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Abstract: A number of algorithms have been proposed which find structures that resembles that of the visual cortex.
However, most of the works require sophisticated computations and lack a rule for how the structure arises.
This work presents an unsupervised model for finding topographic organization with a very easy and local
learning algorithm. Using a simple rule in the algorithm, wecan anticipate which kind of structure will result.
When applied to natural images, this model yields an efficient code for natural images and the emergence
of simple-cell-like receptive fields. Moreover, we conclude that the local interactions in spatially distributed
systems and local optimization with norm L2 are sufficient tocreate sparse basis, which normally requires
higher order statistics.

1 INTRODUCTION

Perhaps the most productive set of self-organizing
principles are information theoretic in nature. Shan-
non in his seminal work showed how to optimally de-
sign communication systems by manipulating the two
fundamental descriptors of information: entropy and
mutual information Shannon (1948). Inspired by this
achievement, Linsker proposed the “infomax" prin-
ciple, which shows that maximization of mutual in-
formation for Gaussian probability density functions
comes to correlation minimization Linsker (1992).
Using correlation as the basis of learning, some re-
searchers have developed several algorithms to mimic
the process of learning Oja (1989); Ray et al. (2013).
Bell and Sejnowski applied this same principle for
independent component analysis (ICA) with a very
clever local learning rule taking advantage of the sta-
tistical properties of the input data Bell and Sejnowski
(1995). Barlow hypothesized that the role of the vi-
sual system is exactly to minimize the redundancy in
real world scenes Barlow (1989).

Finding the maximum entropy distribution, one
of the principles of redundancy reduction when per-
formed with the constraint of a fixed mean, provides
probability density functions with sharp peaks at the
mean and heavy tails, i.e. sparse distributions Si-
moncelli and Olshausen (2001). Thus, assuming that
the goal of the primary visual (V1) cortex of mam-
mals is to obtain a sparse representation of the natu-
ral scenes, Olshausen and Field derived a neural net-
work that self-organizes into oriented, localized and

bandpass filters reminiscent of receptive fields in V1
Olshausen and Field (1996). Exploiting V1, Vinje
and Gallant Vinje and Gallant (2000) experimentally
proved the sparse representations in natural vision. In
modeling natural scenes, Hyvarinen et al Hyvarinen
and Hoyer (2000) defined an Independent Component
Analysis (ICA) generative model in which the com-
ponents are not completely independent but have a
dependency that is defined in relation to some topog-
raphy. Components close to one another in this to-
pography have greater co-dependence than those that
are further away. Using a similar rationale, Osindero
et al Osindero (2006) presented a hierarchical energy-
based density model that is applicable to data-sets that
have a sparse structure, or that can be well character-
ized by constraints that are often well-satisfied, but
occasionally violated by a large amount. Moreover,
there have been a number of studies on sparse coding
and ICA that match rather well the receptive fields
of the visual cortex, and also a number of algorithms
which finds excellent organization that resembles that
of the visual cortex, i.e., Olshausen and Field (1996).

One of the difficulties faced by all these stud-
ies is the sophisticated computation required to ob-
tain sparse representations and the generative models
which are generally derived with several constraints
to conform with mathematical analysis. Analyzing
sensory coding in a supervised framework, Barros et
al Barros and Ohnishi (2002) proposed the minimiza-
tion of a nonlinear version of the local discrepancy
between the sensory input and a neuron internal ref-
erence signal which also yields wavelet like recep-
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tive fields when applied to natural images. In this
work we propose an unsupervised model for find-
ing topographic organization using convex nonlinear-
ities with a very easy and local learning algorithm.
Our development is based on the fact that most non-
linearities yield higher order statistical properties in
modeling. In our context, we model the neuron as
a system which performs non-linear stimuli filtering
Barros and Ohnishi (2002), and use its output as in-
put signals from neighboring neurons. This arrange-
ment gives spatially coherent responses. This paper
is organized as follows: In Section 2, we present the
model and develop methods for obtaining the algo-
rithm. Section 3 shows simulations and results. Dis-
cussions and conclusions are proposed in section 4.

2 METHODS

Figure 1: Proposed model, which works inparallel fashion.
First layer: input vectorx; second layer: the input vector
are locally linearly combined by synaptic weights vectorw
yielding the signalu; Third layer: the signalu pass through
a non-linearity, f(.) to get higher order characteristics of
input signal; Fourth layer: the local discrepancy.

Input signals,xk = [x1(k), ...,xn(k)], are assumed gen-
erated by a linear combination of real world source
signals,s(k) = [s1(k), ...,sn(k)]T , x = As, whereA is
an unknown basis functions set.

In order to facilitate further development, we
also assume that the input signals are preprocessed
by whitening Hyvarinen and Hoyer (2000). In the
demixing model each signal,x j, at the input of
synapsej connected to neuronk will be multiplied
by the synaptic weightwk j and summed to produce
the linear combined output signal of neuronk, which
is an estimation ofsk,

uk =
n

∑
j=1

wk jx j,yk = f (uk), (1)

where f is an even symmetric non-linear function,
which is chosen to exploit the higher order statisti-
cal information from the input signal Hyvarinen and
Hoyer (2000). This signal,yk, interacts with neigh-
boring outputs, since in the nervous system the re-
sponse of a neuron tends to be correlated with the re-
sponse of its neighboring area Durbin and Mitchison
(2007). So,yk is used to generate a signal to adaptwk j
and make its output coherent with the response of its
neighbors.

We define the neighborhood of neuronk, all neu-
ronsi that are close to neuronk in a matrix representa-
tion, and define the action of a neuron’s neighborhood
as a weighted sum of output signals from all neurons
in the neighborhood,

vk = ∑
i

yik = ∑
i

f (uik), (2)

wherei are the indices of the neighboring outputsk
andvk interacts withyk to generate a self reference
signal,εk = yk +αvk, whereα determines the neigh-
borhood influence on neuron’s activation. This self
reference signal must be minimized in order to reduce
the local redundancy. Thus, we define the following
local cost,

Jk = E[ε2
k ] = E[(yk +αvk)

2], (3)

which should be minimized with respect to all
weights of neuronk. Taking the partial derivative of
Eq.(3) with respect to the parameters and equating it
to zero we obtain the following equation:

2E

[
f ′(uk)(yk +αvk)x

]
= 0, (4)

where we used the fact thatf ′(uik), with respect to
wk, is zero fori 6= k.

In order to avoid the trivial solution of zero
weight, we utilize the Lagrange multipliers to mini-
mize Jk under constraint‖wk‖ = 1 and observe that
the derivative of∑i f ′(uik) with respect towk is zero.
With this, we obtain the following two step algorithm,

wk = E

[
f ′(uk)εkx

]

wk =
wk

‖wk‖
. (5)

This procedure is accomplished in parallel to ad-
just all weights for each neuron in the network,
where we include orthogonalization steps taken from
Foldiák (1990). In this way a matrixW is obtained.

Moreover, we can show that the proposed algo-
rithm converges as given in the theorem below.

Theorem: Assume that the observed stimuli fol-
low the ICA model and that the whitened version of
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those signals arex=VAs, whereA is an invertible ma-
trix andV is an orthogonal matrix, ands is the source
vector. Suppose thatJ(wk) = E{[ f (wT

k v)+α.vk]
2} is

an appropriate smoothing even function. Moreover,
suppose that any source signalsk is statistically inde-
pendent froms j, for all i 6= j. This way, the local min-
imum of J(wk), under restriction‖wk‖ = 1 describes
one line of the matrix(VA)−1 and the correspondent
separated signal obeys

E[s2
i ( f ′(sk))

2+ s2
i f (sk) f ′′(sk)+

+ si f (sk) f ′(sk)− sk f (sk) f ′(sk)]+

+E[( f ′(sk))
2+ f (sk) f ′′(sk)−

− sk f (sk) f ′(sk)]< 0,∀i ∈ vk, (6)

We show the proof in the appendix.

3 SIMULATIONS AND RESULTS

We performed simulations with the closest eight neu-
rons neighbors, as defined in Appendix A. We chose
the following even symmetric non-linearity:f (uk) =
uk.atan(0.5uk)− ln(1+ 0.25u2

k)). This function has
some advantages in terms of information transmission
between input and outputButko and Triesch (2007).
Moreover, this function will work on all statistics of
the signal, yielding therefore a better approximation
to the probability density function (pdf) of it Bell and
Sejnowski (1995). This can be intuitively understood
by expanding the sigmoidal function into a Taylor se-
ries, whereas one can easily notice thatf (uk) can be
written as a linear combination ofu2

k . That function
also satisfies the requirement of a unique minimum as
shown by Gersho Gersho (1969).

We applied the algorithm given by Equation (5)
to encode natural images, in a way similar to that
carried out in the literature Olshausen and Field
(1996). We take random samples of 16 x 16
pixel image patches from a set of 13 wild life pic-
tures,(http://www.naturalimagestatistics.net/) and put
each sample into a column vector of dimension
256x1. We used 200,000 whitened versions of those
samples as stimuli. For each set of 200,000 points the
algorithm runs over 20,000 times in order to obtain
a good estimation for matrixA. In this case we have
also 16 x 16 units in the network. We variedα from
0.005 to 1.0 to highlight the influence of the neigh-
borhood in the results.

In Fig.2, one can see the obtained basis vectors
(columns of matrixA) for α = 0.1 and 0.9, respec-
tively. The clustered topographical organization can
be easily seen taking one little square (receptive field)
and considering its eight closest neighbors.

(a)

(b)

Figure 2: The topographic basis functions (columns of ma-
trix A) estimated from natural image data whenf (uk) =
uk ·atan(0.5uk)−Ln(1+0.25u2

k ) was the non-linearity uti-
lized and neighborhood consisting of the 8 closest neigh-
bors.. (a)α = 0.005; (b)α = 0.9.

In these figures one can observe that basis vec-
tors which are similar in location, orientation and fre-
quency are close to each other. Moreover, we see the
importance of neighbours contribution on organiza-
tion: increasingα, the filters became more correlated.
In Figure 3 , one can see theα values and correspond-
ing mean of correlation coefficients of all neurons in
neighborhood.

4 DISCUSSIONS AND
CONCLUSIONS

In this paper we have presented a model for unsuper-
vised neural network adaptation. In (5) we have a
very simple unsupervised rule to update the weights
in a neural network. In topographic organization lit-
erature, as far as we know, this is the simplest ever
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(a)
Figure 3: Mean of correlation coefficient between pair of
basis functions as a function ofα values.

suggested, when compared to others in the literature-
Hyvarinen et al. (2000); Hyvarinen and Hoyer (2000);
Osindero (2006). Besides, we have proven mathemat-
ically that the adaptation converges. One possible ap-
plication of this method is to image/signal recogni-
tion, as for eachα in (3), we can adjust the character-
istics of the topological structure in order to fit more
closely to the desired image.

There are at least two advantages in this model:
it organizes the resulting filters topographically and
it may be regarded as biologically plausible. Firstly,
we can see in Fig. 2 (a) that a smallα results
in no organization at all, while in Fig. 2 (b), we
can see that anα = 0.9 causes the filters to ap-
pear organized. Moreover, we have found the cor-
relation in neighborhood filters. By using equation
Cov(ai,a j)/(std(ai)std(a)), whereai anda j are two
basis functions in the neighborhood of one neuron, we
can see that the correlation is directly proportional to
the value ofα, as shown in Fig. 3. The correlation
betweenα andCov(ai,a j)/(std(ai)std(a)) was 0.88.

Secondly, it is well known that receptive fields in
the mammalian visual cortex resemble Gabor filters
Laughlin (1981), Linsker (1992). This way, the infor-
mation about the visual world would excite different
cells Laughlin (1981). In Figure 2 (a) and (b), we can
see that the estimation of matrixA is a bank of local-
ized, oriented and frequency selective Gabor-like fil-
ters. Each little square, in the figures above, represent
one receptive field. By visual inspection of Fig. 2 (b),
one can see that the orientation and location of each
visual field mostly change smoothly as a function of
position on the topographic grid. Thus, the emergence
of organized Gabor-like receptive fields can be under-
stood as a biologically plausibility of our model.

This model can be regarded also as biologically
plausible as it works in an unsupervised fashion with
local adaptation rules Olshausen and Field (1996). To
do this, we had chosen some even symmetric non-
linearities which were applied upon a neuron inter-
nal signal.This signal interacts with similar ones from

neighborhoods neurons to generate its output. This
model mimics the V1 cells by an interaction between
neighborhood signals, which is possible due to the
fact that signals from neighborhood neurons are ref-
erence to the activation of one specific neuron Field
(1987). In addition, our method extracts oriented, lo-
calized and bandpass filters as basis functions of nat-
ural scenes without restricting the probability density
function of the network output to exponential ones,
as the IP algorithm of Butko et al Butko and Triesch
(2007). Moreover, Stork and WilsonStork and Wil-
son (1990) proposed an architecture very similar to
the one proposed here, which is largely based on neu-
ral architecture.
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APPENDIX

Take an indexed set of N neurons, as one can see in table 1,
and put them into a

√
N ×

√
N matrix (let’s suppose N=64,

Table 1: A set of N neurons.

1 2 3 4 5 6 7 8 · · · N

for example), as one can see in table 2
We define the neighborhood of neuronk, all neuronsi

that are close to the neuronk in the matrix representation.
In other words, neuronsi are neighbors of neuronk if the
coordinates of neuroni obeys the following relation

D(i,k) =
√

(ai −ak)2+(bi −bk)2 6 T, (7)

where (ak,bk) and (ai,bi) are the coordinates of neuron
k and neuroni, respectively, in the matrix representa-
tion, T is a constant that defines the neighborhood size.

For example, forT = 1, the neighborhood of neuron 28
as highlighted in the table below. In this casev28 =
{19,20,21,27,29,35,36,37}.

Table 2: One neighborhood of neuron 28.

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64

With this definition of neighborhood, we are able to an-
alyze the algorithm stability in the following steps:

Assume that signalx can be modeled asx=As, whereA
is an invertible matrix;

Let us make the following change in coordinates,pk =

[p1, p2, · · · , pn]
T = AT VT wk, whereV is the whitening ma-

trix to obtain the signalsx;
In this new coordinates basis, we define the cost func-

tion as

J(pk) = E[ε2
k ] = E{[ f (pt

ks)+α · vk ]
2}; (8)

One can analyze, without loss of generality, the stabil-
ity of J(pk) at pointpk = [0, · · · , pk, · · · ,0]T = ek. In this
case,pk = 1 and thanwk is one row of the inverse ofVA.
For assumption,J(pk) is an even function and this analysis
applies forpk =−1;

Let d = [d1, · · · ,dn]
T be a small perturbation onek. Ex-

pressingJ(ek +d) into a Taylor series expansion aboutek,
we obtain

J(ek+d)= J(ek)+dT ∂J(ek)

∂p
+

1
2

dT ∂2J(ek)

∂p2 dT +o(‖d2‖).
(9)

∂J(p)
∂pk

= sk f ′(pT s)[ f (pT s)+vk], (10)

∂J(p)
∂p2

k

= s2
k f ′′(pT s)[ f (pT s)+vk]+ s2

k f ′(pT s) f ′(pT s)

(11)
and

∂J(p)
∂p2

k

= sks j f ′′(pT s)[ f (pT s)+vk]+ sks j f ′(pT s) f ′(pT s)

(12)
Taking in account that signals out of neighborhood are

statistically independent, we have

dT ∂(ek)

∂p
= 2{E

[
sk f (sk) f ′(sk)

]
dk +

+ α ∑
i∈vk

E
[
si f (sk) f ′(sk)

]
di}, (13)

because in consequence of independency,
E[s j f (sk) f ′(sk)] = 0, if j /∈ vk.
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In the same way, using the assumption of independence,
one can obtain

1
2

dT ∂2J((e)k)

∂p2 d =

= E
[
s2
k( f ′(sk))

2+ s2
k f (sk) f ′′(sk)

]
d2

k

+ α ∑
i∈vk

{E
[
s2
i ( f ′(sk))

2 f ′′(sk)
]

d2
i

+ E
[
sksi( f ′(sk))

2+ sksi f (sk) f ′′(sk)
]

dkdi},

+ ∑
i/∈vk

E
[
( f ′(sk))

2+ f (sk) f ′′(sk)
]

d2
j +o(‖d‖2).

(14)

Supposing‖w‖ = 1 andVA being orthogonal, we have
‖p‖ = ‖AT VT w‖ = 1. Consequently,‖ei +d‖ = 1, which

impliesdk =
√

1−∑∀l 6=i d2
l −1.

Remembering that
√

1−β = 1− β
2 +o(β), one can dis-

card the terms which containsd2
k anddkdi in step 8 above,

because they areo‖d2‖ .
Now we can take the following approximation:dk ≈

∑∀l 6=i d2
l =−∑i d2

i −∑ j d2
j .

Using the above approximation in step 11, and using
equation 13 and equation 14, in equation 9, one get

J(ek +d) = J(ei)

+ α∑
i
{E[s2

i ( f ′(sk))
2+ s2

i f (sk) f ′′(sk)

+ si f (sk) f ′(sk)− sk f (sk) f ′(sk)]d
2
i }

+ ∑
j

E[( f ′(sk))
2+ f (sk) f ′′(sk)

− sk f (sk) f ′(sk)]d
2
j . (15)

Choosing properly a functionf so thatE[s2
i ( f ′(sk))

2+

s2
i f (sk) f ′′(sk) + si f (sk) f ′(sk) − sk f (sk) f ′(sk)] +

E[( f ′(sk))
2 + f (sk) f ′′(sk) − sk f (sk) f ′(sk)] < 0,∀i ∈ vk,

we obtain thatJ(ei +d) will be always small thatJ(ei) in
equation 9.
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