Liu,
Y. (2011). Efficient Feature Detection and Effec-
tive Post-Verification for Large Scale Near-Duplicate
Image Search. IEEE Transactions on Multimedia,
13(6):1319–1332.

Feature Detection and Description using a Harris-Hessian/FREAK Combination on an Embedded GPU

525

