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Abstract: The core idea of metamodel-based model construction is well established. However, there are different meta-
modeling approaches relying on various modeling structures and instantiation procedures. Although, in 
general, these approaches offer similar features, they are sometimes incompatible with each other. Therefore, 
a precise abstract definition of instantiation is needed. The paper describes an abstract modeling framework, 
which is easily customizable in order to adapt it to different multi-level modeling techniques. The framework 
consists of an abstract modeling structure, basic built-in constructs, and a dynamic instantiation procedure. 
The paper demonstrate the flexibility of the approach by a specific bootstrap that is explicitly designed for the 
rebalancing of the node-edge antagonism, which is mostly the origin of many reification patterns applied in 
current meta-model designs. Although the proposed solution to the node-edge dichotomy is only an example 
of our multi-level meta-modeling approach, it is per se a valuable achievement showing that it can be done in 
a more elegant manner than it is usually expressed in other state-of-the art modeling frameworks. 

1 INTRODUCTION 

State-of-the-art telecom service management 
operates on Cloud-based software components such 
as Virtual Network Functions (VNF) (NFV, 2013). 
The central piece of the service orchestrator is a 
flexible modeling core that enables gradual 
instantiation of meta-objects through various stages, 
corresponding to different levels of detail set by the 
individual stakeholders representing the collaborating 
partners of a telecom service ecosystem. 
Contemporary such solutions usually consist of ad-
hoc pattern-based multi-level meta-modeling 
implementations, which are reliant on either 
relational database techniques or XML technologies 
to enable jumps between meta-levels via proprietary 
domain specific promotion and demotion operations. 
Therefore, the integration of these model-based 
systems is ad-hoc as well.  

Although multi-level meta-modeling is a well-
researched topic, its industry quality tool support has 
not been validated or established yet. Moreover, most 
of the current approaches address predominantly 
design-time aspects of multi-level meta-modeling 
and they also do so only from the particular point of 
view of clabjects and the potency notion (Atkinson 

and Kühne, 2003). However, in Cloud-based software 
component management, both components and 
connections must be treated equally: all concepts of 
multi-level meta-modeling have to be applied 
uniformly in order to facilitate automatic and 
transparent reification of edges as nodes and vice 
versa. 

In this paper, we aim to illustrate how a novel 
Abstract State Machine (ASM (Boerger and Stark, 
2003)) based algebraic formalism for multi-level 
meta-modeling can be applied to resolve the node-
edge dichotomy which is prevalent with many meta-
modeling techniques. The paper is structured as 
follows: Section 2 introduces the technical 
background; it covers both the modeling 
requirements originating from state-of-the-art Cloud 
software management and the most prominent 
solutions of multi-level meta-modeling. Then, in 
Section 3, we introduce our Dynamic Multi-Layer 
Algebra (DLMA) approach in some detail. Next, in 
Section 4, DMLA abstract syntax is applied to a 
simplified modeling example to showcase the power 
of this formalism to unify the handling of nodes and 
edges on the same abstraction levels. Finally, Section 
5 concludes the paper and also addresses some of our 
future research goals. 
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2 BACKGROUND 

In this section, first, we shortly introduce the most 
well-known management standard for Cloud-based 
software components and also elaborate on its 
modeling requirements. Then, the major instantiation 
techniques and the most prevalent multi-level meta-
modeling approaches are summarized and discussed 
from the perspective of the paper. Finally, the concept 
of partial instantiation is described. 

2.1 Cloud Base Software Systems 

Cloud based software management experienced a 
rapid change and a relatively quick consolidation 
during the last couple of years. Currently its de-facto 
standard model is called the Topology and 
Orchestration Specification for Cloud Applications 
(TOSCA (OASIS, 2013)). The main concepts of 
TOSCA are depicted in Figure 1.  
 

 

Figure 1: TOSCA structural elements of a service template 
and their relations. 

The TOSCA meta-model defines both the 
structure of the service components and their 
management interfaces. A Node Type specifies the 
properties of a software component with the 
operations which are available to manage it. 
Similarly, a Relationship Type defines the semantics 
and the properties of the relationship between or 
among Node Types. A Topology Template consists 
of a set of Node Templates and Relationship 
Templates that together define the topology model of 
a cloud based service in the form of a graph. The 
nodes and edges are instances of Node Types and 
Relationship Types.  

A Node Template grants two features: 1) it 
specifies the occurrence of a Node Type as a 
component of a service, 2) it imposes usage 
constraints, for example, the number of allowed 

instances of that component which can occur there in 
run-time. A Relationship Template specifies the 
occurrence of a particular relationship between nodes 
in a Topology Template, including the direction of the 
relationship. Also, it may define further constraints 
similarly to Node Templates. Hence, Node Template 
and Relationship Template must be handled equally 
from the perspective of their modeling role in the 
Topology Template. Thus, it also means that 
designers of a specification may have to model 
similar features repeatedly for both node-related and 
relationship-related items. Moreover, by analyzing 
practical TOSCA examples, it may easily turn out that 
solution architects prefer to reify relations as nodes 
and connect them together by further “virtual” 
relations due to the lack of proper multi-level meta-
modeling support. May this reification be to be 
repeated on various abstraction levels, the topology 
templates can become seriously entangled and it may 
not be clear later if a particular node stands for itself 
or its sole purpose of reification has been some other 
relations supposed to be present by a meta-level 
below. In other words, the modeling challenge is to 
come up with a solid foundation that is able to 
explicitly tackle these ad-hoc meta-level 
promotion/demotion design decisions and thus to 
consolidate them into simple design patterns. Also, 
Node and Relationship Types must be handled 
equally, that is, the node-edge dichotomy ought to be 
tackled upfront by any serious meta-modeling 
solution. On the practical side, that robust meta-
modeling framework is to be implemented in such a 
way that it can operate on models both in design-time 
and run-time via dynamic and partial instantiation of 
modelled elements of Service Templates residing at 
any particular modeling level.  

2.2 Meta-modeling and Instantiation 

Meta-modeling systems are based on instantiation, 
that is, we create our models by instantiating meta-
models. Therefore, instantiation is the essence of any 
meta-modeling discipline. Although the precise 
definition of instantiation ought to be the keystone of 
any viable modeling technique, it is usually taken for 
granted that instantiation is a simple relation similar 
to the well-known one between classes and objects. 
The similarity looks obvious, but the two relations are 
only similar on the surface. 

Our approach is based on the common conceptual 
foundation of multi-level instantiation techniques, so 
firstly we summarize two of such state-of-the-art 
multi-level approaches in order to position our work 
correctly within this domain. 
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2.2.1 Linguistic vs Ontological Instantiation 

Linguistic and ontological instantiation were 
introduced in (Atkinson and Kühne, 2003). Linguistic 
instantiation is the relationship between model 
elements on different levels of a multi-level meta-
modeling hierarchy. Linguistic instantiation usually 
describes meta-modeling relations between types and 
objects. In contrast, ontological instantiation defines 
the semantics of modeling constructs. Therefore, for 
each modeling level, an additional ontological 
instantiation relationship is defined that associates 
model elements of that particular meta-level to each 
other, according to a certain concern of the problem 
domain. In the case of MOF, the model elements on 
M1 are linguistic instances of their meta-elements on 
M2, however, a particular M1 (or M2) model element 
can also be an ontological instance of another element 
of the same M1 (or M2) level Although the MOF 
architecture does not facilitate both of these two 
meta-modeling dimensions equally, it does provide a 
mechanism for expressing ontological relationships 
by its reliance on stereotypes and profiles. Namely, 
stereotypes and profiles defined on M2 level express 
ontological instantiation relationships that can be 
flexibly used as extra annotation(s) on M1 model 
elements. Although this approach may be utilized to 
allow an ontological unification of nodes and edges, 
no practical solutions of this kind has been published 
yet. 

2.2.2 Multi-level Instantiation 

Provided that only two modeling levels are available, 
instantiation has to be interpreted between these two 
levels only. However, in a multi-level meta-modeling 
architecture, we may be able to use instantiation 
across multiple levels. These techniques can 
distinguish between two kinds of instantiation: 
shallow instantiation means that the information is 
defined on the nth modeling level and it is used on the 
immediate instantiation (n+1)th level, while deep 
instantiation allows defining the information on the 
nth modeling level and use it on the (n+x)th (x > 0) 
modeling level (Atkinson and Kühne, 2001). 
Although multi-level modeling solutions are getting 
more and more popular, these deep instantiation 
methods are rarely utilized. For example, MOF 
defines a four layer architecture, but it supports only 
shallow instantiation. This results in rigid, 
inconsistent relations between meta-types, types and 
objects, which is one of the reasons why node-like 
and edge-like elements are kept separate due to the 
lack of enough meta-levels. 

Having multi-level meta-modeling in mind, one 
needs to safeguard that each meta-level should be 
instantiable by some means of being able to add new 
attributes and operations to the existing models. 
There are two options available: one can either bring 
the source of the information along all model levels 
(and eventually use it wherever it may be needed) or 
one can add the source of that information directly to 
the model element where it is actually used. The 
concept of potency notion and dual field notion 
(Atkinson and Kühne, 2002) (Atkinson and Kühne, 
2001) were introduced as solutions of the problem. 
Here, elements within a model may not only be 
instances of some element in the meta-model above, 
but, at the same time, they may also serve as types to 
some other elements in the meta-level below. In other 
words, one assumes the existence of an unrestricted 
meta-model building facility through clabjects which 
is controlled only by the explicit definition of a 
potency limit allowing a preset number of meta-levels 
an element can be instantiated at. The only drawback 
of this solution is that the modelled elements will be 
forced to live until the attached non-negative numbers 
have been decremented, by each instantiation, to zero. 
Hence, the potency solution is both too liberal and too 
restrictive at the same time: on one hand, it is too 
liberal because at each meta-level the full potential of 
meta-model building facilities is available, thus an 
arbitrary number of new model elements can be 
injected into the model at will and without any 
potential restriction. It is definitely good so for 
design-time modeling, however it may wreak havoc 
in dynamic run-time instantiation if it is used in an 
uncontrolled fashion. On the other hand, it is too 
restrictive in its treatment of the number of meta-
levels a model element can be located at because the 
modeler must know in advance at which levels the 
information will be needed and set its potency value 
accordingly. In other words, instead of explicitly 
encoding the required nature of semantics vis-a-vis 
the instantiation constraints within the model itself 
and thus making the model agnostic to the artificial 
division line set between design-time and run-time 
modeling, potency notion simplifies it down to an 
integer number and thus positions itself as a pure 
design-time multi-level modeling approach. 
Moreover, potency notion favors nodes against edges 
due to its bias to clabject. Nevertheless, recent 
techniques such as Dual Deep Instantiation (DDI) 
(Neumayr et al., 2014) consistently extended the 
potency notion to edges via its application to the end-
points. Unfortunately, some limitations still remain to 
be overcome: firstly, since DDI defines edges by the 
endpoints it is non-trivial to extend it by edge-owned 
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attributes, which may also have potency values 
attached or may be connected to other attributes. In 
other words, edges have not made equivalent to nodes 
yet, but on the surface they may look equivalent in 
particular cases of application domains. For example, 
in order to cover TOSCA’s concept of Relationship 
Types many more axioms will be needed than as 
published in (Neumayr et al., 2014). Secondly, DDI 
is still a clabject-based set theory solution. Hence, the 
presence of an edge at a particular meta-level is fully 
controlled by its related potency values. Therefore, 
those potency values must be carefully set and 
designed so that only those edges appear at meta-
levels that are really needed to be used there. This 
challenge may invalidate DDI’s usage in practical 
TOSCA-like modeling situations. 

3 DYNAMIC MULTI-LAYER 
ALGEBRA 

In this section, we shortly introduce our Abstract 
State Machine (ASM) (Boerger and Stark, 2003) 
based multi-level instantiation technique. An ASM 
formalism defines an abstract state machine and a 
certain set of connected functions that specify the 
transition logic between the states of that machine. In 
more detail, a state represents an attribute 
configuration, namely, a concrete set of parameter 
set-value pairs for the functions of the algebra. 

Dynamic Multi-Layer Algebra (DMLA) consists 
of three major parts: The first part defines the 
modeling structure and defines the ASM functions 
operating on this structure. The second part is the 
initial set of modeling constructs, built-in model 
elements (e.g. built-in types) that are necessary to 
make use of the modeling structure in practice. This 
second part is also referred to as the bootstrap of the 
algebra. Finally, the third part defines the 
instantiation mechanism. We have decided to 
separate the first two parts because the algebra itself 
is structurally self-contained and it can also work with 
different bootstraps. Moreover, a concrete bootstrap 
selection seeds a particular set of meta-modeling 
capability of the generic DMLA. In effect, the proper 
selection of the bootstrap elements imposes explicit 
restriction on the universality of DMLA's modeling 
capability on the lower meta-levels.  

3.1 Data Representation 

In DMLA, the model is represented as a Labeled 
Directed Graph. Each model element such as nodes 

and edges can have labels. Attributes of the model 
elements are represented by these labels. Since the 
attribute structure of the edges follows the same rules 
applied to nodes, the same labeling method is used for 
both nodes and edges. For simplicity, we use a dual 
field notation in labelling of Name/Value pairs. In the 
following, we refer to a label with the name N of the 
model item X as XN. We define the following labels: 
 XName: the name of the model element 
 XID: a globally unique ID of the model element 
 XMeta: the ID of the meta-model definition 
 XCardinality: the cardinality of the model element, it 

is used during instantiation as a constraint. It 
determines how many instances of the model 
element may exist in the instance model. 

 XValue: the value of the model element (used in 
case of attributes only as described later) 

 XAttributes: A list of attributes 
 

In the following, we use the word entity exclusively 
if we refer to an element which has the label structure 
defined above. Let us now define the algebra itself. 

Definition: The superuniverse |ि| of a state ि	of the 
Multi-Layer Algebra consists of the following 
universes: 
 UBool containing logical values {true/false} 
 UNumber containing rational numbers ሼℚሽ and a 

special symbol ∞ representing infinity 
 UString containing character sequences of finite 

length 
 UID containing all the possible entity IDs 
 UBasic containing elements from {UBool ∪ UNumber 

∪	UString ∪	UID} 
 

Additionally, all universes contain a special element, 
undef, which refers to an undefined value. The labels 
of the entities take their values from the following 
universes: 
 XName: UString 
 XID: UID 
 XMeta: UID 
 XCardinality: [UNumber , UNumber] 
 XValue: UBasic 

 XAttrib: UID[]		
The label Attrib is an indexed list of IDs, which refers 
to other entities. Now, let us have a simple example: 

RouterID = 12, RouterMeta = 123, 
RouterCardinality = [0, inf], 
RouterValue = undef, RouterAttrib =[] 
 

This definition formalizes the entity Router with its 
ID being 12 and the ID of its meta-model being 123. 
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In the sequel, we will rely on a more compact 
representation with equal semantics (NB: both tuples 
and lists share the same square bracket notation): 
 

{“Router”, 12, 123, [0, inf], undef,[]} 

3.2 Functions 

Functions are used to rule how one can change states 
in the ASM. In DMLA, we rely on shared and derived 
functions. The current attribute configuration of a 
model item is represented using shared functions. 
The values of these functions are modified either by 
the algebra itself, or by the environment of the 
algebra. Derived functions represent calculations 
which cannot change the model; they are only used to 
obtain and to restructure existing information. The 
vocabulary ∑ of DMLA is assumed to contain the 
following characteristic functions: 
 

ܰܽ݉݁ሺܦܫሻ:	൜
݊ܽ݉݁, ݂݅	∃ܺ:	 ூܺ ൌ 	ܦܫ ∧ ܺே ൌ ݊ܽ݉݁

,݂݁݀݊ݑ ݁ݏ݅ݓݎ݄݁ݐ  
 

൜	ሻ:ܦܫሺܽݐ݁ܯ ூܻ, ݂݅	∃ܺ, ܻ: ூܺ ൌ 	ܦܫ ∧ ܺெ௧ ൌ ூܻ

,݂݁݀݊ݑ ݁ݏ݅ݓݎ݄݁ݐ  
 

ቐ	ሻ:ܦܫሺ݀ݎܽܥ
ሾ݈ݓ, ݄݄݅݃ሿ, ݂݅	∃ܺ:	 ூܺ ൌ 	ܦܫ ∧																																							

									ܺௗ௧௬ ൌ ሾ݈ݓ, ݄݄݅݃ሿ
,݂݁݀݊ݑ 																																																														݁ݏ݅ݓݎ݄݁ݐ

 

 

,ܦܫሺܾ݅ݎݐݐܣ ൝	ሻ:ݔ݀ܫ
,ܾ݅ݎݐݐܽ ݂݅	∃ܺ, ݅:	 ூܺ ൌ 	ܦܫ ∧ ܺ௧௧ሾݔ݀ܫሿ ൌ

ܾ݅ݎݐݐܽ
,݂݁݀݊ݑ ݁ݏ݅ݓݎ݄݁ݐ

 

 

In these functions we suppose that the Attrib labels 
return undef when the index is greater or equal to the 
number of stored entities. 
 

൜	ሻ:ܦܫሺ݁ݑ݈ܸܽ
,݈ܽݒ ݂݅	∃ܺ:	 ூܺ ൌ 	ܦܫ ∧ ܺ௨ ൌ ݈ܽݒ

,݂݁݀݊ݑ ݁ݏ݅ݓݎ݄݁ݐ  
 

,ଵܦܫሺݏ݊݅ܽݐ݊ܥ ቐ	ଶሻ:ܦܫ
,݁ݑݎݐ ݂݅	∃ܿ, :ݔ݀݅ ܿ ൌ ,ଵܦܫሺܾ݅ݎݐݐܣ ሻݔ݀݅ ∧	

ሺܿூ ൌ ଶܦܫ ∨ ,ሺܿூݏ݊݅ܽݐ݊ܥ ଶሻሻܦܫ
false,	݁ݏ݅ݓݎ݄݁ݐ

 

 

,ଵܦܫሺ݉ݎܨ݁ݒ݅ݎ݁ܦ ൝	ଶሻ:ܦܫ
,ݔ∃				,݁ݑݎݐ ூݔ	:ݕ ൌ ଵܦܫ 	∧ :ݕ∃	 ூݕ ൌ 	ଶܦܫ
	∧ ሺݔெ௧ ൌ ,ெ௧ݔሺ݉ݎܨ݁ݒ݅ݎ݁ܦ	⋁	ݕ ሻሻݕ

,݁ݏ݈݂ܽ ݁ݏ݅ݓݎ݄݁ݐ
 

3.3 Bootstrap Mechanism 

The ASM functions define the basic structure of our 
algebra. The functions allow to query and change the 
model. However, based only on these constructs, it is 
hard to use the algebra due to the lack of basic, built-
in constructs. For example, entities are required to 
represent the basic types, otherwise one cannot use 
label Meta when it refers to a string since the label is 
supposed to take its value from UID and not from 
UString. We need to define those base constructs 
somewhere inside or outside of the core algebra. 

Obviously, there may be more than one “correct” 
solution to define this initial set of information. In 
order to focus on how to tackle the problem of node-
edge dichotomy, we will restrict the usage of basic 
types to an absolute minimum. The bootstrap has two 
main parts: basic types and principal entities. 

3.3.1 Basic Types 

The built-in types of the DMLA are the following: 
Basic, Bool, Number, String, ID. All types refer to a 
value in the corresponding universe. In the bootstrap, 
we define an entity for each of these types, for 
example we create an entity called Bool, which will 
be used to represent Boolean type expressions. Types 
Bool, Number, String and ID are inherited from Basic. 

3.3.2 Principal Entities 

Besides the basic types, we also define two principal 
entities: Attribute and Base. They act as root meta 
elements of attributes, node and edge meta-types, 
respectively. Both principal entities refer to 
themselves by meta definition. Thus, for example, the 
meta of Attribute is the Attribute entity itself. 
AttribType is used as a type constraint to validate the 
value of the attribute in the instances. The Value label 
of AttribType specifies the type to be used in the 
instance of the referred attribute. Using AttribType 
and setting its Value field is mandatory if the given 
attribute is to be instantiated, otherwise AttribType 
can be omitted. AttribType is only applied for 
attributes. The principal entities of the node-edge 
dichotomy resolution bootstrap are the following: 
 

{“Attribute”, IDAttribute, IDAttribute,   
 [0,inf], undef, 
 [ 

 {“Attributes”, IDAttributes, IDAttribute, 
     [0, inf], undef,[]} 
 ]} 

 

{“Base”, IDBase, IDBase,  
 [0, inf], undef,  
 [  

{“Attributes”, IDAttributes, IDAttribute,  
    [0, inf], undef,[]} 

{“Links”, IDLink, IDAttribute,  
    [0, inf], undef,[]} 
 ]} 
 

{“AttribType”, IDAttribType,IDAttribute, 
 [0,1],undef, 
 [ 

{“AType”, IDAType, IDAttribType, 
    [0,1],IDID,[]} 
 ]} 

 

{“Node”, IDNode, IDBase, 
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 [0, 0], undef,  
 [ 
  {“Attributes”, IDAttributes, IDAttribute, 
   [0, inf], undef,[]} 
 ]} 

 

{“Edge”, IDEdge, IDBase,  
 [0, inf], undef,  
 [ 

{“Attributes”, IDAttributes, IDAttribute,  
    [0, inf], undef,[]} 

{“Links”, IDLink, IDAttribute,  
    [2, 2], undef,[]} 
 ]} 
 

The definition of Attribute describes that an attribute 
can have zero or more attributes as children. The 
definition of Base is very similar to Attribute, but it 
also possesses links. The definition of AttribType is 
an instantiation of Attribute and it also uses 
AttribType to restrict its own type. Finally, both Edge 
and Node are defined as instances of Base, however 
Node must not have links and in the case of Edge we 
set the number of links to 2. Obviously, that number 
can have any non-negative value, so setting it to 2 has 
the purpose to represent edges with two end-points. 

3.4 Dynamic Instantiation 

Based on the structure definition of the algebra and 
the bootstrap, one can now represent models as states 
of DMLA. During the instantiation, one may create 
many different instances of the same type without 
violating the constraints set by the meta definitions. 
Most functions of the algebra are defined as shared, 
which allows manipulation of their values also from 
outside of the algebra. However, functions do not 
validate these manipulations. Instead, we distinguish 
between valid and invalid models, where validity 
checking is based on formulae. We also assume that 
whenever external actors change the state of the 
algebra, the formulae must be evaluated. This 
dynamic property of the ASM makes it possible that 
DMLA can be applied both in design- and run-time 
modeling. 

All validation formulae (except φMeta) take an 
Instance entity and a MetaType entity, and then they 
check if the Instance entity is a valid instance of the 
MetaType entity. The formula φMeta takes only one 
parameter and validates if the given entity has enough 
valid instances according to the cardinality label. In 
the definitions I refers to the Instance to be validated, 
while M refers to Meta, that is, the meta-type of I. 

3.4.1 Helper Formulae 

φIsInstantiated(C,	I):	∃m,	i:	m	=	Attrib(Meta(C),i)	∧		

		 																				߮ூ௦ௗ(I,	m)	
	

φInstCounter(C,a1,a2):	

	φIsInstantiated(C,	a1)	∧	φIsInstantiated(C,	a2)	∧			Meta(a1)	
=	Meta(a2)}	∨	{φIsInstantiated(C,	a1)	∧	

φIsInstantiated(C,	a2)	∧		Meta(Meta(a1))	=	Meta(a2)}∨	
{φIsInstantiated(C,	 a1)	∧	 φIsInstantiated(C,	 a2)	∧		
Meta(Meta(a2))	 =	 Meta(a1)}	 ∨	 {φIsInstantiated(C,	
a1)	∧	φIsInstantiated(C,	a2)	∧	Meta(a1)	=	Meta(a2)}	
	

φCardinalityCheck(C,	I):	DeriveFrom(I,	IDAttribute)	∨	

		Card(Meta(I))[0]			Count(a:	∃i:	a=Attrib(C,	i)	∧		
		φInstCounter(I,	 a))	 Card(Meta(I))	 (Atkinson and 
Kühne, 2001)	

This first formula simply checks if I is instantiated in 
container C. The second formula checks if two 
attributes in the same container C are originated from 
the same meta definition. Finally, the third formula 
checks if an attribute I violates the cardinality 
constraints in the specific container C. In the 
definition, we use the function Count for the sake of 
simplicity. This function counts the elements 
fulfilling the given selector. In this particular case, we 
count the number of attributes, which have the given 
meta M. Note that we use the formula φInstCounter to 
count both copied and instantiated elements. 

φTypecheck(T,	v):	(T=IDBool	∧	v	∈	UBool)	∨	(T=IDNumber	
∧	v	∈	UNumber)	∨	(T=IDString	∧	v	∈	UString)	∨	(T=IDID	∧	
v∉	{free(UID)})	∨	φIsValid(v,	T)	

The fourth formula checks if a specific value v 
violates the type constraint T. We apply function free 
on the universe of IDs to retrieve the set of unused 
IDs. The last part of the condition is used only if the 
type itself refers to a non-basic type. In this case, the 
value must be an instantiation of the referred type. 

φAttribCheck(I,	a):	

φIsValid(a,	Meta(a))	∨	∃j:	Attrib(Meta(I),	j)	=	a	∨		

{∃m,	k:	m=Attrib(Meta(I),	k)	∧	Value(m)=Value(a)	
∧	Name(m)	 =	Name(a)	∧	 	 	Meta(m)	 =	Meta(a)	∧		
(∄i:	Attrib(a,i)	്	Attrib(m,i))}}	

The fifth formula checks if an attribute a is a valid 
instantiation, a copy, or a clone of a meta attribute of 
the meta of the container I. If it is a clone, then the 
same entity is used in the Instance as in the MetaType. 
If it is a copy, then only the ID and Cardinality labels 
can change. 

3.4.2 Validation Formulae 

φLabelCheck(I,	M):	Meta(I)	=	M	
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φEntityIns(I,	M):	{∃c,	idx:	Attrib(I,	idx)	=	c		∧		

		 									φIsValid(c,	Meta(c))}	∨	Value(I)	്	undef	
	

φAttribSrc(I,	 M):	 ∄a,	 idx:	 Attrib(I,	 idx)	 =	 a	 ∧				
{φCardinalityCheck(I,	a)	∨	φAttribCheck(I,	M,	a))}	

φValueCheck(I,	M):	

	DeriveFrom(I,	 IDAttribute)	 ∨	 Value(I)	 =	 undef	 ∨	
	ሼDeriveFrom(I,	 IDAttribType)	∧	 φIsValid(Value(I),	
Value(M))}	∨ 		 ሼDeriveFrom(I,	 IDAttribType)	∧ ∃t,	
idx:	t	=	Attrib(M,	idx)	∧	DeriveFrom(t,	IDAttribType)	∧			
φTypecheck(t,	Value(I))}	

The first formula checks the correct usage of Meta 
label, the second checks if at least one of the attributes 
is instantiated, or has its value set. The third formula 
checks if there is an attribute violating the cardinality 
constraint or not having a valid meta definition in the 
meta of the entity. Finally, the fourth formula 
validates AttribType definitions. It returns true if the 
value is not set. 

φLink(I,	 M):	 DeriveFrom(I,	 IDBase)	 ∨	
Card(Meta(I))[0]	 =	 Count{∃j,	 i	 :	 DeriveFrom(j,	
IDLink)	∧	j	=	Attrib(I,	i)	}	

The fifth formula checks if instances of Base have the 
correct number of links. That formula ensures that 
Node instances have zero links and Edge instances 
have two links. Obviously, if also N-Edge had been 
defined as follows 

{“N-Edge”, IDN-Edge, IDBase,  
 [0, inf], undef,  
 [ 

{“Attributes”, IDAttributes, IDAttribute, 
    [0, inf], undef,[]} 

{“Links”, IDLink, IDAttribute,  
    [N, N], undef,[]} 
 ]} 
 

The fifth formula would be also able to check if N-
Edge instances really possess N links as required. 
Now, with all the formulae combined we get the 
following: 

φIsValid(I,	M):	φLabelCheck(I,	M)	∧	φAttribSrc(I,	M)	∧	

		 φEntityIns(I,	M)	∧	φAttribType(I,	M)	∧	φLink(I,	M)	

The validity of the new ASM state is checked to 
evaluate the below formula for all meta-types: 

φMeta(M):	DeriveFrom(M,	IDAttribute)		∧		
  Card(M)[0]	 Count(i: φIsValid(i, M))	 Card(M) 
(Atkinson and Kühne, 2001) 

4 EXAMPLE 

In order to showcase, by a concrete example, how to 
tackle the node-edge dichotomy in DMLA a 
simplified network management example will be 
modelled. Let us assume that we create a model with 
a generic concept of routers (RouterType), a 
particular router type (SimpleRouter) and a router 
instance (MyRouter).  
 

{“RouterType”, IDRouterType, IDNode,  
 [0, inf], undef,  
 [ 

{“IPAddr”,IDIPAddr,IDAttribute, 
    [0,inf],undef,  
    [ 
     {“IPType”,IDIPType,IDAttribType, 
      [0,inf], IDString,[]} 
    ] 
  }]} 
 

{“SimpleRouter”, IDSimpleRouter, IDRouterType,  
 [0, inf], undef,  
 [ 

{“IPAddr”,IDIPAddr,IDAttribute, 
    [2,2],undef,  
    [  
      {“IPType”,IDIPType,IDAttribType, 
       [0,inf], IDString,[]} 
    ] 
   }]} 
 

{“MyRouter”, IDMyRouter, IDSimpleRouter,  
 [0, inf], undef,  
 [ 
  {“In”, IDIn, IDIPAddress,  
   [1,1], “192.168.0.1”, []}, 
  {“Out”, IDOut, IDIPAddress,  
   [1,1], “192.168.0.2”, []} 
 ]} 
 

The RouterType concept allows router types to have 
any IP addresses, which SimpleRouter restricts to 2. 
Finally, MyRouter sets the two IP address attributes 
to their concrete values. Let us now further assume 
that there is also a type called Company in the model 
that represents entities which manage routers and may 
also log those management activities. Management is 
expressed via a relation and logging by an attribute of 
Company that contains some of these management 
relation instances. The meta entities are as follows: 
 

{“Company”, IDCompany, IDNode,  
 [0, inf], undef,  
 [ 

{“Log”,IDLog, IDAttribute, 
 [0,inf],undef,  
 [ 
   {“LogType”,IDLogType, IDAttribType,  

       [0,inf], IDManagement,[]} 
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 ] 
}]} 
 

{“Management”, IDManagement, IDEdge,   
 [0,inf], undef,  
 [ 

{“Src”, IDManagementSrc, IDLink,  
 [1,1], IDCompany,  
 [ 
  {“ESType”, IDESType, IDAttribType, 
   [0,1], IDCompany,[]} 

    ] 
   }, 

{“ Trg”, IDManagementTrg, IDLink,  
 [1,1], IDRouterType,  
 [ 
  {“ETType”, IDETType, IDAttribType, 
   [0,1], IDRouterType,[]} 

    ] 
   }]} 
 

The cardinality restrictions of Management ensure 
that the Edge instances have only one source and one 
target end-points. The types of the end-points are also 
restricted to Company and RouterType. Finally, the 
fully instantiated entities will be created by fully 
instantiating all entity attributes: 
 
{“MyManagement”, IDMyManagement, IDManagement,    
 [0,inf], undef,  
 [ 

{“Src”, IDMyManagementSrc, IDManagementSrc, 
 [1,1], IDMyCompany, []}, 
{“Trg”, IDMyManagementTrg, IDMyManagementStr, 
 [1,1], IDMyRouter, []} 

 ]} 
 

{“MyCompany”, IDMyCompany, IDCompany,  
 [0, inf], undef,  
 [ 
   {“Log1”, IDLog1, IDLog,  
    [1,1], IDMyManagement, []} 
  ]} 

The example clearly illustrates that there is no 
difference in the handling of Nodes and Edges. Both 
can have attributes, and both can be contained by 
other entities independently of them being either 
Nodes or Edges. Also, Edges can connect Nodes, or 
even Edges, defined at arbitrary meta-levels. 

5 CONCLUSION 

In this paper, we have formally described a novel 
multi-level modeling approach that consists of three 
functional building blocks: a precise ASM based 
structural algebraic representation, a generic 
bootstrap mechanism of the initial structural entities, 
and a dynamic instantiation process that is formalized 

via validation formulae. The specific bootstrap 
described in the paper was engineered to resolve the 
node-edge dichotomy within the formalism. We have 
demonstrated it by a simple modeling example. 
Knowing that ASM based approaches are easily 
implementable, our intention is now to establish a 
practical, industry-ready software framework for 
precise multi-level meta-modeling. Also, we aim to 
reformulate the TOSCA standard in DMLA so that by 
reaching these two goals a model based reference 
implementation could be had for the management of 
meta-model based Cloud service solutions. 
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