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Abstract: Multiobjective optimization problems widely exist in engineering application and science research. This paper
presents an archive bacterial foraging optimizer to deal with multiobjective optimization problems. Under
the concept of Pareto dominance, the proposed algorithm uses chemotaxis, conjugation, reproduction and
elimination-and-dispersal mechanisms to approximate to the true Pareto fronts in multiobjective optimization
problems. In the optimization process, the proposed algorithm incorporates an external archive to save the
nondominated solutions previously found and utilizes the crowding distance to maintain the diversity of the
obtained nondominated solutions. The proposed algorithm is compared with two state-of-the-art algorithms
on four standard test problems. The experimental results indicate that our approach is a promising algorithm
to deal with multiobjective optimization problems.

1 INTRODUCTION

The multiobjective optimization problem (MOP) usu-
ally involves more than one conflicting objectives that
need to be optimized simultaneously and is an im-
portant class of scientific and engineering problems
in real-world (Deb, 2001). The solution to a MOP
is a set of trade-off solutions known as Pareto opti-
mal solutions or non-dominated solutions which can-
not improve all the objectives simultaneously. Evolu-
tionary computation methods based on Darwin’s bi-
ological evolution theory deal with a group of candi-
date solutions, which makes that they are natural to
be used to handle multiobjective optimization prob-
lems (MOPs). In the past two decades, researchers
have proposed a variety of evolutionary computation-
based approaches for solving MOPs (Deb, 2001;
Coello Coello CA, Van Veldhuizen DA, Lamont GB,
2007), such as the well-known algorithms PESA-
II (Corne D W, Jerram N R, Knowles J D, et al,
2001), NSGA-II (Deb K, Pratap A, Agarwal S, et
al, 2002) and SPEA2 (E Zitzler, M Laumanns, L
Thiele, 2002). Evolutionary multiobjective optimiza-
tion (EMO) that uses evolutionary computation meth-
ods to solve MOPs has become a relatively hot re-
search area.

In recent years, some new bio-inspired optimiza-
tion technologies have been successfully introduced
to deal with MOPs, where Particle swarm optimiza-
tion (PSO) is a prominent example. So far, there

have been a number of methods based on PSO for
solving MOPs (X Li, 2003; Coello C A C, Pulido
G T, Lechuga M S, 2004; Tripathi P K, Bandyopad-
hyay S, Pal S K, 2007). Bacterial foraging opti-
mization (BFO) is another popular bio-inspired op-
timization technology which simulates the foraging
behavior of E. coli bacteria (K.M. Passino, 2002).
BFO has been proved to be an efficient optimiza-
tion method for single objective optimization prob-
lems (Agrawal V, Sharma H, Bansal J C, 2011), and
more recently researchers have also shown promising
results for MOPs (Panigrahi B K, Pandi V R, Das
S, et al, 2010; Guzm ´an M A, Delgado A, De Car-
valho J, 2010; Niu B, Wang H, Tan L, et al, 2012;
Niu B, Wang H, Wang J, et al, 2013). However, to
the best of our knowledge, none of these algorithms
incorporate an external archive to preserve the elitism
solutions, namely, there is no way to keep the non-
dominated solutions found previously in the optimiza-
tion process. Elitism-preservation is an importance
strategy in multiobjective search, which has been rec-
ognized and supported experimentally (Parks G T,
Miller I, 1998; Zitzler E, Deb K, Thiele L, 2000).
To further explore the potential of BFO algorithm in
finding Pareto optimal solutions for MOPs, this pa-
per presents an archive bacterial foraging optimizer
for multiobjective optimization, called as MABFO.
MABFO mainly includes four optimization mech-
anisms: chemotaxis, conjugation, reproduction and
elimination-and-dispersal. The implements of these
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mechanisms are different from other current meth-
ods based on BFO. More improtant, MABFO incor-
porates an external archive to save the nondominated
solutions previously found and uses the crowding dis-
tance to maintain the diversity of the nondominated
solutions. These strategies are conducive to produce
well-distributed and high-quality solutions.

MABFO is validated on four standard test prob-
lems and compared against two start-of-the-art EMO
approaches NSGA-II (Deb K, Pratap A, Agarwal S,
et al, 2002) and SPEA2 (E Zitzler, M Laumanns, L
Thiele, 2002). The experimental results indicate that
MABFO is a promising algorithm and can be consid-
ered an alternative to deal with MOPs.

The remainder of the paper is structured as fol-
lows. Section II briefly introduces basic concepts in-
volving MOPs. Section III presents the details of the
MABFO algorithm. We then present experiments in
section IV, and finally, section V concludes the paper.

2 BASIC CONCEPTS

A MOP can be described as the problem of finding
a vector of decision variables that optimizes a vector
function and satisfies some restrictions. Without loss
of generality, a MOP is formulated as follows (Deb,
2001):





min y= F(x) = ( f1(x), f2(x), · · · , fm(x))T

s.t. gi(x)≤ 0, i = 1,2, · · · , p
h j (x) = 0, j = 1,2, · · · ,q
xL

i ≤ xi ≤ xU
i

, (1)

wherex=(x1,x2, · · · ,xn)∈X ⊂Rn is an-dimensional
decision vector,X represents an-dimensional deci-
sion space,xL

i andxU
i are the upper and lower bound-

ary values ofxi , respectively.y = (y1,y2, · · · ,xm) ∈
Y ⊂ Rm is a m-dimensional objective vector,Y rep-
resents am-dimensional objective space.F(x) is a
mapping function fromn-dimensional decision space
to m-dimensional objective space.gi(x) ≤ 0 (i =
1,2, · · · , p) andh j(x) = 0 ( j = 1,2, · · · ,q) definesp
inequalities andq equalities, respectively.

In the following, we will list four definitions in-
volving MOPs.

Pareto Dominant: xα, xβ are two feasible solu-
tions for problem (1),xα is Pareto dominant compared
with xβ if and only if:

∀i = 1,2, · · · ,m, fi(xα)≤ fi(xβ) ∧
∃ j = 1,2, · · · ,m, fi(xα)< fi(xβ)

. (2)

We call this relationshipxα ≻ xβ, xα dominatexβ, or
xβ is dominated byxα.

Pareto Optimal Solution: Ω is the feasible solu-
tion set of problem (1),x∗ ∈ Ω, x∗ is a Pareto optimal
solution if and only if:

¬∃x∈ Ω : x≻ x∗. (3)

Pareto Optimal Set: The Pareto optimal set of
problem (1) includes all the Pareto optimal solutions
and is given as follows:

X∗ = {x∗|¬∃x∈ Ω : x≻ x∗}. (4)

Pareto Front: The Pareto front of problem (1)
includes all the objective vectors corresponding toX∗

and is given as follows:

PF= {F(x∗)= ( f1(x∗), f2(x∗), · · · , fm(x∗))T |x∗ ∈X∗}.
(5)

3 THE MABFO ALGORITHM

In this section, we will introduce MABFO algorithm.
Algorithm 1 is the framework of MABFO. In the fol-
lowing, we will describe its five important operators
chemotaxis, archive updating, conjugation, reproduc-
tion and elimination-and-dispersal as Algorithm 1
shown.

Algorithm 1: MABFO algorithm (main loop).
Input: Different parameters:

Nc: maximum number of chemotaxis,
Nre: maximum number of reproduction,
Ned: maximum number of elimination-and-dispersal,
N1: the size of populationP,
N2: the maximum size of external archiveA.

Output: A (Pareto optimal set)
1: Initialization: Generate an initial populationP and an

empty archive A.
2: for l = 1 toNed do
3: for k= 1 toNre do
4: for j = 1 toNc do

a). Each bacterium inP takes achemotaxis
process.

b). Archive updating: copy all nondominated
individuals in joint population ofA andP to A.
If the size ofA exceedsN2, then reduce it
based on thecrowding distance.

c). Each bacterium takes aconjugation process.
5: end for
6: The populationP perform areproduction process

which selectsN1 superior individuals in the joint
population P and A and then copy them to P.

7: end for
8: The populationP perform anelimination-and-

dispersal process and update the archive A as step
4 b).

9: end for
10: Return A.
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3.1 Chemotaxis

Chemotaxis simulates the foraging movement of
E.coli bacteria through tumbling and swimming. To
absorb more nutrients, each bacterium tries to find
food in two ways: tumbling and swimming. A bac-
terium tumbles in a random direction to exploratively
search for food. If the food is rich in the selected di-
rection, the bacterium will swim along this direction,
till the food gets bad or the bacterium has swum the
fixed steps.

A random direction is a random unit vector inn-
dimensional space. In the original BFO algorithm, it
is very cumbersome to calculate a random unit vector
for each bacterium in every chemotaxis. In the pro-
posed MABFO algorithm, we use a simple unit vec-
tor em with n dimensions as the chemotaxis direction,
in which only one component randomly selected (i.e.
themth component) is either -1 or 1 and all the others
are 0. The method of updating a solution is given as
follows:

xi( j +1,k, l) = xi( j,k, l)+ c(i) em, (6)

where xi( j,k, l) represents theith bacterium atjth
chemotaxis,kth reproduction,l th elimination-and-
dispersal step.c(i) is the step size along the direc-
tion em. The original BFO algorithm uses a fixed
step size which would lead to bad convergence per-
formances (S Dasgipta, S Das, A Abraham and A
Biswas, 2009). In the proposed MABFO algorithm, a
dynamic step size is adopted and is given as follows:

c(i) = r (xi′
m( j,k, l)− xi

m( j,k, l)), (7)
where r is a random number uniformly distributed
between−1 and 1,xi′

m( j,k, l) denotes themth com-
ponent of another different bacteriumi′ which is se-
lected randomly inP.

When bacteriumi carries out a chemotaxis oper-
ator, it first generates a directionem and a step size
c(i) as described above, and then swims a step along
the directionem according to Eq.(6). If the new solu-
tion xi( j+1,k, l) dominates the old solutionxi( j,k, l),
bacteriumi will swim another step in the directionem
according to Eq.(6). This process is continued until
bacteriumi has swum the maximum stepsNs or the
obtained new solutionxi( j + 1,k, l) is dominated by
the old solutionxi( j,k, l). Such chemotaxis mecha-
nism is an important driving force for locally opti-
mizing each candidate solution, where each bacterium
ties its best to search for non-dominated solutions.

3.2 Archive Updating

The main goal of the external archive is to keep a his-
torical record of the nondominated solutions obtained

in the search process. In MABFO, we use an exter-
nal archiveA with a fixed numberN2. Whenever the
populationP carries out a chemotaxis process, we will
reselect all the nondominated solutions from the joint
population ofP andA, and then update archiveA by
copying them to A. If the size ofA exceedsN2, an
archive truncation procedure is invoked, which itera-
tively remove individuals fromA based on the crowd-
ing distance until the size ofA is N2. At each itera-
tion, the individual which has the minimum distance
to another individual is removed according to the for-
mula:

dis(xi)< dis(x j) ⇔
∀ 0< k< |Q| : σk

i = σk
j ∨

∃ 0< k< |Q| : [(∀0< l < k : σl
i = σl

j)∧σk
i < σk

j ]
(8)

whereQ is a group of individuals,|Q| denotes the size
of Q and hereQ = A. σk

i is the distance ofith solution
xi to itskth nearest neighbor inQ.

The external archiveA promises not to miss the
nondominated solutions found in the search process.
The crowding distance eliminates the individuals in
dense area, which can ensure the obtained solutions
distributed evenly. The using of external archive
and crowding distance is beneficial to find well-
distributed Pareto solutions.

3.3 Conjugation

Conjugation, as well as chemotaxis, is an important
biological behavior of bacteria. Bacterial conjugation
is the transfer of part of plasmid (genetic material)
from donor bacteria to recipient bacteria by directly
physical contact and is often regarded as the sex-
ual reproduction or mating between bacteria. Some
researchers have taken the bacterial conjugation as
a message passaging mechanism in their work (C
Perales-Graván, R Lahoz-Beltra, 2008; A Balassub-
ramaniam, Memeber, IEEE, P Lio, 2013).

In this paper, we also simulate the bacterial con-
jugation behavior as an information exchange mech-
anism between bacteria in populationP and archive
A. To model this biological behavior, we first define
conjugation lengthL (L< n) measured by the number
of decision variables. Then each bacteriumi in pop-
ulationP will randomly select another bacteriumi′ in
A and a conjugation pointBt (Bt < n− L) to take a
conjugation step. In this step, the way of updating the
solution is given as follows:

xi
new( j,k, l) = xi( j,k, l)+ω◦ (xi′( j,k, l)− xi( j,k, l)),

(9)
wherexi

new( j,k, l) denotes the new solution after bac-
terium i performing the conjugation operator.ω is
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Table 1: Test problems used in this paper.

Problem n Variable range Objective functions Pareto-optimal solutions
ZDT1 30 [0,1] f1(x) = x1 x1 ∈ [0,1]

f2(x) = g(x)[1−
√

x1/g(x)] xi = 0, i = 2, · · · ,n
g(x) = 1+9(∑n

i=2 xi)/(n−1)
ZDT2 30 [0,1] f1(x) = x1 x1 ∈ [0,1]

f2(x) = g(x)[1− (x1/g(x))2] xi = 0, i = 2, · · · ,n
g(x) = 1+9(∑n

i=2 xi)/(n−1)
ZDT3 30 [0,1] f1(x) = x1 x1 ∈ [0,1]

f2(x) = g(x)[1−
√

x1/g(x)− x1
g(x)sin(10πx1)] xi = 0, i = 2, · · · ,n

g(x) = 1+9(∑n
i=2 xi)/(n−1)

ZDT4 10 x1 ∈ [0,1] f1(x) = x1 x1 ∈ [0,1]
xi ∈ [−5,5], f2(x) = g(x)[1−

√
x1/g(x)] xi = 0, i = 2, · · · ,n

i = 2, · · · ,n g(x) = 1+10(n−1)+∑n
i=2

[
x2

i −10cos(4πxi )
]

a n-dimensional random vector in which the values
of componentsBt to Bt + L − 1 are uniformly dis-
tributed random numbers between−1 and 1, and
those of other components are 0. “◦” is an opera-
tor, called Hadamard product, which represents mul-
tiplying the corresponding elements of two vectors.
Take 3-dimensional vectors for an example, ifa =
(a1,a2,a3), b = (b1,b2,b3), thenD = A◦B = (a1×
b1,a2× b2,a3 ×b3). If the new solutionxi

new( j,k, l)
is dominated by the old solutionxi( j,k, l), xi( j,k, l) is
kept; otherwise,xi

new( j,k, l) replacesxi( j,k, l). With
this communication mechanism, each bacterium in
the populationP searches for the nondominated so-
lutions under the guidance of the superior individuals
in the archiveA. Thus, the bacterial population are
likely to quickly converge to the global Pareto front.

3.4 Reproduction

The bacteria grow longer with the increasing of the
nutrients absorbed. The more nutrients a bacterium
gets, the healthier it is. Under appropriate conditions,
some of bacteria in a population who are healthy
enough will asexually split into two bacteria, and
the other ones will die. Essentially, the reproduction
mechanism is to generate new population based on the
superior individuals in current population. In the pro-
posed MABFO algorithm, the reproduction operator
selectsN1 superior individuals from the joint popu-
lation of the current populationP (|P| = N1) and the
external archiveA and produces a new populationP
by copying these selectedN1 superior individuals to
P. The way to selectN1 superior individuals is as fol-
lows: first sort the joint population ofP andA into
different nondominated levels as reference (?) did.
The first nondominated levelF1 contains all the cur-
rent nondominated solutions. Then we pick out solu-
tions in ascending order of the nondominated level to
form a new groupRuntil the size ofRwould be equal

or larger thanN1 if we incorporate thetth nondomi-
nated levelFt . In the first case, the size ofR is exactly
equal toN1 if putting Ft into R, just put it intoR and
this select step is completed. In the second case, the
size ofR is larger thanN1 if Ft is loaded intoR. In
this case, we need to first pick outN1−|R| solutions
from Fr based on the crowding distance according to
(8) and then put them into R. In this way,|R| is also
exactly the same withN1. Next,R is used to update
the old populationP by copying it toP. Thus, the
new populationP which contains the best individuals
is obtained. Such reproduction mechanism follows
the rule of survival of the fittest, which plays a role of
transmitting good information among the whole pop-
ulation and speeding up the convergence.

3.5 Elimination-and-dispersal

With changes to the local environment in which a
population of bacteria lives, all of the bacteria in
this region may be killed, or a group of bacteria
may be dispersed into a new environment to find bet-
ter food sources. To simulate this phenomenon, an
elimination-and-dispersal step is taken in BFO after
Nre reproduction steps. Each bacterium in the popula-
tion may be eliminated or dispersed to a new location
with a given probabilityPed. The rule is shown in the
following:

x=

{
x′, i f r < Ped
x, otherwise

, (10)

wherer is a random number uniformly distributed in
[0,1], x is the current solution associated with a bac-
terium,x′ is a new solution generated at random inn-
dimension search space. That is, for each bacterium,
if the number generated randomly is smaller thanPed,
it will move to a new random solution, otherwise, it
will keep the original solution unchanged. This mech-
anism is helpful to escape from local Pareto optima

ICPRAM 2016 - International Conference on Pattern Recognition Applications and Methods

188



Table 2: Performance comparisons of NSGA-II, SPEA2 and MABFO on four test problems.

Problem Algorithm
GD SP

Average Std. Dev. Average Std. Dev.
NSGA-II 5.10e-04 1.24e-04 9.14e-03 1.13e-03

ZDT1 SPEA2 3.76e-04 6.36e-05 3.28e-03 3.80e-04
MABFO 1.96e-04 4.55e-05 3.24e-03 5.48e-04
NSGA-II 3.66e-04 2.80e-04 1.02e-02 3.09e-03

ZDT2 SPEA2 1.74e-04 2.83e-05 3.15e-03 3.62e-04
MABFO 9.26e-05 4.42e-06 3.04e-03 2.98e-04
NSGA-II 5.22e-04 2.46e-04 1.02e-02 1.50e-03

ZDT3 SPEA2 3.73e-04 1.10e-04 4.42e-03 5.79e-04
MABFO 1.59e-04 1.24e-05 4.85e-03 1.11e-03
NSGA-II 2.45e-03 9.01e-04 1.33e-02 5.07e-03

ZDT4 SPEA2 1.88e-03 7.50e-04 4.17e-03 1.25e-03
MABFO 2.34e-04 2.20e-04 2.40e-03 1.52e-03

Figure 1: Pareto fronts produced by NSGA-II (left), SPEA2 (middle) and MABFO (right) for the ZDT1 test problem.

and to explore the global Pareto optima in the search
space.

4 EXPERIMENTS

In this section, we will compare the proposed
MABFO algorithm with two state-of-the-art algo-
rithms NSGA-II and SPEA2. The experimental plat-
form is a PC with Inter(R) Core(TM) i5- 3470 CPU
3.20GHz, 4GB RAM and Windows 7, and all the al-
gorithms are implemented using C++ language.

4.1 Test Functions and Evaluation
Metrics

We choose four test problems ZDT1, ZDT2, ZDT3
and ZDT4 which are suggested by Zizler and com-
monly used in a number of significant past studies.
All the test problems have two objective functions and
have not any constraint. Table 1 lists these test prob-
lems and also provides the number of variables, their
ranges, the Pareto-optimal solutions for each prob-
lem.

In general, there are two issues to consider for as-
sessing a method in multiobjective optimization area:
(1) the convergence of the obtained Pareto front to-
ward the true Pareto front and (2) spread of the ob-
tained solutions. Based on this notion, we adopt two
common metrics: Generational distance (GD) (Van
Veldhuizen D A, Lamont G B, 1998) and Space
(SP) (Schott J R, 1995).

GD measures the distance between the Pareto
front found so far and the true Pareto front. It is de-
fined as:

GD=
∑n

i=1d2
i

n
, (11)

wheren is the number of members in the Pareto front
found so far,di is the Euclidean distance between the
ith member of the Pareto front found and the nearest
member of the true Pareto front. The smaller the value
of this metric, the nearer the Pareto front found so far
to the true Pareto front.

SP judges how well the Pareto front found so far
distributed and is formulated as follows:

SP=

√
1

n−1

n

∑
i=1

(d−di)2, (12)
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Figure 2: Pareto fronts produced by NSGA-II (left), SPEA2 (middle) and MABFO (right) for the ZDT2 test problem.

Figure 3: Pareto fronts produced by NSGA-II (left), SPEA2 (middle) and MABFO (right) for the ZDT3 test problem.

where n is the number of members in the Pareto
front found so far,di is the minimum Manhatton dis-
tance between theith member and other members
in the Pareto front found anddi = minj(| f1(xi)−
f1(x j)|+ | f2(xi)− f2(x j)|+ · · ·+ | fm(xi)− fm(x j)|),
j = 1,2, · · · ,n. m is the number of the objectives.d is
the average value of alldi . The smaller the value of
this metric, the more uniform the Pareto front found
is distributed.

4.2 Results and Analysis

In the experiments, each algorithm was tested 30 in-
dependent runs on each test problem. To be fair,
the population sizes and the elite archive sizes of the
three algorithms were set to 100. The generations of
NSGA-II and SPEA2 were set to 500. For the other
parameters in NSGA-II and SPEA2 algorithms, we
tried to use identical settings as suggested in the orig-
inal studies. For the left parameters in the proposed
MABFO algorithm, we didn’t make any serious at-
tempt to find the best settings and only chose a reason-
able set of values:Ns= 4,Nc = 10,Nre = 25,Ned= 2,
Ped = 0.2 andL = 0.4×n.

Table 2 provides the average results (Average) and
standard deviations (Std. Dev.) with respect to the
two metrics GD and SP. The best average results with

respect to each metric are shown in bold. It can
be seen from the table, the average performance of
MABFO is the best with respect to the GD and SP
metrics on ZDT1, ZDT3 and ZDT4. As for ZDT2,
MABFO achieves the best result in term of GD and is
only slightly worse than SPEA2 in term of SP, but it
has the smallest deviation with respect to SP.

Figures 1-4 show the Pareto fronts obtained by
NSGA-II, SPEA2 and our MABFO algorithm on the
four test problems–ZDT1, ZDT2, ZDT3 and ZDT4,
respectively. The Pareto fronts displayed correspond
to the median results over 30 runs with respect to
the GD metric. From these figures, we can see
that the three algorithms are able to cover the entire
Pareto fronts on ZDT1, ZDT2 and ZDT3. But our
MABFO algorithm produces better-distributed and
higher-quality Pareto front on these three test prob-
lems, especially on the ZDT3 problem. For the ZDT4
problem, both NSGA-II and SPEA2 fail to cover the
true Pareto front, whereas our MABFO algorithm
successfully does it. Through the comparison with
two best EMO algorithms NSGA-II and SPEA2, our
MABFO algorithm is a viable alternative to solve
MOPs.
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Figure 4: Pareto fronts produced by NSGA-II (left), SPEA2 (middle) and MABFO (right) for the ZDT4 test problem

5 CONCLUSIONS

The MOP is a very important research topic in both
science and engineering communities. In recent
years, researchers are interested in using some new
bio-inspired optimization models to solve MOPs. Al-
though several methods based on BFO have been
proposed for handling MOPs. But to the best of
our knowledge, the current methods based on BFO
have not incorporated the elitist strategy which always
plays an important role in getting global Pareto front.
In this paper, we present a new algorithm based on
archive bacterial foraging optimization for multiob-
jective optimization (called MABFO). MABFO sim-
ulates four biological mechanisms: chemotaxis, con-
jugation, reproduction and elimination-and-dispersal.
The implements of these mechanisms are different
from other methods based on BFO. More impor-
tant, MABFO incorporates an external archive to
save the nondominated solutions previously found
and maintains the diversity of the nondominated so-
lutions found based on the crowding distance. To
demonstrate the performance of MABFO algorithm,
we compared it with two best methods known to date
(NSGA-II and SPEA2) on four test problems, the re-
sults indicate that MABFO is a promising alternative
since it has the best average performance with respect
to two metrics in most cases.

In the future, we will give an detailed analysis
of the algorithm, make a comprehensive testing on
more test problems and continue to explore more ef-
fective diversity preservation strategies to better cover
the global Pareto front. We also hope to extend this
algorithm so that it can handle dynamic functions.
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