
Automating the Construction of Models based on Domain Views

César Cuevas Cuesta, Patricia López Martínez and José M. Drake
Group of Software Engineering and Real-Time, University of Cantabria, Santander, Spain

Keywords: MDSE, Meta-model, View, Meta-tool, HOT.

Abstract: This work addresses the automatic generation of the resources required for the assisted creation of domain
models according to specialized views of their meta-model. The task of a designer who builds models
compliant to a complex domain meta-model is eased if the model editor requests the information according
to a specific view of the meta-model based on the conceptualization or the specific construction strategy that
the designer uses. With that aim, this work presents 1) the meta-model with which a domain expert formulates
the model creation strategy that he envisions, 2) the tool that, from that strategy information, generates the
meta-model that drives data introduction and 3) the M2M transformation that generates the final model
compliant to the original domain meta-model and that contains the newly introduced data.

1 INTRODUCTION

Formalizing very general application domains by
means of meta-modelling requires specifying
complex meta-models, with a great deal of details and
options. Simplifying those domain meta-models by
decomposing them in other partial and simpler ones
may not be recommended or allowed if their goal is
to cover the modelling of heterogeneous systems with
different specific features, so that common processing
techniques and tools can be applied on all of them.
This is the case, for example, of some OMG meta-
models, like SysML (OMG, 2012) or MARTE
(OMG, 2011), which cover a so large set of options
and specific features that hardly any designer uses in
its entirety. For a designer working in this context, the
domain meta-model complexity can be an
unnecessary problem, since:
 He may not be an expert in the whole domain, but

only in some partial aspects.
 He may use a limited set of design patterns or

execution platforms.
 He may develop tools for processing models

corresponding only to systems with restricted
features among the domain variability.

 He may be interested only in a partial vision of the
information represented in the models.

According to these premises, the task of the designer
is eased if he is provided with adapted tools that offer
a view of the information limited and focused on his

interests. A first approach may be working with
simpler subdomain meta-models that only address
those aspects of interest. This kind of solution must
be complemented in order for the created models to
be compliant to the original meta-model and
compatible with legacy tools. In some trivial cases,
the meta-models supporting those specific features
can be a mere subset of the domain meta-model, in
which case the compliance is granted. However, in
general, the subdomain meta-model may have
structural differences with respect to the original one,
so that the created models will not be directly
compliant to the latter.

Another option for addressing the delimitation of
a domain is formalizing it through a view
specification for each specific case. A model whose
structure satisfies a view specification is referred to
as according to that view. Fig. 1 depicts this idea by
showing in the upper part a domain meta-model on
which a domain expert has specified two views and
in the lower part three compliant models.

Figure 1: View specification on a domain meta-model.

Cuesta, C., Martínez, P. and Drake, J.
Automating the Construction of Models based on Domain Views.
DOI: 10.5220/0005688202410249
In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2016), pages 241-249
ISBN: 978-989-758-168-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

241

The compliant models can be according to View
A (Model 1) or to View B (Model 3) or to none of
them (like Model 2, that is simply compliant to the
meta-model). If any kind of intersection is feasible,
models according to both views would be perfectly
possible.

The aim of this work has been to contribute to the
development of tools for supporting models
compliant to meta-models on which views have been
specified. Specifically, it presents a strategy for
easing the construction of models according to a view
specified on a meta-model, as well as a generic tool
that implements that strategy. The tool is generic, in
the sense that it is applicable to any domain meta-
model and to any view specified on it (following the
view characterization exposed in section 3.3). Its
generic nature is achieved by means of its conception
as a meta-tool, i.e., it operates generating on-demand
the specific tool implementing the building strategy
for every specific meta-model/view couple. Fig. 2
outlines this approach of meta-tool. Given a domain
meta-model, a view specified on it represents the
meta-tool input, which generates the specific
construction tool suitable for the view.

Figure 2: Generic tool as a meta-tool.

The initial motivation of this work was to support
views in the MAST environment (González et al.,).
MAST addresses the design and analysis of
Distributed Real-Time Embedded Systems (DRES)
with a very broad generality (heterogeneous
distributed platforms with different operating
systems, complex communication networks and
support for software designed using different
architectures and paradigms). For example, when a
team is working with a certain RT-Linux platform
and writes the code in the Ada language, the designers
can use a subset of only 17 classes among the 143
classes of the MAST meta-model.

The paper is structured as follows. Section 2
addresses some related work in the literature. Section
3 characterizes the view concept adopted in this work,
and presents the strategy designed for easing the
construction of models according to a given view.

Moreover, the section includes a proposal of a meta-
model for view modelling. Section 4 exposes the
generic tool implementing the strategy. Last, Section
5 draws some conclusions and future work directions.

2 RELATED WORK

The view concept has a long tradition in the databases
area (Wiederhold, 1991). A number of contributions
can be found in the MDSE literature proposing
developments based on adopting and adapting this
concept to the Modelling area. First of all, works that
exhibit as motivation the problem of MDD processes
that use several meta-models and, consequently, have
to handle information disseminated in heterogeneous
interrelated models. Recent proposals in this direction
are the EMF-Views (Bruneliere et al., 2015) and
Flexible Views (Burger, 2013) methodologies,
which, in order to reduce the complexity, propose to
manage the models by means of partial specialized
views that select and/or aggregate the information of
such heterogeneous models. The main difference with
our proposal is that, while those approaches are
oriented to the creation of views to be applied for
visualization based on filtering and/or combining
heterogeneous model elements already existent, our
methodology is oriented to the construction of the
models according to a strategy driven by the view
itself. More close to this approach are the proposals
in (Cicchetti et al., 2012) and (Bork et al., 2014),
although in them the views are merely portions of the
domain meta-model, so that the strategy for model
construction is not specifically defined by the view
specification.

3 MODEL MANAGEMENT IN
THE PRESENCE OF VIEWS

3.1 Alternatives for the Creation of
Models According to a View

Given a view specified on a certain domain meta-
model, there are two alternatives that can be adopted
for creating models according to it.

3.1.1 Use of Tools Driven by the Domain
Meta-model

The models according to a view are, by definition,
compliant to the domain meta-model on which the
view is specified, so that they can be managed using

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

242

tools based on it. This strategy is shown in Fig. 3,
where, as indicated, the model construction process is
driven by the domain meta-model, being the designer
the responsible of following the guidelines stipulated
by the view specification. A model built this way is
directly compliant to the meta-model and according
to the view. The use of this strategy has the drawback
of forcing the designer to work against the complexity
of the whole meta-model, without any kind of specific
assistance relative to the view, so the process is error-
prone. In addition, there are no available tools for
verifying that the models under construction are
according to the view.

Figure 3: Construction driven by the domain meta-model.

3.1.2 Use of Tools Driven by the View

This alternative works on a meta-model that describes
the information specific to the view, and, based on it,
the designer builds the models according to it. The
main advantage of this strategy is that, during model
construction, the designer only confronts the view
complexity. As a drawback, the resultant model in not
necessarily compliant to the domain meta-model and
it requires to be transformed to a compliant one. This
is the alternative chosen as the basis of the strategy
proposed in this paper. It addresses the automatic
generation of the aforementioned meta-model
specific to the view and the transformation tool that
produces the final model, compliant to the domain
meta-model (and according to the view). The details
of the strategy are explained in the rest of the section.

3.2 Automating the Creation of Models
According to a View

The proposed strategy prioritizes easing the creation
of models according to a view. The supporting meta-
model focuses on the view and on the expert’s
conceptualization. It has been called View Required
Data (VRD) meta-model, because its goal is to assist
the designer during the creation of models according
to the view and not to formalize the constraints that
the view introduces in the domain meta-model.

Therefore, the designer builds models compliant to
the VRD meta-model corresponding to the view at
hand and a subsequent M2M transformation
generates the final model, compliant to the initial
meta-model and according to the view. Fig. 4 outlines
the strategy.

Figure 4: Construction driven by a VRD meta-model.

According to the contents exposed so far, given a
meta-model on which a view has been specified, the
assistance to the designer consists in generating two
complementary components:
 The VRD meta-model on which the data

introduction is based.
 The M2M transformation that generates the final

model from the designer’s model.

The aim of this work is the automatic generation of
both components from the view specification and
from the domain meta-model itself. For achieving it,
an MDE strategy is used, where both components are
generated as outputs of M2M transformations that
have as inputs the view specification in model form
plus the domain meta-model. Before the in-depth
study of those transformations, which will be the goal
of Section 4, the following subsections describe,
respectively, the scope of the view concept in the
context of this work and the meta-model supporting
the formulation of views as models.

3.3 Scope of the View Concept

According to the aim of this work, a view can
establish the following aspects on the data structure
described by a meta-model:
 The specification of the meta-model classes

allowed in the models according to the view.
 The description, partial or complete, of how the

instances of those permitted classes must be
(regarding attribute values, null references, etc.).
This characterization of an allowed class is what
we have called a category relative to it.

 The instances of the allowed classes and
according to the defined categories that must

Automating the Construction of Models based on Domain Views

243

appear in the models.
 The definition of assemblies, i.e. groups of types

(among the allowed ones) that are to be
instantiated together, each of them in a specific
number and with pre-established references
between such instances.

 The specification of which instances of the
assemblies must appear in the models.

3.3.1 The LinuxClassicRMA View

As an example, let’s consider a company developing
real-time software targeting equipment that uses a
certain RT-Linux platform. In addition, given the
nature of the required software, the Classic RMA
schedulability analysis technique (Lehoczky et al.,
1989) is applied. In this case, the domain meta-model
is MAST 2.0, which allows to model the temporal
behaviour of a very broad range of DRES. MAST 2.0
encompasses 143 classes and its complexity is totally
justified, as it has to cover the models on which the
set of tools of the MAST environment are to be
applied (tools for schedulability analysis, priority
assignment, slack calculation, etc.). The
LinuxClassicRMA (LCRMA) view is defined on this
meta-model, delimiting it to the case of the software
developed by the company, due to the used platform
and analysis technique.

Constraints Related to the Execution Platform.
The fact that the processor is a certain RT-Linux
platform drastically delimits the model of the system
execution platform, which only contains:
 One processor element, with all its attributes

taking a fixed value.
 One scheduler, associated to the unique processor

of the platform. Its scheduling policy is fixed
priority (FP) with a priority range of [0, 100].
Hence, every thread defined in a model must have
scheduling parameters of FP kind and is
scheduled by this unique scheduler.

 One clock, associated to the platform processor.
 One type of synchronization elements that can be

used by the threads: shared resources with
immediate ceiling protocol.

Constraints Related to the Nature of the
Developed Software. The reactivity of the
applications is defined as a set of tasks, where each of
them:
 Has a periodic activation triggered by the system

clock.
 Is executed in its own thread.
 Can lock shared resources when starting the exe-

cution, unlocking them when finishing it.
 Can have a hard deadline, associated to the end of

its execution and relative to the activation.

According with the previous considerations, Fig. 5
shows a non-formal object diagram with a MAST 2.0
sample model according to the LCRMA view. Fig. 6
shows a high-level, reactive vision.

Figure 5: LCRMA sample model.

Figure 6: Reactive vision of the LCRMA sample model.

The aim of the LCRMA view is to alleviate the
designer who wants to analyse the schedulability and
to assign priorities to a new application. Like for any
other view, it is based on the meta-model whose
structure is to be constrained (MAST 2.0) and
specifies those classes allowed to be instantiated. The
specification also defines the categories use to
formalize the restrictive conditions imposed on the
instances of those allowed classes and declares the

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

244

elements that must exist in every model according to
the view.

3.3.2 The LCRMA_VRD Meta-model

The class diagram in Fig. 7 represents the VRD meta-
model corresponding to the LCRMA view.

Figure 7: LCRMA_VRD meta-model.

The designer that confronts the task of creating
LCRMA models has to build models simply
compliant to this reduced meta-model. These models
will be later transformed to MAST 2.0 models
(according to LCRMA) by means of the
LCRMA_VRD_to_MAST2 transformation (parti-
cularization of the VRD_to_Domain transformation
shown in Fig. 4).

Fig. 8 shows the model that the designer has to
build in order to obtain the model of Fig. 5. The
difference of conceptual complexity and size is
substantial.

Figure 8: VRD model built by the designer.

3.4 Meta-model for Constraining View
Specification

An overall vision of the meta-model for modelling
view specifications, the Constraining View
Specification (CVS) meta-model, is presented below,
using Ecore as meta-modelling language. The class

diagram in Fig. 9 shows the meta-model. It exhibits a
conventional structure, with the CVS_Model class
playing the role of main container class. It defines the
referencedMM association through which the meta-
model on which the view is specified is referenced.

Figure 9: CVS meta-model.

The other basic classes are Category and
ObjectsSpecification. The former is an abstract
class that represents the concept of category defined
by a view, on a class of the corresponding meta-
model or in an assembly form. The latter represents
the concept of element (individual or assembly) that
must appear in every model according to the view. It
defines the attributes lowerBound and upperBound
that describe the multiplicity range of those elements.

The CVS_Model class defines two compositions:
categories and stipulatedObjects. Through the
first one, the main container of a CVS model contains
the description of those categories defined by the
view, while through the second one, the description
of the mandatory elements. ObjectsSpecification
defines the association category through which such
mandatory objects indicate the category, among those
ones specified by the view, they must be according to.

3.4.1 Categories

The CVS meta-model defines three subclasses of
Category:

 SimpleCategory. It represents the concept of
basic category defined by a view on a (permitted)
class of the corresponding meta-model. This class
defines the srcClass reference used to refer to the
corresponding base class, as well as the
attrImpositions and refImpositions
compositions through which a simple category

Automating the Construction of Models based on Domain Views

245

defines the impositions that the view specifies on
the properties of the base class. Moreover,
through the instantiable attribute, an object
declares if it represents an instantiable category,
i.e. there can be instances according to it in a
model. If false, they can appear only as part of
assemblies.

 AbstractCategory. This class is introduced
aiming to cover the case of simple categories
defined on classes sharing superclass.

 ComplexCategory. It represents the concept of
assembly defined by a view. This class defines the
instantiations composition for specifying the
elements that form the assembly.

The formulation of an assembly constitution involves
the classes CategoryInstantiation and
RefAssignment.
 CategoryInstantiation. It represents the

concept of a particular instantiation of a certain
simple category in an assembly. The class defines
a category association through which its
instances indicate the simple category at hand. It
also defines the optional and nameSuffix
attributes, for specifying if such an instantiation is
optional inside an assembly and for declaring a
possible literal suffix. Lastly, the class defines the
refAssignments composition through which its
instances can hold RefAssignment objects, in
order to cover the fact that in an assembly can
exist pre-established links between the
components themselves or even between elements
of different assemblies.

 RefAssignment. It represents a mechanism for
setting a reference belonging to an element of an
assembly towards another element of the same
assembly or another one. The class defines two
associations: assignedRef and target. Through
the first one, its instances point to the reference
that is to be set and through the second one to the
target element on which the link is set.

A CVS model must not specify SimpleCategory
instances on the domain meta-model main container
class. For that purpose, the CVS meta-model presents
an additional class, MainContainerCategory, that
represents the description (partial or complete) about
the way the main container of a model according to
the view has to be configured. The compositions it
defines are analogous to those ones with same name
in the SimpleCategory class. The CVS_Model class
defines one more composition, mainContainer

Category, through which the main container of a
CVS model contains the only MainContainer

Category instance. This explicit and separated

definition is a design decision in order to ease the
development of the meta-tool exposed in Section 4.

3.4.2 Impositions on Attributes and
References

The impositions that a view sets on the properties of
a (permitted) class when defining a simple category
on it are represented by instances of AttrImposition
and RefImposition. There are two types of
impositions on attributes (assignment of a fixed value
and imposition of having the same value as other
attribute) and three types of impositions on references
(specification of a category to which its target must
be according to, obligation of being null or imposition
of having the same target as another reference). This
variety is represented by the ValueAssignment and
EqualizationWithOtherAttribute (subclasses of
AttrImposition) and TypeSpecification,
Nullification and EqualizationWithOtherRef
(subclasses of RefImposition), respectively. Fig. 10
shows the aforementioned classes.

Figure 10: Classes related to impositions on attributes and
references.

3.4.3 The LCRMA View as a CVS Model

Fig. 11 shows a part of the CVS model representing
the LCRMA view. Due to space limitation the
visualization of the whole model is not exposed here.
In contrast, the figure focuses on how to model that
LCRMA models can only have one RT-Linux
platform, based on an FP scheduling policy. The
assembly RT‐Lin_Card is defined by means of a
complex category that encompasses an instantiation
of each of the following simple categories:
Processor, Clock, Scheduler and SchedPolicy.
They are defined respectively on the classes
Regular_Processor, Alarm_Clock, Primary_

Scheduler and Fixed_Priority_Policy of the
MAST 2.0 meta-model. Finally, the card is declared

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

246

as an instance of ObjectsSpecification, pointing
to the defined complex category and that sets
“theCard” as name and that the instance is unique.

Figure 11: Part of the CVS model of the LCRMA view.

Fig. 12 shows in detail the configuration of the
categories SchedPolicy and Scheduler. The former
illustrates how to impose fixed values to attributes
while the latter illustrates how to set links among the
assembly components.

It is worth noting that, as well as a domain meta-
model is formulated only once by the domain expert,
the CVS model corresponding to a view is also
formulated only once by the same agent. It will be
used for the automatic generation of the VRD meta-
model, the one used by the designer, as well as the
M2M transformation for converting the reduced
models built by the designer to domain models.

4 GENERIC TOOL FOR MODEL
CONSTRUCTION

The previous section has explained the design of a
tool for easing the construction of models according
to a view, based on a strategy that requires developing
two components (the VRD meta-model and the
VRD_to_Domain transformation), relative to the
view at hand (and hence to the domain meta-model).

This section exposes the design of a generic tool,

applicable to any domain meta-model and to any view
specified on it. Its generic nature is achieved as a
meta-tool that generates on-demand the
corresponding specific tool.

Figure 12: The simple categories Scheduler and
SchedPolicy in detail.

The meta-tool operates in a two-step fashion,
outlined in Fig. 13, subsequently generating the two
components of every specific tool from the view
formulated as a model compliant to the CVS meta-
model shown in subsection 3.4:

Figure 13: Two-step meta-tool.

1) The VRD meta-model that drives the restricted
model construction. As depicted in Fig. 14, this
component is obtained from the CVS model

Automating the Construction of Models based on Domain Views

247

through a promoting transformation
(CVS_to_VRD), i.e. a transformation that takes an
M1 layer artefact (model) and yields an M2 layer
artefact (meta-model).

Figure 14: Automatic generation of the VRD meta-model
and of the VRD_to_Domain transformation.

2) The M2M transformation that transforms the
required data models in models compliant to the
domain meta-model. As shown in Fig. 14, from
the CVS model, the Higher Order Transformation
(HOT) technique (Tisi et al., 2009) is used in
order to get the VRD_to_Domain transformation
as a model compliant to the meta-model of the
used model transformation language (MTL). This
work has used ATL (Jouault et al., 2008), which
allows the application of the HOT technique,
since its abstract syntax is formalized as a meta-
model. In this case the HOT is of the synthesis
kind and the generated transformation model is
later extracted to the textual notation of ATL. The
obtained transformation must correspond to the
specific structure of the VRD meta-model
generated before.

The developed strategy involves several M2M
transformations. Given a specific view on a meta-
model, the reduced models built by the designer are
transformed to the final models through the
corresponding VRD_to_Domain transformation.
Regarding the generation of the components for each
situation (the VRD meta-model and the
VRD_to_Domain transformation itself), the M2MM
transformation CVS_to_VRD and the HOT
CVS_to_MTL are respectively used. Their
implementation can be found, along with the rest of
the material related to this work, in
http://www.istr.unican.es/members/cesarcuevas/phd/
constrainingViews.html.

5 CONCLUSIONS

The editors for creating models are usually assisted
by the reflective information they get from the
corresponding meta-models. This work improves

those cases where this strategy is not friendly for the
designer, due to the meta-model not following the
expected logic for entering the data or because it is
excessively complex. The proposed solution consists
in using a specialized meta-model for the edition,
along with the following model conversion.

In the current version, the method is applicable to
any meta-model, but only considering the definition
of edition views that are useful for the case of models
compliant to a generic domain meta-model that is
constrained by 1) reducing the number of used
classes, 2) modifying the multiplicities or 3)
incorporating new classes defining certain patterns of
instances. Future work is to extend the methodology
and the tools to views generated in other situations.

ACKNOWLEDGEMENTS

This work has been partially funded by the Spanish
Government and FEDER funds, with references
TIN2011-28567-C03-02 (HI-PARTES) and
TIN2014-56158-C4-2-P (M2C2).

REFERENCES

OMG Formal/2012-06-01: Systems Modeling Language
(SYSML), V1.3. 2012.

OMG Formal/2011-06-02: UML Profile for Marte:
Modeling and Analysis of Real-time Embedded
Systems, V1.1. 2011.

Bork, D., Karagiannis, D. I. And Fill, H. I., 2014. Model-
Driven Development of Multi-view Modelling Tools:
The Muviemot Approach.

Bruneliere, H., Perez, J.G., Wimmer, M. And Cabot, J.,
2015. EMF Views: A View Mechanism for Integrating
Heterogeneous Models, 34th International Conference
on Conceptual Modeling (ER 2015) 2015.

Burger, E., 2013. Flexible Views for Rapid Model-Driven
Development, Proceedings of the 1st Workshop on
View-based, Aspect-oriented and Orthographic
Software Modelling 2013, ACM, Pp. 1.

Cicchetti, A., Ciccozzi, F. And Leveque, T., 2012. A
Hybrid Approach for Multi-View Modeling. Electronic
Communications of the EASST, 50.

González Harbour, M., Gutiérrez, J. J., Medina, J. L.,
Palencia, J. C., Drake, J. M., Rivas, J. M., López
Martínez, P. And Cuevas, C., Mast: Bringing
Response-time Analysis into Real-time Systems
Engineering,

Jouault, F., Allilaire, F., Bézivin, J. And Kurtev, I., 2008.
ATL: A Model Transformation Tool. Science of
Computer Programming, 72(1), Pp. 31-39.

Lehoczky, J., Sha, L. And Ding, Y., 1989. The Rate
Monotonic Scheduling Algorithm: Exact

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

248

Characterization and Average Case Behavior, Real
Time Systems Symposium, 1989. Proceedings. 1989,
Ieee.

Tisi, M., Jouault, F., Fraternali, P., Ceri, S. And Bézivin, J.,
2009. On the Use of Higher-order Model
Transformations, Model Driven Architecture-
Foundations and Applications 2009, Springer.

Wiederhold, G., 1991. Views, Objects, and Databases.
Springer.

Automating the Construction of Models based on Domain Views

249

