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Abstract: In systems based robotic cells, the control of some elements such as transport robot has some difficulties when
planning operations dynamically. The Job Shop scheduling Problem with Transportation times and a Single
Robot (JSPT-SR) is a generalization of the classical Job Shop scheduling Problem (JSP) where a set of jobs
additionally have to be transported between machines by a single transport robot. Hence, the JSPT-SR is
more computationally difficult than the JSP presenting two NP-hard problems simultaneously: the job shop
scheduling problem and the robot routing problem. This paper proposes a hybrid metaheuristic approach based
on clustered holonic multiagent model for the JSPT-SR. Firstly, a scheduler agent applies a Neighborhood-
based Genetic Algorithm (NGA) for a global exploration of the search space. Secondly, a set of cluster agents
uses a tabu search technique to guide the research in promising regions. Computational results are presented
using benchmark data instances from the literature of JSPT-SR. New upper bounds are found, showing the
effectiveness of the presented approach.

1 INTRODUCTION

Scheduling is a field of investigation which has known
a significant growth these last years. The scheduling
problems appear in all the economic areas, from com-
puter engineering to industrial production and manu-
facturing. The Job Shop scheduling Problem (JSP),
which is among the hardest combinatorial optimiza-
tion problems (Sonmez and Baykasoglu, 1998), is a
branch of the industrial production scheduling prob-
lems. The JSP is known as one of the most popular
research topics in the literature due to its potential to
dramatically decrease costs and increase throughput
(Jones and Rabelo, 1998). The Job Shop schedul-
ing Problem with Transportation times and a Single
Robot (JSPT-SR) is a generalization of the classical
JSP where a set of jobs additionally have to be trans-
ported between machines by a single transport robot.
Hence, the JSPT-SR is more computationally difficult
than the JSP presenting an additional difficulty caused
by a set of jobs to be transported by a single robot be-
tween a set of available machines. In the JSPT-SR,
we have to consider two NP-hard problems simulta-
neously: the job shop scheduling problem (Lenstra
and Kan, 1979) and the robot routing problem, which

is similar to the pickup and delivery problem (Lenstra
and Kan, 1981).

For the literature of the Job Shop scheduling Prob-
lem with Transportation times and a Single Robot,
most of the researchers have considered the machine
and robot scheduling as two independent problems.
Therefore, only few researchers have emphasized the
importance of simultaneous scheduling of jobs and
the single robot.

To solve this problem, mathematical formulations
are used to find optimal solutions for this problem,
but the complexity of some large instances allowed
to increase the processing time for some important
solutions. (Raman et al., 1986) proposed a mixed
integer programming formulation for this problem,
and they assumed that the robot always returns to the
load/unload station after transferring a load, which re-
duces the flexibility of the robot and influences the
overall schedule length. An integer programming
model is formulated by (Bilge and Ulusoy, 1995) for
the machine and robot scheduling problems with a
set of time window constraints. According to the
authors, the resulting model is intractable in prac-
tice, because of its nonlinearity and its size. (Cau-
mond et al., 2009) adapted a mathematical formula-
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tion for a shop scheduling problem with one trans-
porter robot. This formulation differed from the
published works because it considered the maximum
number of jobs authorized in the system, the up-
stream and downstream storage capacities and the
robot loaded/unloaded movements.

Moreover, heuristic and metaheuristic methods of-
fered new opportunity to find solutions for this prob-
lem in a reasonable time but they did not guaran-
teed the optimality. (Pundit and Palekar, 1990) imple-
mented a Branch and Bound procedure for a simulta-
neous scheduling of machines and resources handling
in a Job shop environment. But, they did not take
into consideration the violation of precedence rela-
tions between the different machines operations be-
longing to the same job. An iterative heuristic is used
by (Bilge and Ulusoy, 1995) based on the decompo-
sition of the master problem into two sub-problems,
allowing a simultaneous resolution of this scheduling
problem with time windows. (Ulusoy et al., 1997)
adapted a genetic algorithm for this scheduling prob-
lem in a flexible manufacturing system, and where
they used a chromosome representation composed by
two parts, the operation task sequencing and the trans-
port resource assignment. (Anwar and Nagi, 1998)
treated the simultaneous machine and robot schedul-
ing problem using a forward propagation heuristic,
and where they supposed that the robot movements
between cells are considered as additional machines.
A local search algorithm is proposed in (Hurink and
Knust, 2002) and (Hurink and Knust, 2005) for the
job shop scheduling problem with a single robot,
where they supposed that the robot movements can
be considered as a generalization of the travelling
salesman problem with time windows, and additional
precedence constraints must be respected. The used
local search is based on a neighborhood structure in-
spired from (Mastrolilli and Gambardella, 2000) to
make the search process more effective. (Abdel-
maguid et al., 2004) addressed the problem of simul-
taneous scheduling of machines and identical robots
in flexible manufacturing systems, by developing a
hybrid approach composed by a genetic algorithm
and a heuristic. The genetic algorithm is used for
the jobs scheduling problem and the robot assignment
is made by the heuristic algorithm. A hybrid multi-
objective genetic algorithm is proposed by (Reddy
and Rao, 2006) to solve this combined problem, and
considered three minimization objectives, which are
the makespan, mean flow time and mean tardiness.
(Lacomme et al., 2007) studied the job shop schedul-
ing problem with several transport robots, where they
used a local search algorithm based on a neighbour-
hood generated by permutation of two operations or

by assigning another robot to a transport operation.
(Deroussi et al., 2008) addressed the simultaneous
scheduling problem of machines and robots in flex-
ible manufacturing systems, by proposing new solu-
tion representation based on robots rather than ma-
chines. Each solution is evaluated using a discrete
event approach. An efficient neighbouring system is
then implemented into three different metaheuristics:
iterated local search, simulated annealing and their
hybridisation. A differential evolution algorithm is
developed by (Babu et al., 2010) for the machines
and two robots scheduling problem, this algorithm is
inspired by (Storn and Price, 1995) which was pro-
posed for the chebyshev polynomial fitting problem.
(Deroussi and Norre, 2010) considered the flexible
Job shop scheduling problem with transport robots,
where each operation can be realized by a subset of
machines and adding the transport movement after
each machine operation. To solve this problem, an
iterative local search algorithm is proposed based on
classical exchange, insertion and perturbation moves.
Then a simulated annealing schema is used for the ac-
ceptance criterion. A hybrid metaheuristic approach
is proposed by (Zhang et al., 2012) for the flexible Job
Shop problem with transport constraints and bounded
processing times. This hybrid approach is composed
by a genetic algorithm to solve the assignment prob-
lem of operations to machines, and then a tabu search
procedure is used to find new improved schedul-
ing solutions. (Lacomme et al., 2013) solved the
machines and robots simultaneous scheduling prob-
lem in flexible manufacturing systems, by adapting a
memetic algorithm using a genetic coding containing
two parts: a resource selection part for machine oper-
ations and a sequencing part for transport operations.
(Zhang et al., 2014) considered the job shop schedul-
ing problem with transport robots and bounded pro-
cessing times. A modified shifting bottleneck proce-
dure is used coupled with a heuristic for assigning and
sequencing transportation tasks iteratively.

Furthermore, a newly maturing area of the dis-
tributed artificial intelligence are used, providing
some effective mechanisms for the management of
such dynamic operations in manufacturing environ-
ments, such as the multi agent systems. (Braga et al.,
2008) treated the machines and robots scheduling
problem in flexible manufacturing systems. They
proposed a distributed model based on cooperative
agents, composed by five agents: an order-agent,
a store-agent, a set of machine-agents and a set of
robot-agents, using negotiation between them in or-
der to obtain a best scheduling solution for this prob-
lem. (Komma et al., 2011) formulated the ma-
chines and robots scheduling problem in flexible man-
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ufacturing systems as a multi-agent system, allow-
ing to realize an Agent-Based Shop Floor Simulator
(ABSFSim). This simulator is composed by eight
agents classified into three categories: The first cat-
egory containing agents with a single instance such
as the part-generator-agent, the arrival-queue-agent
and departure-agent. A second category taking agents
with multiple instances and a long lifetime such as
the machine-agent, the robot-agent, the node-agent
and segment-agent. And for the third category, it
contained agents with multiple instances and a short
lifetime such as the part-agent. A multi-agent ap-
proach is proposed by (Erol et al., 2012) for robots
and machines scheduling problem within a manufac-
turing system. The proposed multi-agent approach
worked under a real-time environment and generated
feasible schedules using negotiation/bidding mecha-
nisms between agents. This approach is composed by
four agents: a manager-agent, a robot-system-holon,
an order-system-holon and a machine-system-holon.

In this paper, we propose a hybridization of two
metaheuristics based on clustered holonic multiagent
model for the job shop scheduling problem with a
single transport robot. This new approach follows
two principal hierarchical steps, where a genetic al-
gorithm is applied by a scheduler agent for a global
exploration of the search space. Then, a tabu search
technique is used by a set of cluster agents to guide the
research in promising regions. Numerical tests were
made to evaluate the performance of our approach
based on the instances of (Hurink and Knust, 2005),
completed by comparisons with other approaches.

The rest of the paper is organized as follows. In
section 2, we define the formulation of the JSPT-SR
with its objective function and a simple problem in-
stance. Then, in section 3, we detail the proposed hy-
brid approach with its holonic multiagent levels. The
experimental and comparison results are provided in
section 4. Finally, section 5 ends the paper with a
conclusion.

2 PROBLEM FORMULATION

There is a set ofn jobsJ= {J1, . . . ,Jn} to be processed
without preemption on a setM = {M0,M1, . . . ,Mm}
of m+1 machines (M0 represents the load/unload or
LU station from which jobs enter and leave the sys-
tem). Each jobJi is formed by a sequence ofni op-
erations{Oi,1,Oi,2, . . . ,Oi,ni} to be performed succes-
sively according to the given sequence. For each oper-
ationOi, j , there is a machineµi j ∈ {M0, . . . ,Mm} and
a processing timepi j associated with it. In addition,
each jobJi (J1, . . . ,Jn) is composed byni− 1 trans-

port operations{Ti,1,Ti,2, . . . ,Ti,ni−1} to be made by a
robotR from one machine to another. In fact, for each
transport operationTi, j there is two types of move-
ments: travel transport operation and empty transport
operation.

Firstly, travel transport operationtµi, j ,µi, j+1 must be
considered for the robotR when an operationOi, j is
processed on machineµi, j and operationOi, j+1 is pro-
cessed on machineµi, j+1. These transportation times
are job-independent and robot-dependent. Each trans-
portation operation is assumed to be processed by
only one transport robotR which can handle at most
one job at one time. For convenience,tµi, j ,µi, j+1 is used
to denote both a transportation operation and a trans-
portation time.

Secondly, empty transport operationt ′ i, j have to
be considered while the robotR moves from machine
Mi to machineM j without carrying a job. So, it is
possible to assume thatt ′i,i = 0 andti, j ≥ t ′ i, j .

As in job shop problems, we assume that sufficient
buffer space exists between machines. This assump-
tion is also stated as an “unlimited input/output buffer
capacity”. Jobs processed on one machineMi are as-
sumed to wait until the robot affected to this transport
operation is available to do it. No additional time is
required to transfer job from machine to the unlimited
output buffer. In a similar way, each machineMi has
an unlimited input buffer to store jobs in waiting to be
processed by it. All datapi j , tµi, j ,µi, j+1, t ′µi, j ,µi, j+1 are
assumed to be non-negative integers.

The objective is to determine a feasi-
ble schedule which minimizes the makespan
Cmax= Maxj=1,n{Cj} whereCj denotes the comple-
tion time of the last operationOi,ni of job Ji including
the processing times of machine operations and
transport operations.

• Operation completion time

Ti, j = tµi, j ,µi, j+1 + t ′µi, j ,µi, j+1 (1)

Oi, j = pi, j (2)

• Job completion time

Ci =
n

∑
i=1

i,ni

∑
i,1

Oi, j +Ti, j (3)

for Ti, j , j ∈ (1, . . . ,ni−1)

Makespan= max(C1,C2,C3, . . . ,Cn) (4)

Wherei = job, j = operation,tµi, j ,µi, j+1 = traveling
moving time,t ′µi, j ,µi, j+1 = empty moving time,Ti, j =
transport operation processing time,pi, j = machine
operation processing time.
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3 HYBRID METAHEURISTICS
BASED CLUSTERED HOLONIC
MULTIAGENT MODEL

(Glover et al., 1995) elaborated a study about the na-
ture of connections between the genetic algorithm and
tabu search metaheuristics, searching to show the ex-
isting opportunities for creating a hybrid approach
with these two standard methods to take advantage
of their complementary features and to solve diffi-
cult optimization problems. After this pertinent study,
the combination of these two metaheuristics has be-
come more well-known in the literature, which has
motivated many researchers to try the hybridization
of these two methods for the resolution of different
complex problems in several areas.

(Ferber, 1999) defined a multiagent system as an
artificial system composed of a population of au-
tonomous agents, which cooperate with each other to
reach common objectives, while simultaneously each
agent pursues individual objectives. Furthermore, a
multiagent system is a computational system where
two or more agents interact (cooperate or compete, or
a combination of them) to achieve some individual or
collective goals. The achievement of these goals is be-
yond the individual capabilities and individual knowl-
edge of each agent (Botti and Giret, 2008).

(Koestler, 1967) gave the first definition of the
term “holon” in the literature, by combining the two
Greek words “hol” meaning whole and “on” meaning
particle or part. He said that almost everything is both
a whole and a part at the same time. In fact, a holon
is recursively decomposed at a lower granularity level
into a community of other holons to produce a hol-
archy (Calabrese, 2011). Moreover, a holon may be
viewed as a sort of recursive agent, which is a super-
agent composed by a sub-agents set, where each sub-
agent has its own behavior as a complementary part
of the whole behaviour of the super-agent. Holons
are agents able to show an architectural recursiveness
(Giret and Botti, 2004).

In this work, we propose a hybrid metaheuristic
approach based on clustering processing two general
steps: a first step of global exploration using a ge-
netic algorithm to find promising areas in the search
space and a clustering operator allowing to regroup
them in a set of clusters. In the second step, a tabu
search algorithm is applied to find the best individ-
ual solution for each cluster. The global process of
the proposed approach is implemented in two hierar-
chical holonic levels adopted by a recursive multia-
gent model, named a hybrid Genetic Algorithm with
Tabu Search based on clustered Holonic Multiagent
model (GATS+HM), see Figure 1. The first holonic

Figure 1: Hybrid metaheuristics based clustered holonic
multiagent model.

level is composed by a Scheduler Agent which is the
Master/Super-agent, preparing the best promising re-
gions of the search space, and the second holonic
level containing a set of Cluster Agents which are the
Workers/Sub-agents, guiding the search to the global
optimum solution of the problem. Each holonic level
of this model is responsible to process a step of the hy-
brid metaheuristic approach and to cooperate between
them to attain the global solution of the problem.

In fact, the choice of this new metaheuristic hy-
bridization is justified by that the standard meta-
heuristic methods use generally the diversification
techniques to generate and to improve many differ-
ent solutions distributed in the search space, or by
using local search techniques to generate a more im-
proved set of neighbourhood solutions from an ini-
tial solution. But they did not guarantee to attain
promising areas with good fitness converging to the
global optimum despite the repetition of many iter-
ations, that is why they need to be more optimized.
So, the novelty of our approach is to launch a genetic
algorithm based on a diversification technique to only
explore the search space and to select the best promis-
ing regions by the clustering operator. Then, apply-
ing the intensification technique of the tabu search al-
lowing to relaunch the search from an elite solution
of each cluster autonomously to attain more domi-
nant solutions of the search space. The use of a mul-
tiagent system gives the opportunity for distributed
and parallel treatments which are very complimen-
tary for the second step of the proposed approach.
Indeed, our combined metaheuristic approach fol-
lows the paradigm of “Master” and “Workers” which
are two recursive hierarchical levels adaptable for a
holonic multiagent model, where the Scheduler Agent
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is the Master/Super-agent of its society and the Clus-
ter Agents are its Workers/Sub-agents.

3.1 Non Oriented Disjunctive Graph

In this work, we chose to use the disjunctive graph of
(Hurink and Knust, 2005) for the job shop problem
with transportation times and one robot. To explain
this graph, a sample problem of three jobs and five
machines with their transportation times for a single
robotR is presented in Table 1.

Table 1: One instance of job shop problem with a single
robot.

Processing times for each jobJi

Job1 : M5(1) M4(4)
Job2 : M1(1) M3(6) M2(5)
Job3 : M3(6) M1(3)

Transportation times for the robotR
M1 M2 M3 M4 M5

M1 0 1 2 3 4
M2 1 0 1 2 3
M3 2 1 0 1 2
M4 3 2 1 0 1
M5 4 3 2 1 0

The disjunctive graphG= (Vm∪Vt ,C∪Dm∪Dr),
see Figure 2, is composed by : a set of verticesVm
containing all machine operations, a set of vertices
Vt is the set of transport operations obtained by as-
signing the robotR to each transport operation, and
two dummy nodes 0 and∗. Also, this graph consists
of: a set of conjunctionsC representing precedence
constraintsOi,k→ tµi,k,µi,k+1→Oi,k+1, undirected dis-
junctions for machinesDm, and undirected disjunc-
tions for the transport robotDr . For each jobJi , ni−1
transport operationstµi,k,µi,k+1 are introduced includ-
ing precedenceOi,k → tµi,k,µi,k+1 → Oi,k+1. In fact,
the robotR may be considered as an additional “ma-
chine” which has to process all these transport opera-
tions. The arcs from machine node to transport node
are weighted with the machine operation durations.
Edges between machine operations represent disjunc-
tions for machine operations which have to be pro-
cessed on the same machine and cannot use it simul-
taneously.

As for the classical job shop, the conjunctionsC
model the execution order of operations within ech
job Ji . In addition to the classical set of undirected
machine disjunctionsDm (all pairs of machine opera-
tions which have to be processed on the same machine
and which are not linked by a directed path), it is nec-
essary to consider the set of undirected robot disjunc-

Figure 2: Non oriented disjunctive graph.

tionsDr (all pairs of transport operations which have
to be transported by the robotR and which are not
linked by a directed path). To solve the scheduling
problem it is necessary to turn all undirected arcs in
Dm∪Dr into directed ones, and to assign the robot
R to each transport operation, where the final graph
becomes an oriented disjunctive graph.

3.2 Scheduler Agent

The Scheduler Agent (SA) is responsible to process
the first step of the hybrid algorithm by using a genetic
algorithm called NGA (Neighborhood-based Genetic
Algorithm) to identify areas with high average fitness
in the search space during a fixed number of iterations
MaxIter, see Figure 3. In fact, the goal of using the
NGA is only to explore the search space, but not to
find the global solution of the problem. Then, a clus-
tering operator is integrated to divide the best identi-
fied areas by the NGA in the search space to different
parts where each part is a clusterCLi ∈ CL the set of
clusters, whereCL = {CL1,CL2, . . . ,CLN}. In addi-
tion, this agent plays the role of an interface between
the user and the system (initial parameter inputs and
final result outputs). According to the number of clus-
ters N obtained after the integration of the cluster-
ing operator, the SA createsN Cluster Agents (CAs)
preparing the passage to the next step of the global al-
gorithm. After that, the SA remains in a waiting state
until the reception of the best solutions found by the
CAs for each clusterCLi . Finally, it finishes the pro-
cess by displaying the final solution of the problem.

3.2.1 Individual’s Solution Presentation based
Oriented Disjunctive Graph

The Job Shop scheduling Problem with Transporta-
tion times and a Single Robot is composed by two
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Figure 3: First step of the global process by the Scheduler
Agent.

sub-problems: firstly the machines and robot selec-
tion, secondly the operations scheduling problem, that
is why the chromosome representation is encoded in
two parts: Machines and Robot Selection part (MRS),
and Job and Transport operation Sequence part (JTS),
see Figure 4.

Figure 4: The chromosome representation of a scheduling
solution.

The first part MRS is a vectorV1 with a length
L equal to the total number of operations and where
each index represents the selected machine or robot
to process an operation indicated at positionp, see
Figure 4 (a). For examplep = 3 and p = 7, V1(3)
is the selected machineM4 for the operationO1,2
andV1(7) is the selected robotR1 for the operation
T2,2. The second part JTS is a vectorV2 having
the same length ofV1 and where each index repre-
sents a machine operationOi, j or a transport oper-
ation Ti, j according to the predefined operations for
each job, see Figure 4 (b). For example this operation
sequence 1-2-1-1-3-2-3-2-3-2-2 can be translated to:
(O1,1,M5)→ (O2,1,M1)→ (T1,1,R)→ (O1,2,M4)→
(O3,1,M3) → (T2,1,R) → (T3,1,R) → (O2,2,M3) →
(O3,2,M1)→ (T2,2,R)→ (O2,3,M2). In addition, for
each jobJi (J1, . . . ,Ji) ni−1 transport operations are
generatedT1,1, T2,1, T2,2 andT3,1, and scheduled fol-
lowing the presented solution in vector JTS, allowing
to fix the final path to be considered by the robotR

during the shop process, see Figure 5.

Figure 5: Final path of the robotR.

Figure 6: Exemple of oriented machine and robot disjunc-
tions.

To model an oriented disjunctive graph we should
consider some rules. Let the example in Figure 6, if
the edge is oriented in the directionOi,k→O j ,k′ it gets
the weightpi,k, else it takesp j ,k′ in the inverse case.
If an arc is added fromTi,k to Tj ,k′ , its gets the weight
tOi,k,Oi,k+1 + t ′Oi,k+1,Oj,k′ andtOj,k′ ,Oj,k′+1

+ t ′Oj,k′+1,Oi,k if
it is oriented in the other direction. Thus, basing
on (Hurink and Knust, 2005) we can define a fixed
machine selectionSm called directed Machine Dis-
junctions and a fixed transport selectionSr called di-
rected Transport Disjunctions, with their precedence
relationsC called operation Conjunctions. So, a
fully oriented disjunctive graph can be obtained us-
ing Ŝ= C∪Sm∪Sr , which is called a complete se-
lection. In fact, the selections of the two sets of dis-
junctionsSm andSr with their set of conjunctionsC
are based on the two proposed vectors MRS and JTS,
where MRS allows to present the selected machines
to process job operations and the selected robot to
process transport operations. JTS presents the ex-
ecution order of the job and transport operations in
their selected machines and robot allowing to fix the
final Machine and Transport DisjunctionsSm∪Sr with
their set of ConjunctionsC representing the prece-
dence relations between the different operations. The
unionC∪Sm∪Sr = Ŝ fully describes a solution if the
resulting oriented disjunctive graphG= (Vm,Vt , Ŝ) is
acyclic. A feasible schedule can be constructed by
longest path calculation which permits to obtain the
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earliest starting time of both machine and transport
operations and fully defines a semi-active schedule
with the Cmax given by the length of the longest path
from node 0 to *, see Figure 7.

Figure 7: Oriented disjunctive graph.

Noting that the chromosome fitness is calculated
by Fitness(i) which is the fitness function of each
chromosomei and Cmax(i) is its makespan value,
wherei ∈ {1, . . . ,P} andP is the total population size,
see Equation (5).

Fitness(i) =
1

Cmax(i)
(5)

3.2.2 Population Initialization

The initial population is generated randomly follow-
ing a uniform law and based on a neighborhood pa-
rameter to make the individual solutions more diver-
sified and distributed in the search space. In fact, each
new solution should have a predefined distance with
all the other solutions to be considered as a new mem-
ber of the initial solution. The used method to deter-
minate the neighborhood parameter is inspired from
(Bozejko et al., 2010), which is based on the permuta-
tion level of operations to obtain the distance between
two solutions. In fact, the dissimilarity distance is cal-
culated by verifying the difference between two chro-
mosomes in terms of the execution order of all the
shop operationsOi, j andTi, j in the Job and Transport
operation SequenceV2 (JTS). So, if there is a differ-
ence in the vectorV2, the distance is incremented by 1
because it is in the order of O(1). LetChrom1(JTS1)
andChrom2(JTS2) two chromosomes of two differ-
ent scheduling solutions,L is the total number of op-
erations of all jobs andDist is the dissimilarity dis-
tance. The distance is calculated by verifying the ex-
ecution order difference of the Job and Transport op-
eration Sequence vectorsJTS1 andJTS2 which is in

order of O(1), we give here how to proceed in Algo-
rithm 1 :

Algorithm 1: How to calculate the dissimilarity distance
between two solutions.

1: procedure
2: Dist← 0,k← 1
3: for k from 1 to L do
4: if Chrom1(JTS1(k)) 6= Chrom2(JTS2(k))

then
5: Dist← Dist+1
6: end if
7: end for
8: return Dist
9: end procedure

Noting that Distmax is the maximal dissimilar-
ity distance and it is calculated by Equation (6), rep-
resenting 100% of difference between two chromo-
somes.

Distmax=
n

∑
i=1

i,ni

∑
i,1

1 (6)

3.2.3 Selection Operator

The selection operator is used to select the best par-
ent individuals to prepare them to the crossover step.
This operator is based on the fitness function al-
lowing to analyze the quality of each selected solu-
tion. But progressively the fitness values will be sim-
ilar for the most individuals. That is why, we in-
tegrate the neighborhood parameter, where we pro-
pose a new combined parent selection operator named
Fitness-Neighborhood Selection Operator (FNSO) al-
lowing to add the dissimilarity distance parameter
to the fitness function to select the best parents for
the crossover step. The FNSO chooses in each it-
eration two parent individuals until engaging all the
population to create the next generation. The first
parent takes successively in each case a solutioni,
wherei ∈ {1, . . . ,P} andP is the total population size.
The second parent obtains its solutionj randomly
by the roulette wheel selection method based on the
two Fitness and Neighborhood parameters relative to
the selected first parent, wherej ∈ {1, . . . ,P} \ {i}
in the P population and wherej 6= i. In fact, to use
this random method, we should calculate the Fitness-
Neighborhood totalFN for the population, see Equa-
tion (7), the selection probabilityspk for each indi-
vidual Ik, see Equation (8), and the cumulative prob-
ability cpk, see Equation (9). After that, a random
numberr will be generated from the uniform range
[0,1]. If r ≤ cp1 then the second parent takes the
first individual I1, else it gets thekth individual Ik ∈

Simultaneous Scheduling of Machines and a Single Moving Robot in a Job Shop Environment by Metaheuristics based Clustered Holonic
Multiagent Model

57



{I2, . . . , IP} \ {Ii} and wherecpk−1 < r ≤ cpk. For
Equations (7), (8) and(9), k= {1,2, . . . ,P} \ {i}.
• The Fitness-Neighborhood total for the popula-

tion:

FN =
P

∑
k=1

[1/(Cmax[k]×Neighborhood[i][k])]

(7)

• The selection probabilityspk for each individual
Ik:

spk =
1/(Cmax[k]×Neighborhood[i][k])

FN
(8)

• The cumulative probabilitycpk for each individ-
ual Ik:

cpk =
k

∑
h=1

sph (9)

3.2.4 Crossover Operator

The crossover operator has an important role in the
global process, allowing to combine in each case the
chromosomes of two parents in order to obtain new
individuals and to attain new better parts in the search
space. In this work, this operator is applied only for
the parent chromosome vectorV2 (JTS).

JTS Crossover. An improved precedence preserv-
ing order-based on crossover (iPOX), inspired from
(Lee et al., 1998), is adapted for the parent opera-
tion vector JTS. This iPOX operator is applied fol-
lowing four steps, a first step is selecting two par-
ent operation vectors (JTS1 andJTS2) and generat-
ing randomly two job sub-setsJs1/Js2 from all jobs.
A second step is allowing to copy any element in
JTS1/JTS2 that belong toJs1/Js2 into child individ-
ual JTS′1/JTS′2 and retain them in the same position.
Then the third step deletes the elements that are al-
ready in the sub-setJs1/Js2 from JTS1/JTS2. Finally,
fill orderly the empty positions inJTS′1/JTS′2 with the
reminder elements ofJTS2/JTS1 in the fourth step,
see the example in the Figure 8.

Figure 8: JTS crossover exemple.

3.2.5 Mutation Operator

The mutation operator is integrated to promote the
children generation diversity. In fact, this operator
is applied on the chromosomes of the new generated
children by the JTS crossover operator.

JTS Mutation. This operator selects randomly two
indexesindex1 andindex2 from the vector JTS. Next,
it changes the position of the job number in theindex1
to the secondindex2 and inversely, see Figure 9.

Figure 9: JTS mutation exemple.

3.2.6 Replacement Operator

The replacement operator has an important role to
prepare the remaining surviving population to be con-
sidered for the next iterations. This operator replaces
in each case a parent by one of its children which has
the best fitness in its current family.

Figure 10: The final population transformation by applying
the clustering operator.

3.2.7 Clustering Operator

By finishing the maximum iteration numberMax-
Iter of the genetic algorithm, the Scheduler Agent
applies a clustering operator using the hierarchical
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clustering algorithm of (Johnson, 1967) to divide
the final population intoN Clusters, see Figure 10,
to be treated by the Cluster Agents in the second
step of the global process. The clustering operator
is based on the neighbourhood parameter which
is the dissimilarity distance between individuals.
The clustering operator starts by assigning each
individual Indiv(i) to a clusterCLi , so if we haveP
individuals, we have nowP clusters containing just
one individual in each of them. For each case, we
fixe an individualIndiv(i) and we verify successively
for each next individualIndiv( j) from the remaining
population (wherei and j ∈ {1, . . . ,P}, i 6= j) if the
dissimilarity distanceDist between Indiv(i) and
Indiv( j) is less than or equal to a fixed threshold
Dist f ix (representing a percentage of difference X%
relatively toDistmax, see Equation (10)) and where
Cluster(Indiv(i)) 6= Cluster(Indiv( j)). If it is the
case, Merge(Cluster(Indiv(i)),Cluster(Indiv( j))),
else continue the search for new combination with
the remaining individuals. The stopping condition is
by browsing all the population individuals, where we
obtained at the endN Clusters.

Dist f ix= Distmax×X% (10)

Figure 11: Distribution of the Cluster Agents in the different
clusters of the search space.

3.3 Cluster Agents

Each Cluster AgentCAi is responsible to apply suc-
cessively to each clusterCLi a local search technique
which is the Tabu Search algorithm to guide the re-
search in promising regions of the search space and
to improve the quality of the final population of the
genetic algorithm. In fact, this local search is exe-
cuted simultaneously by the set of the CAs agents,
where each CA starts the research from an elite solu-
tion of its cluster searching to attain new more dom-
inant individual solutions separately in its assigned

Figure 12: Second step of the global process by the Cluster
Agents.

clusterCLi , see Figure 11. The used Tabu Search al-
gorithm is based on an intensification technique al-
lowing to start the research from an elite solution in
a clusterCLi (a promising part in the search space) in
order to collect new scheduling sequence minimizing
the makespan. LetE the elite solution of a clusterCLi ,
E′ ∈N(E) is a neighbor of the elite solutionE, GLi is
the Global List of eachCAi to receive new found elite
solutions by the remaining CAs, eachCLi plays the
role of the tabu list with a dynamic length and Cmax is
the makespan of the obtained solution. So, the search
process of this local search starts from an elite solu-
tion E using the move and insert method of (Mas-
trolilli and Gambardella, 2000), where each Cluster
AgentCAi changes the execution order of an opera-
tion (Oi, j if machine operation orTi, j if transport oper-
ation) from an indexi to another indexk in the vector
JTS, searching to generate new scheduling combina-
tion E′ ∈ N(E). After that, verifying if the makespan
value of this new generated solutionCmax(E′) dom-

Algorithm 2: The local search process.

1: procedure
2: E← Elite(CLi)
3: while N(E) 6= /0 do
4: E′ ← Move-and-insert(E) | E′ ∈ N(E) |

E′ /∈CLi
5: if Cmax(E′) < Cmax(E) and E′ /∈ GLi

then
6: E← E′

7: CLi ← E′

8: Send-to-all(E′, CAi )
9: end if

10: end while
11: return E
12: end procedure
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inatesCmax(E) (Cmax(E′) < Cmax(E)), and if it is
the caseCAi savesE′ in its tabu list (which isCLi)
and sends it to all the other CAs agents to be placed
in their Global ListsGLs(E′,CAi), to ensure that it
will not be used again by them as a search point. Else
continues the neighborhood search from the current
solutionE. The stopping condition is by attaining the
maximum allowed number of neighbors for a solution
E without improvement, see Figure 12. We give here
how to proceed in Algorithm 2 :

By finishing this local search step, the CAs agents
terminate the process by sending their last best solu-
tions to the SA agent, which considers the best one of
them as the global solution for the JSPT-SR.

4 EXPERIMENTAL RESULTS

4.1 Experimental Setup

The proposed GATS+HM is implemented in java lan-
guage on a 2.10 GHz Intel Core 2 Duo processor and 3
Gb of RAM memory, where we use the Integrated De-
velopment Environment (IDE)Eclipseto code the al-
gorithm and the multiagent platformJade(Bellifem-
ine et al., 1999) to create the different agents of our
holonic model. To evaluate its efficiency, numeri-
cal tests are made based on the benchmark instances
of (Hurink and Knust, 2005) from the literature of
the JSPT-SR, which consists of two sets P1(6× 6)
and P2(10×10) inspired from (Muth and Thompson,
1963). In both instances the number of operations per
job is equal to the number of machines and each job is
processed on each machine exactly once with a fixed
processing time. This shop problem considers a sin-
gle moving robot for all transport operations, where
various test instances were obtained by adding trans-
portation and empty moving times with different char-
acteristics.

Due to the non-deterministic nature of the pro-
posed approach, we run it ten independent times for
each case of the (Hurink and Knust, 2005) benchmark
instances in order to obtain significant results. The
used parameter settings for our algorithm are adjusted
experimentally and presented as follow: the crossover
probability = 1.0, the mutation probability = 0.5, the
maximum number of iterations = 1000 and the popu-
lation size = 200. The computational results are pre-
sented by three metrics in Table 2, such as the best
makespan, the CPU time of our GATS+HM in min-
utes and the gap between our approach and the best
results in the literature of the JSPT-SR, which is cal-
culated by Equation (11). TheMko is the makespan
obtained byOur approach andMkc is the makespan

of one of the chosen algorithms forComparisons.

Gap= [(Mko−Mkc)/Mkc]×100% (11)

4.2 Experimental Comparisons

To show the efficiency of our GATS+HM approach,
we compare its obtained results from the (Hurink
and Knust, 2005) benchmark instances with other al-
gorithms from the literature of the JSPT-SR, which
have obtained the best upper bounds for this prob-
lem. The chosen algorithms are : the one-stage ap-
proach (UBone) of (Hurink and Knust, 2005) (with
their known lower bound LB) which obtained the first
results in the literature for their proposed instances,
the genetic algorithm-tabu search procedure (GATS)
of (Zhang et al., 2012) and the hybrid memetic algo-
rithm (BFS) of (Lacomme et al., 2013) which are two
recent hybrid metaheuristic approaches.

From Table 2, the comparison results show that
the GATS+HM obtains twelve out of fifteen best re-
sults for the (Hurink and Knust, 2005) instances,
where we attain ten new upper bounds and two sim-
ilar results. Indeed, our algorithm outperforms the
UBone in eleven out of fifteen instances with a max-
imum gap of -7,80% for the P02-T5-t2 instance, and
it gets slightly worse result for three instances with a
maximum gap of 1,21% for the P02-D3-d1 instance.
Moreover, our GATS+HM outperforms the BFS in
twelve out of fifteen instances with a maximum gap
of -4,13% for the P02-T2-t1 instance, and it gets
one bad result for the P01-D2-d1 instance with a gap
of 0,68%. For the comparison with the GATS, the
GATS+HM obtains fourteen out of fifteen best results
with a maximum gap of -30,52% for the P02-D2-d1
instance.

By analyzing the computational time in few min-
utes and the comparison results of our approach in
terms of makespan, we can distinguish the efficiency
of the new proposed GATS+HM relatively to the lit-
erature of the JSPT-SR. This efficiency is explained
by the flexible selection of the promising parts of the
search space by the clustering operator after the ge-
netic algorithm process and by applying the intensi-
fication technique of the tabu search allowing to start
from a set of elite solutions to attain new more domi-
nant solutions.

5 CONCLUSION

In this paper, we present a new metaheuristic hy-
bridization approach based on clustered holonic
multiagent model, called GATS+HM, for the job
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Table 2: Results of (Hurink and Knust, 2005) data instances.

Instance LB GapLB UBone GapUBone
BFS GapBFS GATS GapGATS GATS+HM

CPU
Time

P01.D1-d1 82 2,44 87 -3,45 87 -3,45 96 -12,50 84 0,30
P01.D1-t1 77 2,60 81 -2,47 81 -2,47 83 -4,82 79 0,27
P01.D2-d1 147 1,36 148 0,68 148 0,68 155 -3,87 149 0,29
P01.D3-d1 213 0,00 217 -1,84 213 0,00 220 -3,18 213 0,28
P01.T2-t1 71 1,41 74 -2,70 74 -2,70 79 -8,86 72 0,26
P01.T3-t0 92 0,00 92 0,00 92 0,00 92 0,00 92 0,19
P02.D1-d1 880 10,57 1044 -6,80 1012 -3,85 1339 -27,33 973 6,15
P02.D1-t0 880 12,50 1042 -4,99 1017 -2,65 1352 -26,78 990 4,26
P02.D1-t1 880 11,36 1016 -3,54 983 -0,31 1337 -26,70 980 4,56
P02.D2-d1 892 12,56 1070 -6,17 1045 -3,92 1445 -30,52 1004 8,53
P02.D3-d1 906 19,54 1070 1,21 1100 -1,55 1516 -28,56 1083 11,45
P02.D5-t2 1167 13,71 1325 0,15 1361 -2,50 1689 -21,43 1327 13,15
P02.T1-t1 874 8,35 1006 -5,86 978 -3,17 1322 -28,37 947 7,14
P02.T2-t1 880 8,18 1015 -6,21 993 -4,13 1279 -25,57 952 7,31
P02.T5-t2 898 13,14 1102 -7,80 1022 -0,59 1339 -24,12 1016 9,25

shop scheduling problem with tansportation times
and a single robot (JSPT-SR). In this approach, a
neighborhood-basedgenetic algorithm is adapted by a
scheduler agent for a global exploration of the search
space. Then, a local search technique is applied by a
set of cluster agents to guide the research in promising
regions of the search space and to improve the quality
of the final population. To measure its performance,
numerical tests are made using benchmark data in-
stances from the literature of JSPT-SR, and where
new upper bounds are found showing the effective-
ness of the presented approach. In the future work,
we will search to treat other extensions of the JSPT-
SR, such as the general case of this problem where a
set of robots can be used for the transport oprations,
and by considering the machine assignment problem
for each operation in the shop process. So, the prob-
lem becomes a Flexible Job Shop scheduling Problem
with Tansportation times and Many Robots (FJSPT-
MR). Thus, we will make improvements in the chro-
mosome first part MRS to adapt it to this new trans-
formation and study its effects on the makespan.
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