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Abstract: In systems based robotic cells, the control of some elements such as transport robot has some difficulties when
planning operations dynamically. The Job Shop scheduling Problem with Transportation times and a Single
Robot (JSPT-SR) is a generalization of the classical Job Shop scheduling Problem (JSP) where a set of jobs
additionally have to be transported between machines by a single transport robot. Hence, the JSPT-SR is
more computationally difficult than the JSP presenting two NP-hard problems simultaneously: the job shop
scheduling problem and the robot routing problem. This paper proposes a hybrid metaheuristic approach based
on clustered holonic multiagent model for the JSPT-SR. Firstly, a scheduler agent applies a Neighborhood-
based Genetic Algorithm (NGA) for a global exploration of the search space. Secondly, a set of cluster agents
uses a tabu search technique to guide the research in promising regions. Computational results are presented
using benchmark data instances from the literature of JSPT-SR. New upper bounds are found, showing the
effectiveness of the presented approach.

1 INTRODUCTION is similar to the pickup and delivery problem (Lenstra
and Kan, 1981).

Scheduling is a field of investigation which has known  For the literature of the Job Shop scheduling Prob-
a significant growth these last years. The schedulinglem with Transportation times and a Single Robot,
problems appear in all the economic areas, from com- most of the researchers have considered the machine
puter engineering to industrial production and manu- and robot scheduling as two independent problems.
facturing. The Job Shop scheduling Problem (JSP), Therefore, only few researchers have emphasized the
which is among the hardest combinatorial optimiza- importance of simultaneous scheduling of jobs and
tion problems (Sonmez and Baykasoglu, 1998), is a the single robot.

branch of the industrial production scheduling prob- To solve this problem, mathematical formulations
lems. The JSP is known as one of the most popular are used to find optimal solutions for this problem,
research topics in the literature due to its potential to but the complexity of some large instances allowed
dramatically decrease costs and increase throughputo increase the processing time for some important
(Jones and Rabelo, 1998). The Job Shop schedul-solutions. (Raman et al., 1986) proposed a mixed
ing Problem with Transportation times and a Single integer programming formulation for this problem,
Robot (JSPT-SR) is a generalization of the classical and they assumed that the robot always returns to the
JSP where a set of jobs additionally have to be trans-load/unload station after transferring a load, which re-
ported between machines by a single transport robot.duces the flexibility of the robot and influences the
Hence, the JSPT-SR is more computationally difficult overall schedule length. An integer programming
than the JSP presenting an additional difficulty caused model is formulated by (Bilge and Ulusoy, 1995) for
by a set of jobs to be transported by a single robot be-the machine and robot scheduling problems with a
tween a set of available machines. In the JSPT-SR,set of time window constraints. According to the
we have to consider two NP-hard problems simulta- authors, the resulting model is intractable in prac-
neously: the job shop scheduling problem (Lenstra tice, because of its nonlinearity and its size. (Cau-
and Kan, 1979) and the robot routing problem, which mond et al., 2009) adapted a mathematical formula-
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tion for a shop scheduling problem with one trans- by assigning another robot to a transport operation.
porter robot. This formulation differed from the (Deroussi et al., 2008) addressed the simultaneous
published works because it considered the maximum scheduling problem of machines and robots in flex-
number of jobs authorized in the system, the up- ible manufacturing systems, by proposing new solu-
stream and downstream storage capacities and thdion representation based on robots rather than ma-
robot loaded/unloaded movements. chines. Each solution is evaluated using a discrete
event approach. An efficient neighbouring system is
Moreover, heuristic and metaheuristic methods of- then implemented into three different metaheuristics:
fered new opportunity to find solutions for this prob- jterated local search, simulated annealing and their
lem in a reasonable time but they did not guaran- hybridisation. A differential evolution algorithm is
teed the optimality. (Pundit and Palekar, 1990) imple- developed by (Babu et al., 2010) for the machines
mented a Branch and Bound procedure for a simulta- and two robots scheduling problem, this algorithm is
neous scheduling of machines and resources handlingnspired by (Storn and Price, 1995) which was pro-
in a Job shop environment. But, they did not take posed for the chebyshev polynomial fitting problem.
into consideration the violation of precedence rela- (Deroussi and Norre, 2010) considered the flexible
tions between the different machines operations be- job shop scheduling problem with transport robots,
Ionging to the same jOb An iterative heuristic is used where each operation can be realized by a subset of
by (Bilge and Ulusoy, 1995) based on the decompo- machines and adding the transport movement after
sition of the master problem into two sub-problems, each machine operation. To solve this problem, an
allowing a simultaneous resolution of this scheduling iterative local search algorithm is proposed based on
problem with time windows. (Ulusoy et al., 1997) classical exchange, insertion and perturbation moves.
adapted a genetic algorithm for this scheduling prob- Then a simulated annealing schemais used for the ac-
lem in a flexible manufacturing system, and where ceptance criterion. A hybrid metaheuristic approach
they used a chromosome representation composed bys proposed by (Zhang et al., 2012) for the flexible Job
two parts, the operation task sequencing and the trans-Shop problem with transport constraints and bounded
port resource assignment. (Anwar and Nagi, 1998) processing times. This hybrid approach is composed
treated the simultaneous machine and robot SChedUl-by a genetic algorithm to solve the assignment prob-
ing problem using a forward propagation heuristic, |em of operations to machines, and then a tabu search
and where they supposed that the robot movementsprocedure is used to find new improved schedul-
between cells are considered as additional machinesing solutions. (Lacomme et al., 2013) solved the
A local search algorithm is proposed in (Hurink and machines and robots simultaneous scheduling prob-
Knust, 2002) and (Hurink and Knust, 2005) for the |em in flexible manufacturing systems, by adapting a
job shop scheduling problem with a single robot, memetic algorithm using a genetic coding containing
where they supposed that the robot movements canyo parts: a resource selection part for machine oper-
be considered as a generalization of the travelling ations and a sequencing part for transport operations.
salesman pI’Oblem with time WindOWS, and additional (Zhang etal., 2014) considered the JOb Shop schedul-
precedence constraints must be respected. The useghg problem with transport robots and bounded pro-
local search is based on a neighborhood structure i“'cessing times. A modified shifting bottleneck proce-
spired from (Mastrolilli and Gambardella, 2000) to dure is used coupled with a heuristic for assigning and
make the search process more effective. (Abdel- sequencing transportation tasks iteratively.
maguid et al., 2004) addressed the problem of simul-
taneous scheduling of machines and identical robots  Furthermore, a newly maturing area of the dis-
in flexible manufacturing systems, by developing a tributed artificial intelligence are used, providing
hybrid approach composed by a genetic algorithm some effective mechanisms for the management of
and a heuristic. The genetic algorithm is used for such dynamic operations in manufacturing environ-
the jobs scheduling problem and the robot assignmentments, such as the multi agent systems. (Braga et al.,
is made by the heuristic algorithm. A hybrid multi- 2008) treated the machines and robots scheduling
objective genetic algorithm is proposed by (Reddy problem in flexible manufacturing systems. They
and Rao, 2006) to solve this combined problem, and proposed a distributed model based on cooperative
considered three minimization objectives, which are agents, composed by five agents: an order-agent,
the makespan, mean flow time and mean tardiness.a store-agent, a set of machine-agents and a set of
(Lacomme et al., 2007) studied the job shop schedul- robot-agents, using negotiation between them in or-
ing problem with several transport robots, where they der to obtain a best scheduling solution for this prob-
used a local search algorithm based on a neighbour-lem. (Komma et al., 2011) formulated the ma-
hood generated by permutation of two operations or chines and robots scheduling problem in flexible man-
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ufacturing systems as a multi-agent system, allow- port operationgTi 1,Ti 2,..., Tini—1} to be made by a
ing to realize an Agent-Based Shop Floor Simulator robotRfrom one machine to another. In fact, for each
(ABSFSim). This simulator is composed by eight transport operatiofi; j there is two types of move-
agents classified into three categories: The first cat-ments: travel transport operation and empty transport
egory containing agents with a single instance such operation.
as the part-generator-agent, the arrival-queue-agent Firstly, travel transport operatidy ; |, ;,, must be
and departure-agent. A second category taking agentsonsidered for the robd®® when an operatio®; j is
with multiple instances and a long lifetime such as processed on machimpg; and operatiol; j.1 is pro-
the machine-agent, the robot-agent, the node-agentessed on maching ;1. These transportation times
and segment-agent. And for the third category, it are job-independentand robot-dependent. Each trans-
contained agents with multiple instances and a shortportation operation is assumed to be processed by
lifetime such as the part-agent. A multi-agent ap- only one transport robd® which can handle at most
proach is proposed by (Erol et al., 2012) for robots one job at one time. For convenientg, ; ;., is used
and machines scheduling problem within a manufac- to denote both a transportation operation and a trans-
turing system. The proposed multi-agent approach portation time.
worked under a real-time environment and generated ~ Secondly, empty transport operatit; have to
feasible schedules using negotiation/bidding mecha- be considered while the robBtmoves from machine
nisms between agents. This approach is composed byM; to machineM; without carrying a job. So, it is
four agents: a manager-agent, a robot-system-holon possible to assume thitj = 0 andt; j > t’; ;.
an order-system-holon and a machine-system-holon.  As in job shop problems, we assume that sufficient
In this paper, we propose a hybridization of two buffer space exists between machines. This assump-
metaheuristics based on clustered holonic multiagenttion is also stated as an “unlimited input/output buffer
model for the job shop scheduling problem with a capacity”. Jobs processed on one machihare as-
single transport robot. This new approach follows sumed to wait until the robot affected to this transport
two principal hierarchical steps, where a genetic al- operation is available to do it. No additional time is
gorithm is applied by a scheduler agent for a global required to transfer job from machine to the unlimited
exploration of the search space. Then, a tabu searchoutput buffer. In a similar way, each machikk has
technique is used by a set of cluster agents to guide thean unlimited input buffer to store jobs in waiting to be
research in promising regions. Numerical tests were processed by it. All datgij, ty, .1, 'y 0. @re
made to evaluate the performance of our approachassumed to be non-negative integers.
based on the instances of (Hurink and Knust, 2005), = The objective is to determine a feasi-
completed by comparisons with other approaches. ble schedule which minimizes the makespan
The rest of the paper is organized as follows. In Cmax= Max;=1n{Cj} whereC; denotes the comple-
section 2, we define the formulation of the JSPT-SR tion time of the last operatio; ,; of job J; including
with its objective function and a simple problem in- the processing times of machine operations and
stance. Then, in section 3, we detail the proposed hy-transport operations.
brid approach with its holonic multiagent levels. The

' . ; - e Operation completion time
experimental and comparison results are provided in

section 4. Finally, section 5 ends the paper with a Tij =t en U0 s (1)
conclusion.
Oij = pi,j )
e Job completion time
2 PROBLEM FORMULATION n ini

Ci:i;gOi,j-FTi,j (3

Thereisasetafjobsd={Ji,...,Jn} tobe processed

without preemption on a séfl = {Mo,M1,...,Mn} for Tij,j € (1,...,ni—1)
of m+ 1 machineslp represents the load/unload or ’
LU station from which jobs enter and leave the sys- Makespan=maxCi,C,,Cs,...,Ch)  (4)

tem). Each johJ; is formed by a sequence aof op-
erations{0; 1,0 2,...,Ojni} to be performed succes- o , ] i
sively according to the given sequence. For each oper-Moving ime,t'y, , ., = empty moving time [ j =
ationO; j, there is a maching; € {Mo,...,My} and  ransport operation processing timg,j = machine
a processing time;; associated with it. In addition, ~©Peration processing time.

each jobJ; (J1,...,Jn) is composed byi — 1 trans-

Wherei = job, j = operationty ; , ;,, = traveling
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(Glover et al., 1995) elaborated a study about the na-
ture of connections between the genetic algorithm and AR

second
level

cult optimization problems. After this pertinent study, e | (G
the combination of these two metaheuristics has be-
come more well-known in the literature, which has
motivated many researchers to try the hybridization
of these two methods for the resolution of different
complex problems in several areas.

(Ferber, 1999) defined a multiagent system as anFigure 1: Hybrid metaheuristics based clustered holonic
artificial system composed of a population of au- Multiagent model.
tonomous agents, which cooperate with each other to
reach common objectives, while simultaneously each level is composed by a Scheduler Agent which is the
agent pursues individual objectives. Furthermore, a Master/Super-agent, preparing the best promising re-
multiagent system is a computational system where gions of the search space, and the second holonic
two or more agents interact (cooperate or compete, orlevel containing a set of Cluster Agents which are the
a combination of them) to achieve some individual or Workers/Sub-agents, guiding the search to the global
collective goals. The achievement of these goals is be-optimum solution of the problem. Each holonic level
yond the individual capabilities and individual knowl-  of this model is responsible to process a step of the hy-

Search K8

[ 5 =
tabu search metaheuristics, searching to show the ex- / l N
- " . . ClusterAgent1 ClusterAgentN ' &3
isting opportunities for creating a hybrid approach - g
. UsterAgen 3
with these two standard methods to take advantage 4 : ¢ iz
; e v @

of their complementary features and to solve diffi- ., (g " o o) 3 o
| | o
‘g‘,

T
|

edge of each agent (Botti and Giret, 2008). brid metaheuristic approach and to cooperate between
(Koestler, 1967) gave the first definition of the them to attain the global solution of the problem.
term “holon” in the literature, by combining the two In fact, the choice of this new metaheuristic hy-

Greek words “hol” meaning whole and “on” meaning bridization is justified by that the standard meta-
particle or part. He said that almost everything is both heuristic methods use generally the diversification
a whole and a part at the same time. In fact, a holon techniques to generate and to improve many differ-
is recursively decomposed at a lower granularity level ent solutions distributed in the search space, or by
into a community of other holons to produce a hol- using local search techniques to generate a more im-
archy (Calabrese, 2011). Moreover, a holon may be proved set of neighbourhood solutions from an ini-
viewed as a sort of recursive agent, which is a super-tial solution. But they did not guarantee to attain
agent composed by a sub-agents set, where each sulpromising areas with good fitness converging to the
agent has its own behavior as a complementary partglobal optimum despite the repetition of many iter-
of the whole behaviour of the super-agent. Holons ations, that is why they need to be more optimized.
are agents able to show an architectural recursivenessSo, the novelty of our approach is to launch a genetic
(Giret and Botti, 2004). algorithm based on a diversification technique to only
In this work, we propose a hybrid metaheuristic explore the search space and to select the best promis-
approach based on clustering processing two generaing regions by the clustering operator. Then, apply-
steps: a first step of global exploration using a ge- ing the intensification technique of the tabu search al-
netic algorithm to find promising areas in the search lowing to relaunch the search from an elite solution
space and a clustering operator allowing to regroup of each cluster autonomously to attain more domi-
them in a set of clusters. In the second step, a tabunant solutions of the search space. The use of a mul-
search algorithm is applied to find the best individ- tiagent system gives the opportunity for distributed
ual solution for each cluster. The global process of and parallel treatments which are very complimen-
the proposed approach is implemented in two hierar- tary for the second step of the proposed approach.
chical holonic levels adopted by a recursive multia- Indeed, our combined metaheuristic approach fol-
gent model, named a hybrid Genetic Algorithm with lows the paradigm of “Master” and “Workers” which
Tabu Search based on clustered Holonic Multiagent are two recursive hierarchical levels adaptable for a
model (GATS+HM), see Figure 1. The first holonic holonic multiagent model, where the Scheduler Agent
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is the Master/Super-agent of its society and the Clus-
ter Agents are its Workers/Sub-agents.

3.1 Non Oriented Digjunctive Graph

In this work, we chose to use the disjunctive graph of
(Hurink and Knust, 2005) for the job shop problem

with transportation times and one robot. To explain
this graph, a sample problem of three jobs and five
machines with their transportation times for a single
robotR s presented in Table 1.

Table 1: One instance of job shop problem with a single
robot.

Figure 2: Non oriented disjunctive graph.

Processing times for each jdp

Jobl: M5(1) M4(4) tionsD; (all pairs of transport operations which have

Job2: MI1(1) M3(6) M2(5) to be transported by the rob& and which are not

Job3: M3(6) M1(3) linked by a directed path). To solve the scheduling

problem it is necessary to turn all undirected arcs in

Transportation times for the robBt DmUD; into directed ones, and to assign the robot
M1 M2 M3 M4 M5 R to each transport operation, where the final graph

M1 O 1 2 3 4 becomes an oriented disjunctive graph.

M2 1 0 1 2 3

M3 2 1 0 12 3.2 Scheduler Agent

M4 3 2 1 0 1

M5 4 3 2 1 0

The Scheduler Agent (SA) is responsible to process

The disjunctive grap = (ViyUV;,CUDRmUD, ), the first step of the hybrid algorithm by using a genetic
see Figure 2, is composed by : a set of vertiggs  algorithm called NGA (Neighborhood-based Genetic
containing all machine operations, a set of vertices Algorithm) to identify areas with high average fitness
\} is the set of transport operations obtained by as- in the search space during a fixed number of it_erations
signing the roboR to each transport operation, and Maxlter, see Figure 3. In fact, the goal of using the
two dummy nodes 0 and Also, this graph consists NGA is only to explore the search space, but not to
of: a set of conjunction€ representing precedence find the global solution of the problem. Then, a clus-
constraintsd; k — ty, .1 — Oiks+1, undirected dis- tering operator is mtegrated to divide the best _|dent|—
junctions for machine®, and undirected disjunc- ~fied areas by the NGA in the search space to different
tions for the transport robd;, . For each jok, ni—1  Parts where each part s a clus@r € CL the set of
transport operationg ., are introduced includ- ~ clusters, wher€L = {CL;,CL, ...,CLn}. In addi-
ing precedenc®;x — ty iy — Oike1. In fact, tion, this agent plays the role of an interface between
the robotR may be considered as an additional “ma- the user and the system (initial parameter inputs and
chine” which has to process all these transport opera-final result outputs). According to the number of clus-
tions. The arcs from machine node to transport node ters N obtained after the integration of the cluster-
are weighted with the machine operation durations. ing operator, the SA creatéé Cluster Agents (CAs)
Edges between machine operations represent disjuncPreparing the passage to the next step of the global al-
tions for machine operations which have to be pro- gorithm. After that, the SA remains in a waiting state
cessed on the same machine and cannot use it simuluntil the reception of the best solutions found by the
taneously. CAs for each clusteCL;. Finally, it finishes the pro-

As for the classical job shop, the conjunctidds ~ C€SS by displaying the final solution of the problem.
model the execution order of operations within ech o ) )
job J. In addition to the classical set of undirected 3-2.1 Individual’s Solution Presentation based
machine disjunctionBp, (all pairs of machine opera- Oriented Digunctive Graph
tions which have to be processed on the same machine
and which are not linked by a directed path), itis nec- The Job Shop scheduling Problem with Transporta-
essary to consider the set of undirected robot disjunc-tion times and a Single Robot is composed by two
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Scheddlergent during the shop process, see Figure 5.
Initial population %
Population Transport Travel Empty
size P Repeat while the maximum iteration number Maxiter is not attained operationTijj Transport Transport
/ Repeat while the population P are not all selected for robotR . 3
’—> Crossover operator —l Tlll: ( M5 — M4 ) i ( M4_) M1 )
Selection operator Mutation operator ) TZ, 1: ( M1 i} M3 ) " ( M3£) M3 ) o
Pindividuals are selected 2 2
> A T30 (M3 S5 ML)+ (M1 M3)
Maximum iteration number Maxiter is attained L 5 0
™ operaror/ = T2,2: ( M3 — M2 ) + ( M2 — M2 )
Yes
\ - Figure 5: Final path of the rob@&.
Clusteri t . .
+ume N ot g | Pt poputatin | ’
M ] i,k R fO.,u,O»,m Mm
Figure 3: First step of the global process by the Scheduler Ou Tix Oin
Agent.
' /
sub-problems: firstly the machines and robot selec- | Pix 104,00 + [ 0,0

tion, secondly the operations scheduling problem, that |
is why the chromosome representation is encoded in y Dik % 10,0y,

two parts: Machines and Robot Selection part (MRS), O 2 T b @
and Job and Transport operation Sequence part (JTS),

<________

see Figure 4. Figure 6: Exemple of oriented machine and robot disjunc-
tions.
1 2 3 4 5 6 7 8 9 10 1
Vi MRS EIE“Z”II| R || 2 ” 3 ” R ” ! |(a) To model an oriented disjunctive graph we should
011 Tyt 012 021 Tt 020 T2 023 034 Ts1 032 consider some rules. Let the example in Figure 6, if
the edge is oriented in the directi@ny — O; i it gets
1 2 3 4 5 6 7 8 9 10 11 the weightp; k, else it takegj v in the inverse case.
V2 ITS E|| 3 || 2 || 3 || 2 || 2 |{b) If an arc is added frorj k to Tj v, its gets the weight
to ..o +tlo. 0. andto. 0. +t/o. O if
O11 021 M1 012 031 T21 T30 022 032 T2 023 MikoMikl Lkt 1 K KM K L jK 1k T
Figure 4: The chromosome representation of a scheduling it 1S oriented in the other direction. Thus, basing
solution. on (Hurink and Knust, 2005) we can define a fixed

machine selectiors,, called directed Machine Dis-

The first part MRS is a vectdv; with a length junctions and a fixed transport selecti§ncalled di-
L equal to the total number of operations and where rected Transport Disjunctions, with their precedence
each index represents the selected machine or robotelationsC called operation Conjunctions. So, a
to process an operation indicated at positmnsee fully oriented disjunctive graph can be obtained us-
Figure 4 (a). For example =3 andp =7, Vi(3) ing S=CUSy US, which is called a complete se-
is the selected machinkls for the operationO; lection. In fact, the selections of the two sets of dis-
andVy(7) is the selected robd®, for the operation  junctionsSy andS with their set of conjunction€
To2. The second part JTS is a vectds having are based on the two proposed vectors MRS and JTS,
the same length o, and where each index repre- where MRS allows to present the selected machines
sents a machine operatidd ; or a transport oper-  to process job operations and the selected robot to
ation Tj j according to the predefined operations for process transport operations. JTS presents the ex-
each job, see Figure 4 (b). For example this operation ecution order of the job and transport operations in
sequence 1-2-1-1-3-2-3-2-3-2-2 can be translated to:their selected machines and robot allowing to fix the
(011,M5) — (021,M1) — (T1,1,R) = (O12,M4) — final Machine and Transport DisjunctioBgUS with
(031,M3) = (T21,R) — (T31,R) — (O22,M3) — their set of Conjunction€ representing the prece-
(032,M1) = (T22,R) — (O23,M2). In addition, for ~ dence relations between the different operations. The
each jobJ; (Jy,...,J) ni— 1 transport operations are  unionCU SyUS = Sfully describes a solution if the
generatedy 1, To1, To2 and Tz 1, and scheduled fol-  resulting oriented disjunctive gragh= (Vin,\t,S) is
lowing the presented solution in vector JTS, allowing acyclic. A feasible schedule can be constructed by
to fix the final path to be considered by the roBbt  longest path calculation which permits to obtain the
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earliest starting time of both machine and transport order of O(1), we give here how to proceed in Algo-
operations and fully defines a semi-active schedule rithm 1:

with the Cmax given by the length of the longest path
from node 0 to *, see Figure 7. Algorithm 1: How to calculate the dissimilarity distance
between two solutions.

1: procedure

2: Dist + 0,k <« 1

3: for k from 1 to Ldo

4: if Chrom10T S (k)) # Chrom20T S(K))

then

5 Dist < Dist+ 1
6 end if

7: end for

8 return Dist

9: end procedure

Noting that Distmaxis the maximal dissimilar-
ity distance and it is calculated by Equation (6), rep-

Figure 7: Oriented disjunctive graph. resenting 100% of difference between two chromo-
somes. o
. . . n Lni
Nptlng t.hat tk_le chromos_ome fltness_ is calculated Distmax— 1 ©6)
by Fitnesgi) which is the fitness function of each G £

chromosomd and Cmaxi) is its makespan value,
wherei € {1,...,P} andPis the total population size, 3.2.3 Selection Operator
see Equation (5).
The selection operator is used to select the best par-

Fitnesgi) = i (5) ent individuals to prepare them to the crossover step.
Cmaxi) This operator is based on the fitness function al-
] . S lowing to analyze the quality of each selected solu-
3.2.2 Population Initialization tion. But progressively the fitness values will be sim-

ilar for the most individuals. That is why, we in-
The initial population is generated randomly follow- tegrate the neighborhood parameter, where we pro-
ing a uniform law and based on a neighborhood pa- pose a new combined parent selection operator named
rameter to make the individual solutions more diver- Fitness-Neighborhood Selection Operator (FNSO) al-
sified and distributed in the search space. In fact, eachlowing to add the dissimilarity distance parameter
new solution should have a predefined distance with to the fitness function to select the best parents for
all the other solutions to be considered as a new mem-the crossover step. The FNSO chooses in each it-
ber of the initial solution. The used method to deter- eration two parent individuals until engaging all the
minate the neighborhood parameter is inspired from population to create the next generation. The first
(Bozejko et al., 2010), which is based on the permuta- parent takes successively in each case a solution
tion level of operations to obtain the distance between wherei € {1,...,P} andP is the total population size.
two solutions. In fact, the dissimilarity distance is cal- The second parent obtains its solutiprrandomly
culated by verifying the difference between two chro- by the roulette wheel selection method based on the
mosomes in terms of the execution order of all the two Fitness and Neighborhood parameters relative to
shop operation®; j andT; j in the Job and Transport the selected first parent, whejec {1,...,P}\ {i}
operation Sequendé (JTS). So, if there is a differ-  in the P population and wher¢ # i. In fact, to use
ence in the vectov,, the distance is incremented by 1  this random method, we should calculate the Fithess-
because it is in the order of O(1). LEéhrom (JTS) Neighborhood totalF N for the population, see Equa-
andChrompy(JT S$) two chromosomes of two differ-  tion (7), the selection probabilitgp, for each indi-
ent scheduling solutiong, is the total number of op-  vidual I, see Equation (8), and the cumulative prob-
erations of all jobs anist is the dissimilarity dis-  ability cp,, see Equation (9). After that, a random
tance. The distance is calculated by verifying the ex- numberr will be generated from the uniform range
ecution order difference of the Job and Transport op- [0,1]. If r < cp; then the second parent takes the
eration Sequence vectai$ § andJT S which is in first individual 1, else it gets théd" individual I €
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{l2,...,Ip} \ {li} and wherecp,_; <r < cp,. For
Equations (7)(8) and(9), k= {1,2,...,P}\ {i}.

e The Fitness-Neighborhood total for the popula-
tion:

FN = g [1/(Cmaxk] x Neighborhoodi][k])]
K=1
(7)

e The selection probabilitgp, for each individual

Iy
1/(Cmaxk] x Neighborhoodi][k])
FN (8)

e The cumulative probabilitgp, for each individ-
ually:

S =

k

9)
3.2.4 Crossover Operator

The crossover operator has an important role in the
global process, allowing to combine in each case the
chromosomes of two parents in order to obtain new
individuals and to attain new better parts in the search
space. In this work, this operator is applied only for
the parent chromosome veciér (JTS).

JTS Crossover. An improved precedence preserv-
ing order-based on crossover (iPOX), inspired from
(Lee et al., 1998), is adapted for the parent opera-
tion vector JTS. This iPOX operator is applied fol-
lowing four steps, a first step is selecting two par-
ent operation vectorsITS andJT $) and generat-
ing randomly two job sub-set¥s;/Js from all jobs.

A second step is allowing to copy any element in
JTS/ITS that belong tals/Js into child individ-
ualJTY/ITS and retain them in the same position.
Then the third step deletes the elements that are al-
ready in the sub-séis/Js from JT S/IT S. Finally,

fill orderly the empty positions id T §/JT S, with the
reminder elements of TS/JTS in the fourth step,
see the example in the Figure 8.

e e e

Parent1
vector

Child 1
vector

Parent 2
vector

HE

Figure 8: JTS crossover exemple.
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3.25 Mutation Operator

The mutation operator is integrated to promote the
children generation diversity. In fact, this operator
is applied on the chromosomes of the new generated
children by the JTS crossover operator.

JTSMutation. This operator selects randomly two
indexesndex andindex from the vector JTS. Next,
it changes the position of the job number in theex

to the seconihdex and inversely, see Figure 9.

i=Alea(1,length(ITS)), j = Alea(1,length(JTS)) and i!=j
1 2 i=3 4

7 8 9 10 11
HEERE d BB e

011 021 Ti1 O12 031 T21 T31 022 032 T22 023

s
vector

1 2 i=3 4 7 8 9 10 11
New JTS
wor (2 ]2 2] 2 2 ] e |2

011 021 T2a T2 031 012 T31 022 032 T22 023

Figure 9: JTS mutation exemple.

3.2.6 Replacement Operator

The replacement operator has an important role to
prepare the remaining surviving population to be con-
sidered for the next iterations. This operator replaces
in each case a parent by one of its children which has
the best fitness in its current family.

Applying the clustering

The GA final population before
applying the clustering operator

The GA final population after
applying the clustering operator

Figure 10: The final population transformation by applying
the clustering operator.

3.2.7 Clustering Operator

By finishing the maximum iteration numbdfax-
Iter of the genetic algorithm, the Scheduler Agent
applies a clustering operator using the hierarchical
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clustering algorithm of (Johnson, 1967) to divide
the final population intd\N Clusters, see Figure 10,
to be treated by the Cluster Agents in the second ,
step of the global process. The clustering operator  _____~ &I S° SN
is based on the neighbourhood parameter which

N

. ) o g : . = %,’ Cluster Agent 1 Cluster Agent2 - - - - - Cluster Agent N \:
is the dissimilarity distance between individuals. b O NeweliteE'ofcA, & NeweliteEofcar | & '

. . . S - - g |
The _clusterlr!g _operator starts by assigning each 2 1 Hewelital da i 7 :
IndIVIdual Indlv(l) to a CIUSterCLI’ SO If we hanD %:\ | Move and insert() | | Move and insert() | | Move and insert() E

individuals, we have nowP clusters containing just
one individual in each of them. For each case, we
fixe an individualndiv(i) and we verify successively
for each next individualndiv(j) from the remaining
population (where and j € {1,...,P},i # j) if the
dissimilarity distanceDist between Indiv(i) and —

Indiv(j) is less than or equal to a fixed threshold @ Lo recobl suionfor

Dist fix (representing a percentage of difference X% Figure 12: Second step of the global process by the Cluster
relatively to Distmax see Equation (10)) and where Agents.

Cluster(Indiv(i)) # Cluster(Indiv(j)). If it is the

case, MergeCluster(Indiv(i)),Cluster(Indiv(j))), clusterCL;, see Figure 11. The used Tabu Search al-
else continue the search for new combination with gorithm is based on an intensification technique al-
the remaining individuals. The stopping condition is 0wing to start the research from an elite solution in
by browsing all the population individuals, where we @ clusteiCL; (a promising part in the search space) in

Scheduler Agent

obtained at the end Clusters. order to collect new scheduling sequence minimizing
o . the makespan. L& the elite solution of a clustéL;,
Dist fix = Distmaxx X% (10)  E’ e N(E) is a neighbor of the elite solutidh, GL; is
the Global List of eaclCA to receive new found elite
& Cluster Agent CAi of a cluster CLi solutions by the remaining CAs, ea€h; plays the
O lite solution Ei of cluster CLi role of the tabu list with a dynamic length and Cmax is

the makespan of the obtained solution. So, the search
process of this local search starts from an elite solu-
tion E using the move and insert method of (Mas-
trolilli and Gambardella, 2000), where each Cluster
AgentCA changes the execution order of an opera-
tion (O, j if machine operation ofF; j if transport oper-
ation) from an index to another index in the vector
JTS, searching to generate new scheduling combina-
tion E’ € N(E). After that, verifying if the makespan
value of this new generated soluti@maxE’) dom-

Algorithm 2: The local search process.
1: procedure
2: E «+ Elite(CL;)
3: while N(E) # 0 do

Figure 11: Distribution of the Cluster Agents in the diffete
clusters of the search space.

3.3 Cluster Agents 4: E’ «+ Move-and-inser) | E' € N(E) |
E’ ¢ CL

Each Cluster AgentA is responsible to apply suc- 5. # i} CmaxE’) < Cmax€) andE’ ¢ GL

cessively to each clustéil; a local search technique then

which is the Tabu Search algorithm to guide the re- 4. E < E/

search in promising regions of the search space and 7 CL « E

to improve the quality of the final population of the g. Send-to-allE’, CA)

genetic algorithm. In fact, this local search is exe- o. end if

cuted simultaneously by the set of the CAs agents, 1¢- end while
where each CA starts the research from an elite solu-11- return E
tion of its cluster searching to attain new more dom- 12: end procedure
inant individual solutions separately in its assigned
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inatesCmaxE) (CmaxE’) < CmaxE)), and if it is of one of the chosen algorithms f@omparisons.
the caseCA saveskE' in its tabu list (which isCL;)
and sends it to all the other CAs agents to be placed Gap= [(Mko—Mkc)/Mkc] x 100%  (11)
in their Global ListsGLSE’,CA;), to ensure that it ) ]
will not be used again by them as a search point. Else4.2 Experimental Comparisons
continues the neighborhood search from the current
solutionE. The stopping condition is by attaining the To show the efficiency of our GATS+HM approach,
maximum allowed number of neighbors for a solution we compare its obtained results from the (Hurink
E without improvement, see Figure 12. We give here and Knust, 2005) benchmark instances with other al-
how to proceed in Algorithm 2 : gorithms from the literature of the JSPT-SR, which
By finishing this local search step, the CAs agents have obtained the best upper bounds for this prob-
terminate the process by sending their last best solu-lem. The chosen algorithms are : the one-stage ap-
tions to the SA agent, which considers the best one of proach UByne) of (Hurink and Knust, 2005) (with
them as the global solution for the JSPT-SR. their known lower bound LB) which obtained the first
results in the literature for their proposed instances,
the genetic algorithm-tabu search procedure (GATS)
4 EXPERIMENTAL RESULTS of (Zhang et al., 2012) and the hybrid memetic algo-
rithm (BFS) of (Lacomme et al., 2013) which are two
recent hybrid metaheuristic approaches.
From Table 2, the comparison results show that

o 4 the GATS+HM obtains twelve out of fifteen best re-
The proposed GATS+HM is implemented in java lan- gyits for the (Hurink and Knust, 2005) instances,

guage on a2.10 GHz Intel Core 2 Duo processor and 3,y here we attain ten new upper bounds and two sim-
Gb of RAM memory, where we use the Integrated De- jjar results. Indeed, our algorithm outperforms the
velopment Environment (IDEjclipseto code the al- g, . in eleven out of fifteen instances with a max-

gorlthm and the multiagent pIatf_ordade(BeIIlfem— imum gap of -7,80% for the PO2-T5-t2 instance, and
ine et al., 1999) to create the different agents of our it gets slightly worse result for three instances with a
holonic model. To evaluate its efficiency, numeri- 1 5vimum gap of 1,21% for the P02-D3-d1 instance.
cal tests are made based on the benchmark instancegyoreover, our GATS+HM outperforms the BFS in

of (Hurink and Knust, 2005) from the literature of yelve out of fifteen instances with a maximum gap
the JSPT-SR, which consists of two sets P2(®)  of -4,13% for the P02-T2-t1 instance, and it gets
and P2(10< 10) inspired from (Muth and Thompson,  gne had result for the PO1-D2-d1 instance with a gap
1963). In both instances the number of operations per ¢ o 689%. For the comparison with the GATS, the
jobis equal to the number of machines and each job is G ATS+HM obtains fourteen out of fifteen best results
processed on each machine exactly once with a fixedyyith a maximum gap of -30,52% for the P02-D2-d1
processing time. This shop problem considers a sin-jnstance.
gle moving robot for all transport operations, where By analyzing the computational time in few min-
various test instances were obtained by adding trans-;1as ‘and the comparison results of our approach in
portation and empty moving times with differentchar- yerms of makespan, we can distinguish the efficiency
acteristics. L of the new proposed GATS+HM relatively to the lit-
Due to the non-deterministic nature of the pro- gratyre of the JSPT-SR. This efficiency is explained
posed approach, we run it ten independent times for ,, the flexible selection of the promising parts of the
each case of the (Hurink and Knust, 2005) benchmark search space by the clustering operator after the ge-
instances in order to obtain significant results. The [ atic algorithm process and by applying the intensi-
used parameter settings for our algorithm are adjustedsicagion technique of the tabu search allowing to start

experimentally and presented as follow: the crossover o 4 set of elite solutions to attain new more domi-
probability = 1.0, the mutation probability = 0.5, the a1t solutions.

maximum number of iterations = 1000 and the popu-

lation size = 200. The computational results are pre-

sented by three metrics in Table 2, such as the best

makespan, the CPU time of our GATS+HM in min- 5 CONCLUSION

utes and the gap between our approach and the best

results in the literature of the JSPT-SR, which is cal- In this paper, we present a new metaheuristic hy-
culated by Equation (11). Thdko is the makespan bridization approach based on clustered holonic
obtained byOur approach anilkc is the makespan  multiagent model, called GATS+HM, for the job

4.1 Experimental Setup
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Table 2: Results of (Hurink and Knust, 2005) data instances.

CPU
Instance LB Gapg UBone Gapyp,,,BFS Gaprs GATS Gapsars GATS+HM  Time
PO1.D1-d1 82 2,44 87 -3,45 87 -3,45 96 -12,51 84 0,30
PO1.D1-t1 77 2,60 81 -2,47 81 -2,47 83 -4,82 79 0,27

P0O1.D2-d1 147 1,36 148 0,68 148 0,68 155 -3,87 149 0,29
P01.D3-d1 213 0,00 217 -1,84 213 0,00 220 -3,18 213 0,28
PO1.T2-t1 71 1,41 74 -2,70 74 -2,70 79 -8,8¢€ 72 0,26
P0O1.T3-t0 92 0,00 92 0,00 92 0,00 92 0,00 92 0,19
P02.D1-d1 880 10,57 1044 -6,80 1012 -3,85 1339 -27. 973 6,15
P02.D1-t0 880 12,50 1042 -499 1017 -2,65 1352 -26,: 990 4,26
P02.D1-t1 880 11,36 1016 -3,54 983 -0,31 1337 -26,i 980 4,56

P02.D2-d1 892 12,56 1070 -6,17 1045 -3,92 1445 -30,% 1004 8,53
P02.D3-d1 906 19,54 1070 1,21 1100 -1,55 1516 -28,56 1083 11,45
P02.D5-t2 1167 13,71 1325 0,15 1361 -2,50 1689 -21,43 1327 13,15
pP02.T1-t1 874 8,35 1006 -586 978 -3,17 1322 -28,c 947 7,14
pP02.T2-t1 880 8,18 1015 -6,21 993 -4,13 1279 -25 952 7,31
P02.T5-t2 898 13,14 1102 -7,80 1022 -0,59 1339 -24,0 1016 9,25
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