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Abstract: This paper presents a novel methodology for deriving Conceptual Data Models in the scope of Model-based 
Systems Engineering. Based on an assessment of currently employed methodologies, substantial limitations 
of the state of the art are identified. Consequently, a new methodology, overcoming present shortcomings, is 
elaborated, containing detailed and prescriptive guidelines for deriving conceptual data models used for rep-
resenting engineering data in a multi-disciplinary design process. For highlighting the applicability and ben-
efits of the approach, the derivation of a semantically strong conceptual data model in the context of Model-
based Space Systems Engineering is presented as a case study. 

 INTRODUCTION 

1.1 The Practice of Systems 
Engineering 

In many industrial engineering projects today, a mul-
titude of disciplines is involved in building a product. 
For space projects such as satellites, launch vehicles, 
and re-supply spacecraft these disciplines involve, 
only to name a few, mechanical engineering, electri-
cal engineering, thermal engineering, requirements 
engineering, software engineering, verification engi-
neering, and their respective sub-disciplines. Each of 
these disciplines specifies their designs and verifies 
specific aspects of the system. In order to provide an 
all-encompassing understanding of the system of in-
terest, the unique, yet complementary, views from 
every involved discipline are combined. The science 
and art of integrating different views on one system 
towards system thinking is called Systems Engineer-
ing. As NASA (2007) elegantly puts it: “Systems en-
gineering is a holistic, integrative discipline, wherein 
the contributions of structural engineers, electrical en-
gineers, mechanism designers, power engineers, hu-
man factors engineers, and many more disciplines are 
evaluated and balanced, one against an-other, to pro-
duce a coherent whole that is not dominated by the 
perspective of a single discipline.” 

1.2 Employment of Models in Systems 
Engineering 

Many of the engineering activities performed inside 
these domains are already well supported by com-
puter-based models. Mechanical design models built 
with tools such as CATIA V5, mechanical analysis 
models built with tools such as PATRAN and thermal 
analysis models built with tools such as ESATAN-
TMS are well established in the space engineering 
community today. Furthermore, requirements models 
based on DOORS, software design models specified 
in the Ecore language using the Eclipse Modeling 
Framework, as well as mission design models speci-
fied in SysML (OMG, 2015) play important roles. 
Furthermore, “traditional” tools such as Excel or Vi-
sio are used on a regular basis for specifying models. 

These tools and the models they produce differ 
significantly from each other. They are provided by 
different vendors, rely on different implementation 
technologies and are based on different formats 
(Kogalovsky and Kalinichenko, 2009). Each model 
and the associated design methodology follow their 
own principles and paradigms and define their very 
own semantics. As a result of this heterogeneity, these 
models and tools are not yet comprehensively inte-
grated and interconnected with each other and with 
the multi-domain systems engineering process 
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(INCOSE, 2014). For a truly multidisciplinary repre-
sentation of a system, relevant aspects from all in-
volved domains and their models need to be com-
bined on the model level (Eisenmann, 2012). 

1.3 Describing System-wide Models 
in MBSE 

For overcoming these inhibitors, one approach that 
can be pursued is the provision of a centralized sys-
tem database that defines a set of system-wide seman-
tics. In this architecture the system model acts as a 
central hub into which discipline-specific models can 
integrate information of system-wide relevance. For 
defining the concepts that make up the system of in-
terest, a Conceptual Data Model (CDM) is employed. 
It provides a common, resilient, and comprehensive 
definition of engineering data, incorporating disci-
pline-specific as well as system-level aspects. 

The approach of integrating these discipline-spe-
cific models towards a uniform system model is 
called Model-based Systems Engineering (MBSE). 

While the system model, or user model, repre-
sents the level where the end-user, i.e. the engineer 
designing the system, performs his tasks, the CDM or 
data model defines the concepts contained in the user 
model and acts as the user model’s meta-model. 
(Hong and Maryanski, 1990). It is worthy to note that 
meta-model is a relative term. It describes concepts 
one abstraction level above the model that is currently 
the focus of interest. The CDM serves as an ontology 
exactly defining the engineering data of interest, 
plays an important role when communicating about 
this data, and forms the entry-point for software engi-
neering activities that implement an engineering ap-
plication supporting the system design process. The 
conceptual data model can be seen as the back-bone 
of MBSE (ESA, 2011). 

A variety of approaches exist for building such 
models. On the one hand there are approaches 
strongly driven by the implementation technologies 
that are used for producing engineering applications, 
relying on data models specified in UML or Ecore. 
On the other hand there are techniques that are highly 
focused on representing knowledge, such as the Web 
Ontology Language OWL or Fact Based Modeling 
FBM, but are not meant for describing pieces of soft-
ware. 

The relation of discipline-specific models, system 
mode, CDM, and data modeling language is visual-
ized in Figure 1. 

For producing CDMs in this context, the techno-
logical aspect is not the only point of concern. Meth-
odologies for developing software  and models  have  

 

Figure 1: Relation of domain models, system model, CDM, 
and data modeling language. 

gained traction, with the aim of moving the develop-
ment from an art into an engineering discipline with 
traceable, reproducible, and validatable results. For 
the software-driven languages, methodologies exist 
that help in developing the data model, e.g. by provid-
ing guidelines on how to structure the data model, or 
how to validate it. For the knowledge-based ap-
proaches methodologies also exist that help in deriv-
ing a CDM for an intended use case. While each of 
the existing methodologies has its characteristic mer-
its, currently no methodology is suited for producing 
CDMs in the context of MBSE. 

1.4 Paper Objective and Outline 

Consequently a methodology is detailed that fits the 
requirements arising in the scope of interdisciplinary 
knowledge integration in MBSE. This methodology 
uses an engineering process and its process artefacts 
as a point of origin for deriving the CDM that is in-
tended to support engineering activities. By following 
the procedures prescribed by the methodology, facts 
are generated in order to explore all possible con-
straints and add them to the model if required. This 
approach leads to a quasi-standardized, virtually ex-
haustive model, given the initially provided facts 
were correct. After the model or parts of it have been 
completed it is validated through the provision of 
sample facts taken from the original source. 

In the following sections industrial requirements 
for a methodology suited for producing CDMs in 
MBSE are identified. Consequently a brief examina-
tion regarding how well each of the analyzed meth-
odologies is able to cope with the requirements is 
given. Based on this examination a novel methodol-
ogy is presented that brings together the advantageous 
features of the existing approaches. For demonstrat-
ing the methodology’s utility a sample CDM is devel-
oped, demonstrating the CDM design cycle in gen-
eral, highlighting some of its aspects in detail. 
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2 STATE OF THE ART  
REGARDING  
METHODOLOGIES 

2.1 Methodologies Employed  
for Developing CDMs 

For producing CDMs, a variety of methodological ap-
proaches are applied in practice. These approaches 
come from a variety of application domains. 

2.1.1 Software-Driven Approaches 

Established approaches and methodologies related to 
classic software design, such as the Waterfall Model, 
the V-Model, or the Spiral Model focus a lot on the 
overall approach, and not on detailed design aspects 
of the software to be developed. Approaches that em-
phasize on the detailed, structured, and guided design 
of the conceptual data model underlying the software 
are scarce and hardly applicable to the MBSE use 
case. Consequently, the “classical” methodologies 
from the software engineering domain have been ex-
cluded in the remainder of this paper. 

2.1.2 Requirement-Driven Approaches 

For software developments that rely heavily on pro-
ducing a sensible data model, the approach of exten-
sive data model specification and subsequent valida-
tion is pursued, for instance in the EGS-CC project 
(ESA, 2013). In this approach requirements on the 
CDM are formulated that exactly specify what con-
tents it shall have, how the contents relate, what func-
tionalities have to be provided, etc. After the CDM is 
produced a mix between verification and validation is 
performed by instantiating the CDM, producing sam-
ple populations, and checking if the data specified in 
the requirements can be represented accurately and 
completely. 

2.1.3 Approaches from the Ontology World 

In the domain of ontology engineering, emphasis is fre-
quently put on a methodological approach to designing 
and maintaining an ontology, for transforming work-
ing on knowledge “from an art into an engineering 
discipline.” (Studer, et al., 1998) A variety of meth-
odologies in this context have been proposed through 
the years, such as METHONGOLOGY (Fernández, 
et al., 1997), OTKM (Sure, et al., 2004), or the NeOn 
Methodology (Suárez-Figueroa, 2010). 

Many of these methodologies discuss aspects 
such as ontology management activities, ontology de-
velopment activities, and ontology support activities. 
However, in many cases, these aspects are only pro-
posed or outlined in the methodology, and not de-
scribed in detail (Gómez-Pérez, et al., 2004). 

2.1.4 Approaches from Fact based Modeling 

The field of Fact Based Modeling also relies heavily 
on modeling methodologies. For producing data 
models in Fact Based Modeling languages such as 
ORM2 (Halpin and Morgan, 2008), methodologies 
such as NIAM (Leung and Nijssen, 1998), CogNIAM 
(CogNIAM.eu, 2015), or CSDP (Halpin and Morgan, 
2008) are employed. These approaches all rely on the 
formulation of elementary facts (Halpin and Morgan, 
2008) and employ these for developing CDMs in a 
bottom-up, example-driven scenario. 

2.2 Requirements on a Methodology 
for Designing CDMs in MBSE 

In order to produce CDMs that can be employed effec-
tively in MBSE, several requirements have been iden-
tified for a modeling methodology. These requirements 
are based upon extensive experience in projects that in-
corporate CDMs as central elements (ESA, 2013), 
(ESA, 2012), (Fischer, et al., 2014). In the scope of this 
paper only an overview of the needs for a conceptual 
data modeling methodology can be given, highlighting 
the most important points. These requirements have 
been partitioned into four categories. 

2.2.1 Support for CDM Specification  
Activities 

The methodology should offer guidelines for specify-
ing the CDM. This can include either a classic speci-
fication of the CDM to be designed through require-
ments, or an approach where the engineering process, 
which the CDM will be designed for, together with its 
process artefacts, is used as an entry point. 

In the MBSE approach, a CDM bridges the gap 
between the abstracted PDM world that is used to 
manage the complexity and coordination of disci-
pline-specific engineering activities on the one hand, 
and the detailed data that is being produced in the dis-
cipline-specific engineering activities on the other 
hand (Hennig and Eisenmann, 2014). While the item 
that is managed in the PDM world is of a very abstract 
nature, the item may be handled by a number of do-
mains in entirely different representations. The pur-
pose of the CDM is to connect both worlds, assuring 
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the correct mapping between detailed data and ab-
stracted artefacts. This is illustrated in Figure 2. 

 

Figure 2: Relation of PDM, CDM, and Engineering 
Domains. 

For ensuring the CDM’s compatibility to do so, both 
the PDM representation of artefacts and the detailed 
specification of data has to be considered and serve as 
the point of origin for deriving the CDM. 

2.2.2 Support for CDM Design Activities 

For pursuing the design of the CDM the initial step is 
to acquire knowledge, e.g. from documentation, from 
interviews with domain experts, or from combina-
tions of both. After knowledge is acquired, the 
CDM’s data structures such as classes, attributes, ref-
erences, and data types can be derived from the pre-
viously acquired knowledge. Constraints can also be 
derived from the acquired knowledge and are usually 
modeled after the main structure of the CDM has been 
designed. A methodology should include detailed in-
structions for all three activities. 

2.2.3 Support for CDM Verification  
and Validation Activities 

In order to ensure that the CDM is built according to 
its specifications and that it is able to fulfil its in-
tended purpose some kind of control mechanism has 
to be in place. This implies, based on the design of the 
methodology’s specification activities, that it should 
support formal requirements verification, e.g. through 
the definition of test cases, some kind of validation 
through the provision of sample instances, or both. In 
the latter, the CDM has to be instantiated for provid-
ing the means of entering data. The CDM is valid if 
the data can be entered in a way identical or at least 
very similar to the original source, i.e. the knowledge 
acquired for deriving the CDM. 

2.2.4 CDM Support Activities 

Besides formal specification, design, and V&V activ-
ities, other aspects are also to be considered in a con-
ceptual data modeling methodology. For ensuring a 
somehow standardized structure of models built ac-
cording to the methodology, the provision of naming 
conventions is an important factor. Furthermore 
guidelines of how to integrate different CDMs with 
each other are an important asset. Another essential 
part of any design activity is effective and efficient 
configuration management, so guidelines for such ac-
tivities should also be included. 

2.3 Evaluation of Conceptual Data 
Modeling Methodologies 

For more detailed evaluation several approaches are 
selected from those outlined in 0. From the ontology 
world the NeOn Methodology is chosen since it is one 
of the more recent ones and can be seen as an ad-
vancement to methodologies like OTKM (Sure, et al., 
2004) or METHONTOLOGY (Fernández, et al., 
1997). The requirements-driven methodology from 
the EGS-CC project (ESA, 2013) has been selected as 
an analysis candidate because it is the most recent ap-
proach in this context. From the field of Fact Based 
Modeling, CSDP (Halpin and Morgan, 2008) and the 
CogNIAM Protocol (CogNIAM.eu, 2015) have been 
selected. Although the latter are two distinct method-
ologies they rely on largely the same principles, albeit 
with different nuances. While the CSDP is rather de-
scriptive, CogNIAM achieves similar goals in a very 
prescriptive way. 

2.3.1 Definition of Evaluation Scheme 

A detailed evaluation of selected methodologies, 
based upon weighted score evaluation according to 
requirements that arise in the context of MBSE, has 
been performed but is not elaborated due to length 
constraints of this paper. Instead, the most important 
results in terms of qualitative features are outlined in 
the following sections. 

2.3.2 Evaluation of the NeOn Methodology 

The NeOn Methodology puts an emphasis on speci-
fying ontology requirements. Processes and process 
artefacts are not considered in its scope. Regarding 
design activities the methodology offers general 
guidelines, but no specific instructions. This is also 
true for the validation and verification activities. It 
mentions naming conventions as an important aspect 
but does not offer specific guidelines, the same is true 
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for configuration management. The aspect of inte-
grating different ontologies is well considered how-
ever. 

+ Ontology integration well elaborated 
− No consideration of processes and process arte-

facts 
− Insufficient consideration of design activities 
− Insufficient consideration of V&V activities 

2.3.3 Evaluation of Requirements-Driven 
Methodology 

The requirements-driven approach applied in EGS-
CC puts significant emphasis on a thorough specifi-
cation of the CDM. However, extensive design and 
support activities are currently not part of the meth-
odology. For V&V activities a mix of formal require-
ments verification and validation through sample in-
stances is performed. Configuration management is 
an essential part of the methodology, following a tra-
ditional approach of frequently producing revisions 
that are then released at specific milestones. 

+ Thorough emphasis on requirements modeling 
+ Thorough emphasis on validation and verifica-

tion 
+ Consideration of configuration management 
− No consideration of other support activities 
− No consideration of processes and process arte-

facts 
− Virtually no consideration of design aspects 

2.3.4 Evaluation of CSDP and CogNIAM 

CSDP and CogNIAM do not consider specification 
activities since the point of origin is acquiring 
knowledge through the formulation of elementary 
facts. However, data structure and constraint model-
ing are extremely well detailed in both methodolo-
gies, although with somehow different emphasis. 
Validation is performed through the provision of sam-
ple instances. Naming conventions also play an inher-
ent role. 

+ Knowledge acquisition integral part 
+ Highly detailed modeling instructions given 
− No consideration of other support activities 
− No consideration of processes and process arte-

facts 

2.3.5 Conclusion of Evaluation 

The evaluation makes evident that there currently is 
no methodology that caters to all requirements formu-
lated for producing CDMs in the context of MBSE. 
Each of the methodologies exhibits shortcomings in 

one of the main categories. Furthermore, the aspect of 
incorporating an engineering process or process arte-
facts into the CDM development process is not ad-
dressed anywhere. 

3 METHODOLOGY DESIGN 

As a consequence of the analysis, a new methodology 
is proposed that picks up on characteristic features of 
the examined candidates. It is inspired by the 
knowledge-acquisition and design activities of CSDP 
(Halpin and Morgan, 2008) and CogNIAM 
(CogNIAM.eu, 2015), while picking up on configu-
ration management and validation aspects from the 
requirements-based approach and integration aspects 
from the NeOn Methodology (Suárez-Figueroa, 
2010). The consideration of processes and process ar-
tefacts has been developed from scratch. 

3.1 General Methodology Principles 

3.1.1 Engineering Processes as a Point  
of Origin 

The starting point for employing the methodology is 
the engineering process that will have its data de-
scribed in the CDM. From a PLM point of view the 
engineering process uses artefacts that serve as inputs 
and outputs of activities. When detailed from the per-
spective of an actual engineering activity that details 
the PLM-managed activity with engineering tasks, a 
detailed description of the artefacts is required. This 
detailed description is the actual, detailed engineering 
data that is exchanged between different engineering 
domains. This level makes visible what data is re-
quired by several engineering tasks, making it a mod-
eling candidate for the CDM that represents the Sys-
tem Model. 
 

3.1.2 Using Elementary Facts about the UoD 
for Acquiring Knowledge 

Originating from the artefact used in the engineering 
process the data model is derived. These knowledge 
acquisition activities rely on deriving elementary 
facts from the artefact documentation, using familiar 
examples to drive the CDM. 

Basically, an elementary fact is an assertion that 
one object is playing one specific role (Halpin and 
Morgan, 2008). The most basic elementary fact is that 
one entity plays one independent role, such as “Grav-
itySat flies.” Most of the time relationships involve 
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two roles, such as “GravitySat is launched by Ariane 
5”. Basically an elementary fact “asserts that a partic-
ular object has a property, or that one or more objects 
participate together in a relationship.” (Halpin and 
Morgan, 2008). The word elementary indicates that 
the fact cannot be split into smaller units of infor-
mation that collectively provide the same information 
as the original. 

Elementary facts usually do not use logical con-
nectives such as NOT, AND, OR, IF, or logical quan-
tities such as SOME or ALL. Elementary facts can be 
made up of several building blocks: 

 Entities are particular things, e.g. a particular 
organization such as ESA, a particular object 
such as Launch Pad, or a particular person, 
such as Angela Merkel. 

 Values are constants that provide some kind of 
identification once the context is known. Val-
ues can be numbers, such as 3, 36 or 77, but 
also character strings such as “Germany”, 
“EU”, or “MODELSWARD”. 

 Predicates connect entities with other entities 
or values by putting them into a declarative 
statement. Predicates can be unary (specifying 
one entity), binary (two entities or an entity and 
a value), ternary, and in theory n-ary. Predi-
cates may have two reading directions with dif-
ferent meaning, such as “GravitySat is 
launched from Kourou” and “Kourou is launch 
site for GravitySat”. 

3.1.3 Language Support  
for the Methodology 

This kind of methodology for deriving CDMs from 
example data formulated as elementary facts is suited 
for producing models with Fact Based Modeling lan-
guages. The methodology has been developed in par-
allel to a conceptual data modeling language called 
SCDML (Hennig, et al., 2016), currently being the 
only solution that ensures full compatibility of lan-
guage and methodology. SCDML is a conceptual data 
modeling language that is currently under develop-
ment and can be seen as the unification of a produc-
tion-oriented data modeling language (Ecore) with a 
conceptual modeling language (ORM), with the addi-
tion of other extensions, such as elements for process 
modeling. 

3.1.4 Methodology Decomposition 

The methodology is composed of several levels (Fig-
ure 3), similar to those described by Gómez-Pérez, et 
al. (2004). It is composed of a variety of processes, 

represented by those numbered 1 to 8 in Figure 4. 
These are decomposed of several activities. Some of 
those activities are further decomposed into tasks, 
which represent the methodology’s smallest kind of 
step. 

 

Figure 3: Decomposition of SCDML Methodology. 

The methodology is based upon the principle that the 
most important constraints should be derived first, 
and less important constraints can be derived later on. 
In general, the constraints that are treated first in the 
methodology are the most important ones, such as in-
ternal uniqueness constraints and mandatory con-
straints, where the constraints considered in the 
higher numbered activities are of less importance. 

 

Figure 4: Top-level flow of processes in the SCDML 
methodology. 

The methodology consists of a number of steps that 
contain instructions for developing a  specific aspect 
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of the CDM. It follows an iterative approach. While 
the engineering process and its activities may be mod-
eled or imported in one step, each artefact requires an 
analysis of its representations, and, depending on the 
outcome of the analysis, an iteration through one of 
the different modeling processes. This is to be iterated 
over every artefact of relevance. Furthermore the 
SCDML methodology contains guidelines regarding 
naming conventions, configuration management and 
integration of other sources of knowledge. 

 METHODOLOGY  
APPLICATION 

Instead of detailing the SCDML methodology in a 
theoretical manner with a brief validation thereafter, 
the detailed steps of the methodology will be ex-
plained via example. The example detailed in this sec-
tion demonstrates the utility of the methodology for 
producing CDMs in the context of MBSE. 

4.1 Modeling of ESA System  
Engineering Process 

As a sample process to be modeled the ESA System 
Engineering Process as defined in ECSS-E-ST-10C 
(ESA, 2009) is chosen. This document, among other 
things, specifies what systems engineering artefacts 
are required at specific points of time in the design 
cycle of a spacecraft developed in the scope of an 
ESA project. 

Initially the methodology proposes the modeling 
of the engineering process that the CDM is supposed 
to support. As a first step the process itself is to be 
specified, followed by the specification of activities 
and control elements as a second step. As a third step 
the input and output artefacts of the process activities 
should be specified in the model. The methodology 
refrains from detailing the activities with tasks, since 
process modeling is already well established through 
existing methodologies. 

In case of ECSS-E-ST-10C the process descrip-
tion is rather high level. In essence, the ESA System 
Engineering Process is decomposed of a number of 
sub-processes that each represent one phase of the en-
gineering cycle with one review at the end of each 
phase and at times further reviews inside one phase. 
Reviews are normal process elements that can have 
input and output artefacts. In the case of the process 
in question all of the artefacts serve as input for one 
or several reviews. One critical artefact in space 
system engineering is the Product Tree (Figure 6). It 

contains the decomposition of the spacecraft to be 
developed, and will be detailed with a data model 
later on. 

4.2 Modeling of Tasks 

The second methodology step of modeling the tasks 
of the engineering activities is not pursued in the case 
at hand. These activities are not detailed in the ECSS-
E-ST-10C standard and the step is specified as 
optional. 

4.3 Classification of Artefact 
Representations 

The next step of the methodology is to determine the 
concrete nature of the artefact. 

An external representation describes that data 
about this artefact is defined somewhere in an engi-
neering tool other than the tool that currently is to be 
developed. External representations of artefacts can 
be mapped to one of the internal representations via a 
model transformation, an import process, or a similar 
data integration approach, enabling the application 
implementing the CDM to serve as a central, integra-
tive hub for engineering data.  

Simple representations are descriptions of process 
artefacts that have to be visible somehow in the engi-
neering process, but do not have to be highly detailed. 
Simple representations only consist of one Entity 
Type with few Value Fact Types. Examples would be 
specifications, reports, or manuals that have more 
documental value than real value for systems engi-
neering. In general, simple representations should be 
used for artefacts where the artefact is managed in the 
systems engineering activities, but not the detailed 
data underlying the artefact. Due to the reduced com-
plexity involved in modeling simple artefacts in com-
parison to complex artefacts, only the latter will be 
detailed in this paper. 

Complex artefacts are central elements of the sys-
tem engineering process where concrete access to the 
underlying data is required. This includes require-
ments specifications where discrete access to the con-
tents of requirements and their traces is needed, spec-
ifications of electrical architectures, the functional ar-
chitecture of a system, etc. 

The Product Tree is a complex artefact with four 
external representations. It contains critical infor-
mation about the system decomposition, such as 
names and abbreviations of system elements, system 
element hierarchies, etc. that are of central relevance 
to the system engineering process. Furthermore simi-
lar structures are defined in a PDM system, and in an 
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Excel sheet, legacy from early project phases. SysML 
is gaining a lot of traction as a specification tool for 
early project phases and enables the specification of a 
product tree using the block-stereotype. Furthermore 
CAD tools such as CATIA also rely heavily on an in-
ternal product structure (Figure 5). 

 

Figure 5: Representations of Product Tree artefact. 

4.4 Modeling of Complex Artefacts 

Now that the rough nature of the artefact has been 
specfied, it needs to be modeled in detail. The first 
step to begin modeling a complex artefact is to create 
a package in which the artefact will be elaborated. 
This will ensure that all Entity Types, Value Types 
and Fact Types pertaining to the artefact will be 
grouped together and easily traceable. 

 

Figure 6: Excerpt from a product tree of a sample project. 

A more detailed description definition of Entity 
Types, Fact Types, etc. can be found at Halpin & 
Morgan (2008). For the derivation of the data structure 
of the artefact, an example is used. In this case the 
example is the Excel Product Tree, as employed in 
early project phases, outlined in Figure 6. 

As an initial step for acquiring the required 
knowledge some fact about the data at hand is formu-
lated. For cross-checking and for later modeling ac-
tivities, several facts are required. 

 

The Battery is abbreviated by BAT. 
The Data Handling System is abbreviated by DHS. 
The On-Board Computer is abbreviated by OBC. 
 

After acquiring a number of basic facts, the fact 
structure can be determined. For this purpose the con-
stant and variable parts of the fact are identified. 

 

The Battery    is abbreviated by  BAT. 
The Data Handling System  is abbreviated by  DHS. 
The On-Board Computer  is abbreviated by  OBC. 
        <variable part>            <constant part> <variable 

part> 
 

Now the question of what the variable parts rep-
resent has to be answered. The objects on the left side 
are all Product Tree Elements. The objects on the 
right side are Abbreviations. Variable parts of facts 
denote entities, more specifically they represent one 
Entity Type. If the variable part is more of an addi-
tional information to an Entity Type, it is a Value 
Type. The constant parts of a fact represent a predi-
cate. Consequently these facts can be abstracted to a 
Binary Fact Type (because it is relating two Object 
Types) that reads 

 

Product Tree Element     is abbreviated by    Abbreviation. 
 

This derived data structure can then be asserted to 
the CDM using the ORM2 syntax (Halpin & Morgan, 
2008) (Figure 7). 

 

Figure 7: ProductTreeElement and Abbreviation. 

Currently the Product Tree Element only has an 
explicitly modeled Abbreviation, and not a name. The 
name of the element is implicitly given in Figure 6 and 
is derived using the same algorithm as above (Figure 
8). Each Entity Type, in this case the ProductTreeEl-
ement, requires a description that specifies what it 
represents, such as “A Product Tree Element is the 
description of a system element that describes the hi-
erarchical decomposition of a system. These elements 
make up the product tree.” 

Furthermore, Value Types need to have their data 
type set. In this case, Abbreviation and Name are both 
fields of text, so the data type of choice is String. 

 

Figure 8: Addition of has Name fact type to CDM. 

The next steps of the methodology are about the 
derivation of model constraints. The most important 
constraints to be derived are uniqueness constraints. 
The fact types at hand are both binary fact types for 
which an algorithm can be used in order to derive 
their internal uniqueness constraints. 

As a first step a reference fact (RF) is written 
down. Second, another “artificial fact” is created 

Config 
Item No. Abbreviation

is 
Abstract

No. of 
Elements

0000 GravitySat GravitySat 0 1
1000 Electrical Power System EPS 1 1
1100 Power Control and Distribution Unit PCDU 0 1
1200 Battery BAT 0 1
1310 Solar Array +Y SAPY 1 1
1311 Solar Array +Y Aft Panel SAPYA 0 1
1312 Solar Array +Y Bow Panel SAPYB 0 1
1320 Solar Array -Y SAMY 1 1
1321 Solar Array -Y Aft Panel SAMYA 0 1
1322 Solar Array -Y Bow Panel SAMYB 0 1
2000 Data Handling System DHS 1 1
2100 On-Board Computer OBC 0 1

GravitySat Product Tree

Product Tree Element
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where the left variable part is changed (F1) and an-
other “artificial” fact is written down where the right 
variable part is changed (F2). 

 

RF: The On-Board Computer   is abbreviated by       OBC. 
F1: The On-Board Computer   is abbreviated by       SA. 
F2: The Solar Array     is abbreviated by       OBC. 
 

By determining which facts can occur in the Uni-
verse of Discourse (UoD) at the same time, the unique 
combinations of ProductTreeElements and Abbrevia-
tions can be derived. If RF and F2 were to occur at 
the same time, that would mean that OBC can be an 
Abbreviation for two distinct ProductTreeElements at 
the same time. This is not to be allowed. If RF and F1 
were to occur at the same time that would imply that 
the On-Board Computer would have two Abbrevia-
tions at the same time, which is also to be explicitly 
excluded. This means that uniqueness constraints 
have to be added to the isAbbreviatedBy fact type. 
Analysis of the has fact type yields the same results. 
Furthermore, the Name will serve as the identification 
scheme for any ProductTreeElement, which is 
marked by the double uniqueness bar. 

As a next step the mandatory constraints are to be 
derived. For this purpose the question is asked if it is 
mandatory that every ProductTreeElement has a 
Name. If the answer to the question is yes, a manda-
tory constraint has to be introduced to the CDM, 
which is the case in the example. The same question 
is asked for the Abbreviation, yielding the same re-
sult. This yields constraints as shown in Figure 9. 

 

Figure 9: Derived constraints for the isAbbreviatedBy and 
the hasName fact types. 

On the side of the Value Types the mandatory 
constraint is always implied and does not need to be 
explicitly modeled. 

For now no more constraints have to be derived. 
Consequently, new kinds of facts can be formulated 
for deriving further CDM elements. 

In Figure 6, among other things, an explicit hierar-
chy of ProductTreeElements can be observed. These 
facts are analyzed in the already known manner. 
 

The GravitySat              contains                   the EPS. 
The EPS              contains                   the Battery. 
The GravitySat              contains                   the DHS. 
 <variable part>        <constant part>           <variable part> 
ProductTreeElement      contains         ProductTreeElement. 
 

After asserting this information to the model, the 
question can be asked if the “inverse reading direc-
tion” is also of relevance to the UoD. This would 
mean that, if the GravitySat contains the EPS, then 
the EPS is contained by the GravitySat. In this case 
this reading direction is identified as being in fact of 
interest to engineering the system, so it is included in 
the CDM. 

For deriving the uniqueness constraint a reference 
fact is written down and two variations are produced. 

 

RF: The EPS  contains  the Battery. 
F1: The EPS  contains  the PCDU. 
F2: The DHS contains  the Battery. 
 

The reference fact is always true. RF and F1 mean 
that the EPS can contain more than one Product-
TreeElement. This is also a valid constellation for the 
UoD. RF together with F2 would mean that the Bat-
tery can be included by the EPS and DHS at the same 
time. This is determined to be an invalid fact. Conse-
quently, a uniqueness constraint on the side of the is-
ContainedBy role is necessary, meaning it needs to be 
unique. 

A mandatory role constraint is not determined as 
being applicable, since there might be a top-level ele-
ment that is not contained by another element, as well 
as leaf elements that do not contain any other ele-
ments. Since the contains relationship denotes some 
kind of hierarchy in the source document, the isCon-
tainment property is set, which states that the 
ProductTreeElements connected via the contains role 
form a hierarchy. 

For this kind of predicate, called ring predicate, 
ring constraints might also be applicable. Ring con-
straints are logical statements about what kinds of re-
lations may be possible between two entities. Consid-
ered ring constraint properties within scope of the 
SCDML Methodology are reflexivity, irreflexivity, 
symmetry, asymmetry, transitivity, intransitivity, and 
acyclicity. 

For determining the kind of ring constraint, start-
ing with a powerful one such as acyclicity is promis-
ing. Acyclicity in this case means that the contains 
relation is not allowed to form any cycles. It means 
that constructs such as The GravitySat contains the 
EPS, the EPS contains the Battery and the Battery 
contains the GravitySat are disallowed. Acyclicity al-
ready implies irreflexivity and asymmetry, which is 
why these properties do not have to be considered if 
the constraint is already known to be acyclic. How-
ever transitivity and intransitivity have to be evalu-
ated. Transitivity would mean that it would be al-
lowed to specify that if the GravitySat contains the 
EPS and the EPS contains the Battery, then the Grav-
itySat also contains the Battery. Although this might 
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make sense in some UoDs, in the UoD at hand this 
behavior is not desired since an explicit hierarchy via 
the contains role is envisioned. Consequently the ring 
constraint is specified as acyclic and intransitive (Fig-
ure 10).  

 

Figure 10: Addition of ring constraint to contains fact type. 

Properties that have a boolean characteristic are 
modeled as Unary Fact Types in ORM. This is the 
case for the is abstract column in Figure 6. Unary fact 
types do not have any uniqueness, mandatory, or 
other constraints. Once the Value Types and Fact 
Types for the ConfigItemNo and the Multiplicity have 
also been modeled, all knowledge found in the 
original source document has been acquired and 
derived into the CDM (Figure 11). 

 

Figure 11: Addition of further fact types. 

 

Figure 12: Addition of Product Tree. 

For acquiring knowledge about the UoD, 
documentation is not the only source that can be used. 
Validation and talks with experts also serve as a 
valuable source. For instance an expert could provide 
the information that there is something called 
ProductTree that consist of ProductTreeElements, i.e. 
the ProductTreeElements are included in the 
ProductTree. Using the procedures for deriving 
uniqueness and mandatory role constraints yields the 

following model. For entity types a check for any 
object cardinality constraints is also applicable. This 
includes the question “Is it possible that there exists 
more than one ProductTree?”. Since the UoD expert’s 
answer is “no”, an object cardinality constraint of 
0..1 is to be included for the ProductTree (Figure 12). 

4.5 CDM Verification and Validation 

For assuring that the CDM can actually represent the 
information required for describing the artefact, a 
two-step approach is pursued. 

A prerequisite for this is to have an initial appli-
cation running that implements the CDM, enabling its 
instantiation. In the case of the SCDML language this 
would imply that the application code has been gen-
erated from the CDM. The generated application can 
then be used to specify a user model. 

The first step is to perform the verification activ-
ity. In this activity, the “specification” of the CDM, 
i.e. the verbalized facts that have been used in the der-
ivation activities, are entered into the application. 
This includes facts that should be possible in the 
UoD, as well as facts that should not be possible. The 
latter should either be impossible to be asserted in the 
system model, or get flagged during automated model 
validation since they violate some constraint. The 
verification activity serves as a first, rough control if 
the model has been designed according to its specifi-
cation. If a fact that has been specified cannot be as-
serted to the user model, the according part of the 
CDM has to be reviewed and redesigned. In this step, 
the sample facts can be seen as a specification, i.e. re-
quirements on the CDM. 

The second step is the validation activity. This ac-
tivity is meant to assure that the built CDM is not only 
built according to its specification, as confirmed by 
the verification activity, but that the specification was 
indeed correct and the CDM can correctly represent 
the information it is originally intended to contain. In 
other words if the CDM can accurately represent the 
information from the original artefact specification, 
then it is validated. If this is not possible, an analysis 
has to be performed in that determines the errors and 
the CDM has to be fixed. In the example this means 
that the CDM must be able to accurately represent the 
information from the original product tree table dis-
played in Figure 6. 

4.6 Summary 

For deriving the CDM as shown in Figure 12, a subset 
of 18 facts has been picked up from the source docu-
ment, the GravitySat product tree, which includes in 

ProductTreeElement

Abbreviation

Name

isAbbreviatedBy

has

contains / isContainedBy
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total 314 elementary facts. Furthermore a single fact 
has been provided by a discipline expert. A number 
of 10 additional facts were generated by following the 
proposed approach for deriving the CDM. The execu-
tion of 75 activities in total, many of which were per-
formed multiple times, resulted in the generation of 
30 model elements in total (Table 1). 

Table 1: Summary of pursued facts and derived data model 
elements. 

No. of facts stated in source document 314 

No. of facts used for model derivation 18 

No. of additional facts by discipline expert 1 

No. of additional facts from model derivation 10 

No. of activities performed  75 

No. of derived fact types 7 

No. of derived entity types 2 

No. of derived value types 4 

No. of derived constraints 17 

5 CONCLUSION 

Based on an analysis of existing methodologies for 
conceptual data modeling and the formulation of re-
quirements, based on extensive experience with 
MBSE, a new methodology has been developed. As 
key points, this methodology encompasses 

 Using an engineering processes as point of 
origin for modeling the CDM, picking up on its 
process artefacts, refining them 

 Using a limited number of elementary facts for 
acquiring knowledge about the artefact 

 Following a guided, prescriptive approach for 
deriving the CDM, exploring every possible 
area, leading to a virtually exhaustive model 

 Verifying the CDM through entering the de-
rived sample facts 

 Validating the CDM through entering the orig-
inal information from the data source 

 Establishing a connection between the ab-
stracted PDM process and detailed discipline-
specific engineering processes through the pro-
vision of an adequate CDM, taking into ac-
count different artefact representations 

 Leading to a quasi-standardized CDM. 

The SCDML Methodology picks up on character-
istic merits of existing methodologies, adding the 
PDM and process characteristics as novel elements, 
resulting in a comprehensive approach for developing 

CDMs, enabling an efficient and effective integration 
of multi-disciplinary data in the context of Model-
based Systems Engineering. 
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