
Learning User Preferences in Matching for Ridesharing

Mojtaba Montazery and Nic Wilson
Insight Centre for Data Analytics, School of Computer Science and IT, University College Cork, Cork, Ireland

Keywords: Dynamic Ridesharing, Preference Learning.

Abstract: Sharing car journeys can be very beneficial, since it can save travel costs, as well as reducing traffic congestion
and pollution. The process of matching riders and drivers automatically at short notice, is referred to as
dynamic ridesharing, which has attracted a lot of attention in recent years. In this paper, amongst the wide
range of challenges in dynamic ridesharing, we consider the problem of ride-matching. While existing studies
mainly consider fixed assignments of participants in the matching process, our main contribution is focused
on the learning of the user preferences regarding the desirability of a choice of matching; this could then form
an important component of a system that can generate robust matchings that maintain high user satisfaction,
thus encouraging repeat usage of the system. An SVM inspired method is exploited which is able to learn a
scoring function from a set of preferences; this function measures the predicted satisfaction degree of the user
regarding specific matches. To the best of our knowledge, we are the first to present a model that is able to
implicitly learn individual preferences of participants. Our experimental results, which are conducted on a real
ridesharing data set, show the effectiveness of our approach.

1 INTRODUCTION

Ridesharing (also carpooling and lift-sharing) is a
mode of transportation in which individual travellers
share a vehicle for a trip. Increasing the number of
travellers per vehicle trip by effective usage of spare
car seats may of course enhance the efficiency of pri-
vate transportation, and contribute to reducing traffic
congestion, fuel consumption, and pollution. More-
over, ridesharing allows users to split travel costs such
as fuel, toll, and parking fees with other individuals
who have similar itineraries and time schedules. Con-
ceptually, ridesharing is a system that can combine the
flexibility and speed of private cars with the reduced
cost of fixed-line systems such as buses or subways
(Furuhata et al., 2013; Agatz et al., 2011).

Ridesharing is quite an old concept; it was first
used in USA during World War II to conserve re-
sources for the war. It reappeared as a result of the
oil crisis in 1970s which led to the emergence of the
first ridesharing algorithms. Nevertheless, rideshar-
ing usage declined drastically between the 1970s and
the 2000s due to the decrease in the price of fuel and
vehicle ownership cost (Chan and Shaheen, 2012).

Furthermore, there are some challenges that have
inhibited wide adoption of ridesharing. A few of the
most important of those are listed as follows:
Riding with Strangers. Surveys suggest little inter-

est in sharing a ride with strangers because of per-
sonal safety concerns. This phenomenon is called
Stranger Danger and could be alleviated by incor-
poration of social networks (Amey et al., 2011;
Furuhata et al., 2013). (Chaube et al., 2010) con-
ducted a survey among students of a university
which shows that while only 7% of participants
would accept rides from a stranger, 98% and 69%
would accept rides from a friend and the friend of
a friend, respectively.

Reliability of Service. One of the largest behavioral
challenges is the perception of low reliability in
ridesharing arrangements; the parties may not
necessarily follow through on the agreed-upon
ride. For instance, if the driver has an unexpected
appointment or emergency, the passenger may be
left with no ridesharing option; or, from the other
side, drivers might be required to wait because of
a passenger being late (Amey et al., 2011).

Schedule Flexibility. The lack of schedule flexibility
has been one of the longest running challenges in
ridesharing arrangements. Drivers and passengers
often agree to relatively fixed schedules and meet-
ing locations, not allowing much flexibility. It is
interesting to note that increased flexibility and in-
creased reliability in ridesharing arrangements are
often conflicting objectives (Amey et al., 2011).

Montazery, M. and Wilson, N.
Learning User Preferences in Matching for Ridesharing.
DOI: 10.5220/0005694700630073
In Proceedings of the 8th International Conference on Agents and Artificial Intelligence (ICAART 2016) - Volume 2, pages 63-73
ISBN: 978-989-758-172-4
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

63



Ride Matching. Optimally matching riders and
drivers –or at least getting a good match–is among
most important challenges to be overcome. This
can lead to a complicated optimization problem
due to the large number of factors involved in the
objective function. We will discuss this aspect of
ridesharing further in Section 2.

Despite the above barriers to ridesharing, the de-
mand for ridesharing services has increased again
sharply in recent years, generating much interest
along with media coverage (Saranow, 2006). This
boost in ridesharing is mainly associated with a rel-
atively new concept in ridesharing, dynamic or real-
time ridesharing. Dynamic ridesharing refers to a sys-
tem which supports an automatic ride-matching pro-
cess between participants at short notice or even en-
route (Agatz et al., 2012).

Technological advances, both hardware and soft-
ware, are key enablers for dynamic ridesharing. The
first influential fact is that the smartphones are becom-
ing increasingly popular (Emarketer, 2014; Smith,
2015). As the first impact of smartphones on
ridesharing, they provide an infrastructure on which
a ridesharing application can run, replacing the old-
fashioned, sometimes not so convenient, approaches
such as phone or website. More importantly, smart-
phones are usually equipped with helpful communi-
cation capabilities, including global positioning sys-
tem (GPS) (Zickuhr, 2012) and network connectivity
(Duggan and Smith, 2013).

Dynamic ridesharing by its nature is able to ease
some aspects of existing challenges in traditional
ridesharing. For example, tracking participants by
means of GPS could mitigate safety concerns or in-
crease the reliability. In terms of flexibility, since dy-
namic ridesharing does not necessarily require long-
term commitment, users have the option to request a
trip sharing day-by-day or whenever they are pretty
sure about their itinerary.

Even though the above advancement in technol-
ogy could be beneficially available, ridesharing is still
in short supply. In this study, we focus on the ride-
matching problem which is central to the concept.
However, we are mindful of the fact that there are a
number of other challenges should be dealt to accom-
plish the ultimate success of ridesharing.

The rest of the paper is structured as follows. In
Section 2, we model automated ride-matching prob-
lem and explain how user preferences could be con-
sidered in the matching process. In Section 3, a
method to learn user preferences is described in de-
tail. Section 4 evaluates the presented approach on a
real ridesharing database. Finally, in Section 5, we
summarize the main remarks and discuss some direc-

tions for future research.

2 AUTOMATED
RIDE-MATCHING

The essential element of dynamic ridesharing is the
automation of the trip matching process, which al-
lows trips to be arranged at short notice with mini-
mal effort from participants. This means that a sys-
tem helps riders and drivers to find suitable matches
and facilitates the communication between partici-
pants (Hwang et al., 2006; Agatz et al., 2012).

In order to model the matching problem, two dis-
joint types of ridesharing request are considered: a
set of requests in which the owner of the request
are drivers (D), and requests created by riders (R).
Hence, all trip requests could be represented by the set
S = R∪D. Then, ridesharing requests are represented
as a bipartite graph G=(D,R,E), with E denoting the
edges of the graph. This setting is extendable for the
case when some participants are flexible with being
driver or rider.

This graph becomes a weighted graph by assign-
ing a weight ci j to the edge (Si,S j), where Si,S j ∈ S .
Generally speaking, ci j quantifies how much is gained
by matching Si and S j. This weight could be a compo-
sition of an assortment of factors, related to the overall
system, or to individual travellers.

For finding optimal matchings, one approach pop-
ular in the literature is solving an optimization prob-
lem in which the sum of the benefits from proposed
matching should be maximized (Agatz et al., 2011).
To do this, a binary decision variable xi j is introduced
that would be 1 when the match (Si,S j) is proposed,
and 0 if not. Then, the objective function to be max-
imized is ∑i, j xi jci j. After running the solver, a fixed
schedule is proposed to users as the optimal solution.

However, this approach neglects a crucial require-
ment of a practical system, that is, getting users con-
firmation before fixing a ride-share for them. Al-
though earlier we emphasised the concept of automa-
tion in ride-matching which attempts to minimize
users’ efforts, we believe that it couldn’t be fully au-
tomatic. In fact, it is hard in practice to convince users
to share their ride with somebody without their final
agreement.

For this reason, in this study, we suggest a novel
attitude towards ride-matching problems, by looking
at the problem as a recommendation system rather
than an optimization problem. In this setting, the sys-
tem just recommends a set of best possible match-
ings to each individual with respect to the weights ci j.
Note that not only does ci j take into account partici-

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

64



pants desires, but also it could incorporate the overall
system benefits.

In terms of the system’s benefits–which ultimately
could result in less pollution, traffic congestion etc.-
– two measures are often mentioned in the related
studies; the saved travel distance (di j obtained from
the match (Si,S j)) and the saved travel time (ti j) (Fu-
ruhata et al., 2013; Agatz et al., 2012).

The second aspect of ci j is how much the two indi-
viduals, who involved in the matching (Si and S j), are
happy with that matching. While positional and tem-
poral elements of a ride sharing usually play a more
important role in forming users’ satisfaction degree,
users’ social preferences such as the other party’s
reputation and gender, smoking habit and so forth
are also suggested as a relevant component (Ghoseiri
et al., 2011).

The common strategy for finding arcs’ weights
(ci j) is making a composition of the system’s bene-
fits (e.g., ci j = di j + ti j) and posing some constraints
which expresses users’ limitations (Herbawi and We-
ber, 2012; Agatz et al., 2011). Nevertheless, there are
two main shortcomings have not been fully addressed
by adoption of this strategy:
Only Hard Constraints. The fact is that users might

sacrifice some of their desires in favour of another
ones. For instance, a rider who likes smoking
in the car may decide to share his trip in a non-
smoking vehicle due to other favourable condi-
tions. Therefore, having soft constraints instead
of hard ones may often be more plausible. Posing
soft constraints could be rephrased as considering
users’ preferences, the term that is mainly used in
this paper.

Eliciting Complicated Parameters. In order to set
constraints, there is a prerequisite to ask users to
specify several parameters explicitly; such as ear-
liest possible departure time, latest possible ar-
rival time and maximum excess travel time (Bal-
dacci et al., 2004; Agatz et al., 2011; Amey et al.,
2011). However, elicitation of such parameters
for every trip is quite impractical in real world sit-
uations. As an example, users can simply state
their departure time, but finding how much they
are flexible with that time is not a straightforward
task. Moreover, some participants may be hes-
itant or unwilling to disclose certain preferences
for privacy reasons.
Our solution for attempting to overcome the afore-

mentioned issues is learning each user’s preferences
based on his (or her) past ridesharing records. For in-
stance, we can learn from his previous choices that
a particular user is normally more flexible with time
than location. We will discuss more about this subject

Table 1: The scenario described in Example 1 is summa-
rized here. The user’s responses are Acceptance(A), Can-
cellation(C), Ignoring(I) and Rejection(R).

Day 1 Day 2 Day 3 (Today)

(S2,R) (S5,R) S8(w1,8 =?)
(S3,A) (S6,C) S9(w1,9 =?)
(S4, I) (S7,A)

in Section 2.1. As a result of learning weights, be-
sides modeling soft constraints in form of users’ pref-
erences, there is no need to directly ask those cumber-
some parameters from participants anymore.

Thus, an arc’s weight could be the combination
of the system’s benefits and those learned weights.
To mathematically illustrate, assume ci j = (wi j ·w ji) ·
(di j + ti j) where wi j indicates how much sharing the
ride with the user j is favourable for the user i, and the
converse for w ji. The weights wi j and w ji are learned
from the previous records of the users i and j, respec-
tively.

2.1 Learning Weights

In this section, the mechanism of learning users’ pref-
erences from the previous ridesharing records will be
characterized. To give an intuitive sense, we start with
an example.

Example 1. Assume there is a user who has a daily
trip at a specific time (e.g., every day at 8 : 30 from
the location A to B). This trip request is denoted by
S1.

On Day 1, the system recommends three matching
opportunities, namely S2, S3 and S4. The user rejects
S2, accepts S3 and leaves S4 without any response. Ig-
noring of a case may potentially mean that the user
had been tentative about it.

On the second day, two recommendations, S5 and
S6, are suggested to the user. S5 is rejected and S6 is
accepted. While the user was waiting for the response
of the other party in S6, he receives another sugges-
tion, S7; then, the user cancels his previous offer (to
S6) and accepts S7.

On the third day, the system has found two fea-
sible matches which are S8 and S9. The goal is to
evaluate how much these two opportunities are desir-
able for the user. Using the notation of the previous
section, we would like to find w1,8 and w1,9 which are
finally incorporated in the calculation of c1,8 and c1,9,
respectively. Table 1 summarizes this example.

At first glance, the problem might seem to be
a classification problem because the supervision (la-
bels) is in the form of classes (i.e., Acceptance, Rejec-

Learning User Preferences in Matching for Ridesharing

65



tion etc.). However, a closer look suggests that learn-
ing a classifier is not a correct choice. The first reason
is that there is a logical order between classes in the
current case (e.g., Acceptance has a highest value and
Rejection the lowest value), whereas classification is
often applied when there is no ordering between class
labels, such as classifying fruits into three categories,
apple, pear and orange. Secondly, a classifier will
predict a class label whereas here, a scalar value is
required.

If each class label is replaced by an appropriate
number which keeps the natural ordering, the prob-
lem could be considered as a regression problem. For
instance, the number 1 might be assigned for Accep-
tance, 0.66 for Cancellation, 0.33 for Ignoring and 0
for Rejection.

In spite of the fact that learning a regressor has
none of those defects mentioned about classification,
we believe that it still suffers from the following
flaws:

• The first point is that the user’s response to a rec-
ommended opportunity not only depends on the
properties of that particular case, but also depends
on other rival opportunities. Taking Example 1 to
illustrate, it couldn’t be said that if S3 existed in
the suggestion list on the day 2, it would certainly
be accepted again, because the user accepted it in
presence of S2 and S4 which does not guarantee
its acceptance when S6 and S7 are available.

• Two class labels do not necessarily have the same
desirability distance for all instances. Consider
Example 1; assigning value numbers to classes as
described above suggests that the difference be-
tween S2 and S3 from the first day, and S5 and S7
from the second day are both 1. However, the only
thing that is known is that the user preferred S3 to
S2 and S7 to S5, not the extent of the difference.

To address the above issues, we suggest consid-
ering the supervision in the form of qualitative pref-
erences. This means that instead of assigning value
numbers, sets of preferences among alternatives are
derived from the user’s choices. The following pref-
erences set could be formed for Example 1:

λ= {(S3 � S4),(S4 � S2),(S7 � S6),(S6 � S5)}.
In the next section, a model will be proposed to

learn a scoring function by making use of this kind of
preferences set.

3 LEARNING MODEL: SVPL

3.1 Basic Formulation

As described above, the primary capability of the
method developing in this section should be learn-
ing a scoring function from a set of preferences, ex-
pressed between several alternatives (i.e., preferences
between suggested ridesharing trips that are derived
from the user’s feedback). This scoring function can
generate a value number for each alternative (i.e.,
ridesharing trip opportunity), measuring the expected
desirability degree of that alternative for the user.

Mathematically speaking, the set of alternatives
is expressed as X = {Xk|k ∈ {1, . . . ,m}, Xk ∈ Rd}
in which d is the dimension of the features vector
(with each feature representing a different property
of the trip). We formulate the preferences set as
λ = {(Xi � Yi)|i ∈ {1, . . . ,n}, Xi,Yi ∈ X }. Then, the
goal is finding a function f (X) : Rd →R which maps
a features vector to a scalar value and is in agreement
with the preferences set λ, i.e., if Xi � Yi is in λ then
we aim to have f (Xi)> f (Yi). In order to achieve this
goal, we developed a derivation of conventional SVM
which eventually turns out to be similar to the ap-
proach proposed in (Joachims, 2002) as SVMRank.

In the rest of this section, the notation λi (corre-
sponding to (Xi � Yi)) represents the preference point
in Rd , given by λi = Xi−Yi. We say that preferences
points are consistent if there is a scoring function f
satisfies the following condition:

f (λi)> 0 ∀i. (1)

This condition comes from the fact that for all pref-
erences points, the condition f (Xi)> f (Yi) should be
true. Here, in Section 3.1, we assume that all prefer-
ences points are consistent, meaning there is at least
one scoring function able to satisfy Eq. (1). In Section
3.2, we consider the inconsistent case.

Another assumption being made in this section is
that the scoring function is a linear function. So, there
is a vector ω with d components such that

f (X) = ω ·X . (2)

We will consider the case of a non-linear scoring
function in Section 3.3.

With respect to these two assumptions, it can be
said that if h is the hyperplane f (X) = 0 (which is a
line in d = 2 case), then the hyperplane should include
the origin, and all preferences points should be in the
associated positive open half-space, given by h. This
condition is mathematically written as:

ω ·λi > 0 ∀i, (3)

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

66



x

y

hω1
hω2

bω2bω1

ω1
ω2

Figure 1: Two samples of plausible hyperplanes (hω1 and
hω2 ) and their associated normal vectors (ω1 and ω2) for a
set of consistent preferences points are illustrated. bω1 and
bω2 are the margins of hω1 and hω2 , respectively.

where ω is the normal vector to the hyperplane h. Two
examples of plausible hyperplanes (hω1 and hω2 ) for
a consistent set of preferences points are illustrated in
Figure 1.

The margin of a hyperplane, denoted by b, is de-
fined as the distance from the hyperplane to the clos-
est preference point; for the hyperplane hω, it could
be found by:

bω =
mini ω ·λi

‖ω‖ , (4)

where ‖ω‖ is the Euclidean norm of ω (‖ω‖2 =ω ·ω).
Based on the principal idea in SVM (Burges,

1998), among all hyperplanes that can meet the condi-
tion stated in Equation (3), we look for the hyperplane
that produces the largest margin, since it seems rea-
sonable that for the preferences points, the maximum
marginal space from the condition boundary is desir-
able. Thus, in order to find the optimal ω (say ω∗) and
consequently f (X), we need to solve an optimization
problem as follows:

ω∗ = argmax
ω

mini ω ·λi

‖ω‖ (5a)

subject to
ω ·λi > 0 ∀i. (5b)

Let aω = mini ω ·λi where according to Eq. (5b)
aω should be a positive number. Then we have:

ω∗ = argmax
ω

aω

‖ω‖ (6a)

subject to
ω ·λi ≥ aω > 0 ∀i. (6b)

Let ω′ = ω
aω

, where of course ω′ like ω is a nor-
mal vector to the hyperplane hω, because the positive
scalar value aω just affects the magnitude of the vec-
tor not its direction. As a result, the problem could be
simplified by replacement of ω with the term aωω′.
That means the objective function (Eq. 6a) will be:

aω

‖ω‖ =
aω

aω‖ω′‖
=

1
‖ω′‖

and the constraint (Eq. 6b) is modified like this:

ω ·λi ≥ aω

aωω′ ·λi ≥ aω

ω′ ·λi ≥ 1

Hence, the problem is reformulated as the following:

ω′∗ = argmax
ω′

1
‖ω′‖ (7a)

subject to
ω′ ·λi ≥ 1 ∀i. (7b)

Note that ω′∗ found from Eq. (7) is not necessar-
ily equivalent with ω∗ found from Eq. (6), but as
described above, both give an equivalent hyperplane
(hω ≡ hω′ ). So, without loss of generality, we can use
the symbol ω instead of ω′ in Eq. (7).

To have a more standard form, the arrangement of
the problem is reformulated as a Minimization prob-
lem in this manner:

ω∗ = argmin
ω

1
2
‖ω‖2 (8a)

subject to
1−ω.λi ≤ 0 ∀i (8b)

Now, this is a convex quadratic programming
problem, because the objective function is itself con-
vex, and those points which satisfy the constraints are
also from a convex set (a set of linear constraints de-
fine a convex set).

In Section 3.3, more explanation will be given
as to why we are interested in the form of problem
formulation (both objective function and constraints)
in which preferences points only appear in the form
of pairwise dot products. To fulfill this demand, we
switch to the Lagrangian Dual Problem.

For our problem, the Lagrangian function which
is basically obtained by augmenting the objective
function with a weighted sum of the constraint func-
tions, is like this:

L(ω,µ) =
1
2
‖ω‖2 +

n

∑
i=1

µi (1−ω.λi) (9)

where µi is referred as the Lagrange multiplier asso-
ciated with the ith inequality constraint 1−ω.λi ≤ 0
(Boyd and Vandenberghe, 2004, Chapter 5).

The optimization problem stated in Eq. (8) is
called the primal form; where the Lagrangian dual
form is formulated in this fashion:

(ω∗,µ∗) = argmax
µ

inf
ω

L(ω,µ) (10a)

subject to
µi ≥ 0 ∀i. (10b)

Learning User Preferences in Matching for Ridesharing

67



Because the primal form is convex and Slater’s
condition holds, we say the strong duality holds for
our problem (Boyd and Vandenberghe, 2004, Sec.
5.2.3). This means that the optimal value for the dual
problem equals the optimal value for the primal form.
As a consequence, solving the Lagrangian dual form
(Eq. 10) is equivalent to solving the primal form of
the problem (Eq. 8).

As stated, strong duality is obtained for our prob-
lem, and also the objective function is differentiable.
Regarding these two criteria, an optimal value must
satisfy the Karush Kuhn Tucker (KKT) conditions
(Boyd and Vandenberghe, 2004, Sec. 5.5.3). Here,
we just exploit the stationary condition of KKT which
states:

∂L
∂ω

= 0 i.e., ω =
n

∑
i=1

µiλi (11)

We substitute equality constraint (11) into Eq. (9)
which leads to a remodeled Eq. (10), in the form that
we are interested in:

µ∗ = argmax
µ

L =
n

∑
i=1

µi−
1
2

n

∑
i=1

n

∑
j=1

µiµ jλi ·λ j (12a)

subject to
µi ≥ 0 ∀i. (12b)

At this stage, we have just a simple positivity
condition on µi which is more manageable than Eq.
(8b) and more importantly, the preferences points are
shown just in the form of dot products (λi ·λ j).

Solving this new form of the problem gives opti-
mal values for the Lagrange multipliers (µ∗); we then
can use Equation (11) to find ω∗ as well.

3.2 Handling Inconsistencies

So far, we assumed that there exists at least one hy-
perplane such that all preferences points are placed
in the positive open half-space of it. However, it is
plausible that in many practical cases this assumption
may result in finding no feasible solution. To handle
inconsistencies, we develop the basic model by refor-
mulating the initial constraint (8b) such that it could
be violated with an appropriate amount of cost.

For this purpose, the constraint (8b) is rewritten as
1−ω.λi ≤ ξi where ξi represents the cost of violat-
ing the ith constraint and obviously should be non-
negative (ξi ≥ 0). Then, the objective function is

augmented by the term C
n
∑

i=1
ξi to reveal the effect of

costs, where C is a constant parameter to be chosen
by the user. The parameter C scales the impact of in-
consistent points; a larger C corresponds to assigning

a higher penalty to errors. Thus, the primal form of
the problem becomes the following:

ω∗ = argmin
ω,ξi

1
2
‖ω‖2 +C

n

∑
i=1

ξi (13a)

subject to

1−ω.λi−ξi ≤ 0 ∀i, (13b)

ξi ≥ 0 ∀i. (13c)

This optimization problem (Eq. 13) is equivalent
to Optimization Problem 1 (Ranking SVM) proposed
in (Joachims, 2002).

Because we have a new set of constraints (ξi ≥
0), a new set of positive Lagrange multipliers αi(i =
1, ...,n) are introduced. The Lagrangian changes as
follows:

L =
1
2
‖ω‖2+C

n

∑
i=1

ξi+
n

∑
i=1

µi (1−ω.λi−ξi)−
n

∑
i=1

αiξi

(14)
The stationary KKT condition entails the new equal-
ity constraints:

∂L
∂ξi

= 0 i.e., αi =C−µi ∀i. (15)

By substituting C− µi for αi in Equations (14), the
Lagrangian dual form of the problem becomes:

(ω∗,µ∗) = argmax
µ

inf
ω

L =
1
2
‖ω‖2 +

n

∑
i=1

µi (1−ω.λi)

(16a)
subject to

µi ≥ 0 ∀i, (16b)

αi ≥ 0 i.e., C−µi ≥ 0 ∀i. (16c)

As in the previous section, replacing ω with
n
∑

i=1
µiλi

gives us the simpler form of the problem:

µ∗ = argmax
µi

L =
n

∑
i=1

µi−
1
2

n

∑
i=1

n

∑
j=1

µiµ jλi ·λ j (17a)

subject to
0≤ µi ≤C ∀i. (17b)

Since neither the ξi nor its associated Lagrange
multiplier (αi) appear in the objective function, this
format of the problem is very similar to the one with-
out introducing costs (Eq. 12), except µi is con-
strained by the upper bound value of C.

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

68



3.3 Non-linear Scoring Function

Remember that we assumed that the scoring function
(with its associated hyperplane) is a linear function.
Conversely, a non-linear scoring function might be a
better choice in some real-world applications. To deal
with this matter, in this section, the model is devel-
oped further to cover the non-linear case as well.

The Kernel function concept (Aizerman et al.,
1964) is a widely-used trick for pattern recognition
problems which can be also exploited for our case.
The idea comes from this fact that a set of non
linearly-representable data could be linearly managed
if they mapped to a higher dimension. To do the map-
ping, we assume a function Φ of the form:

Φ : Rd →H , (18)

where H denotes a higher dimensional space than d-
dimension. If all preferences points are mapped into
H by making use of Φ, the Lagrangian function will
be:

L =
n

∑
i=1

µi−
1
2

n

∑
i=1

n

∑
j=1

µiµ jΦ(λi) ·Φ(λ j). (19)

A deeper look into the process of computing L
(Eq. 19) reveals that, even though L is still a scalar
value, the optimization problem performs a dot prod-
uct operation (Φ(λi) ·Φ(λ j)) in the high dimensional
space which is computationally expensive.

Principally, a kernel is a function which operates
in the lower dimension (K(X ,Y ) : Rd × Rd → R),
but yields an identical result to the dot product of
mapped vectors in the higher dimension (K(X ,Y ) =
Φ(X) ·Φ(Y )).

Due to the above property of the kernel function,
the term Φ(λi) ·Φ(λ j) can be simply replaced in Eq.
(19) with an appropriate kernel. The great advantage
of such a replacement is that the complexity of the
optimization problem remains only dependent on the
dimensionality of d (the preferences points space) and
not of H .

Note that this simplification happens without even
explicitly stating the Φ function because the problem
has been formulated in terms of dot product of points,
the property that we insisted to have in the previous
sections. So, the problem is rewritten as follows:

µ∗ = argmax
µ

L =
n

∑
i=1

µi−
1
2

n

∑
i=1

n

∑
j=1

µiµ jK(λi,λ j)

(20a)
subject to

0≤ µi ≤C ∀i (20b)

There still remains one point that should be con-
sidered. Solving this optimization problem only gives

µ∗ where after all, ω∗ is required. The Eq. (11) cannot
be used to attain ω anymore, because after the map-
ping, ω will live in H ; that is:

ω =
n

∑
i=1

µiΦ(λi) (21)

However, recall that finding ω∗ is just an interme-
diate goal to achieve the scoring function. Therefore,
referring back to the scoring function in Equation (2)
and using Equation (21) for eliminating ω, brings the
following form of the scoring function:

f (X) = ω ·Φ(X)

= (
n

∑
i=1

µiΦ(λi)) ·Φ(X)

=
n

∑
i=1

µi(Φ(λi) ·Φ(X))

Importantly, this result contains points only in the
format of dot products; where incorporating a kernel
function gives:

f (X) =
n

∑
i=1

µi K(λi,X) (22)

Equations (20) and (22) form the method, which
is referred to as SVPL (Support Vector Preferences
Learner) in our experiments. As seen, the input pa-
rameters should be chosen in SVPL are C and the ker-
nel function’s parameters if it has any.

4 EXPERIMENTS

4.1 Data Repository

The experiments make use of a subset of a year’s
worth of real ridesharing records (from Apr 2014 to
Apr 2015), provided by Carma1 (formerly Avego).
Carma is a software company currently offering a dy-
namic ride-share application for internet-enabled mo-
bile phones. In addition to their App, any individual
can create his own App, powered by the Carma’s free
API which uses Carma’s live data.

The process of Carma’s application is briefly ex-
plained so as to facilitate the understanding of the
structure of the provided database. Users can request
a ridesharing as a driver, rider or both (flexible to be
rider or driver). Once a ridesharing request is cre-
ated, the user could ask the system to find appropri-
ate matching opportunities. Then, a suggestion list
is shown on the user’s screen. For each suggested

1https://carmacarpool.com/

Learning User Preferences in Matching for Ridesharing

69



item, the user can accept, reject or just leave it with
no response. Note that accepting an opportunity at
this stage does not mean the ridesharing will certainly
happen, because it also needs the confirmation of the
other party; so, it is observed in the database that for
a single trip a user may have several accepted items.
While the system is waiting to get the second confir-
mation, the user can cancel an initially accepted item.
It should be pointed out that the cancellation of a spe-
cific item differs from the cancellation of the whole
trip request; the former often happens because of the
greater attractiveness of a new item, and the latter is
for the time when the user does not want to share the
ride for the created trip anymore.

According to the above mechanism, any ride-
matching record could be associated with a class la-
bel which is among these four: Accepted, Cancelled,
Ignored or Rejected. As explained earlier, a class la-
bel comes from the response of the main user towards
sharing the ride with the target user.

The second element of a ride-matching record is
a vector of features, built from the personal informa-
tion of both the main and the target user and the prop-
erties of their trips. Before starting the learning pro-
cess, normalizing the features’ spaces is an essential
requirement due to the fact that margin based meth-
ods are known to be sensitive to the way features are
scaled (Ben-Hur and Weston, 2010). Because of that,
features are scaled to an identical range, i.e., [0,1].
The extracted features from the provided database are
listed here:

• Positional Component: Expressing how much the
pick-up and drop-off locations will be suitable for
the main user.

• Temporal Component: Expressing how much the
departure time will be appropriate for the main
user.

• Gender Component: Indicating whether the target
user is of the same gender (1) or the opposite (0).

• Has Image: it considers whether the target user’s
profile contains his/her picture or not.

• Average Rating: At the end of a ridesharing ex-
perience, users can rate the other party. This fea-
ture holds the average rate that the target user has
gained from previous trips.

• Is Favourite: As well as the rating, a user can mark
a particular user as a favourite person at the end of
ridesharing. This feature shows whether the target
user is among individuals who are marked as a
favourite of the main user or not.

• Previous Rating: If the main user and the target
user have had a previous ridesharing experience

with each other, this feature shows the rating that
the main user has given to the target user.

Considering the fact that a separate model will be
individually learned for each user, and with the pur-
pose of having an appropriate number of records, the
experiments are run for those users who have at least
50 records. In the provided data set, 44 users met this
condition, where the best user in terms of number of
records had 402 records. The total number of records
were 5676.

4.2 Results

Besides SVPL, using a Regression based method is
another viable approach for learning weights, as ex-
plained in Section 2.1. Thus, in this section, the per-
formance of SVPL is compared with a Regression
based method as a competitor.

These two methods need different formats for the
input data, though they both eventually produce a
scoring function. For the regression method, the main
user responses (class labels) are converted to scalar
values, and for SVPL, a set of preferences among
ride-matching records is created (Section 2.1 illus-
trates how).

Along the wide spectrum of regression methods,
the SVM regression method is chosen. This choice
serves two purposes. First, since both rival meth-
ods have a similar foundation in their learning mech-
anism, the merit of using the preferences set rather
than scalar values could be assessed more precisely.
Secondly, the same input parameters (e.g., cost error,
the kernel’s parameters etc.) have been used to tune
models in order to have a fair comparison.

In terms of choosing the kernel function, although
there are many kernels available in the literature, and
devising a new kernel by meeting Mercer’s Condition
is possible, we just simply utilize three well-known
kernels, listed here:

• K(x,y) = x ·y: The linear kernel which is equiva-
lent to the non-kernel based formulation (Eq. 17).

• K(x,y) = (γx · y+ r)p: The polynomial kernel of
degree p; here, we assume p = 2, γ = 1 and r = 0.

• K(x,y) = e−‖x−y‖2/2σ2
: This is the Gaussian ra-

dial basis function (RBF), a typical choice for the
kernel function. The parameter σ is tuned as an
input parameter.

For each user, the ride-matching records are sorted
in ascending order of the creation time, and then split
into two parts. The first part includes 80% of the
records and is used to learn the model. At the end
of learning stage, models can predict, for each record,

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

70



Table 2: Five ride-matching records which are used in Example 2.

Ground Truth SVPL Prediction Regression Prediction

Labels Ranking Value Ranking Value Ranking

S1 C 2 0.52 2 0.71 3
S2 I 3 0.35 4 0.28 5
S3 I 3 0.31 5 0.36 4
S4 A 1 0.77 1 0.91 1
S5 R 4 0.43 3 0.75 2

a scalar value which expresses the goodness of that
record for the main user.

The second part of the data is used for the testing
stage. From this data, a weak order (a kind of rank-
ing in which incomparable items are assigned with
the same rank) with respect to class labels could be
derived. This ranking is used as the ground truth
for testing. From the other side, the predicted scalar
values for records produced by learned models sug-
gest a total order (ordinal ranking) between records.
Thereafter, C-Index (or concordance C) as one of
standard ranking assessment measures, is exploited
so as to find the accuracy of models (Fürnkranz and
Hüllermeier, 2010). It is is calculated as follows:

C-Index(r, r̂) =
κ

κ+ κ̄
where κ is the number of correctly ranked pairs and
κ̄ (Kendall tau distance) is the number of incorrectly
ranked pairs. This is illustrated by the following ex-
ample.

Example 2. Assume there are 5 ride-matching
records to test the learned models. Table 2 includes
the user’s responses to these records, derived par-
tial ranking as the ground truth and predicted scalar
values/ranking by using SVPL and Regression. Ac-
cording to the given information, there are two pairs
that are incorrectly ranked for SVPL ((S2,S5) and
(S3,S5)). So, the C-Index for SVPL is 7

9 = 0.77.
For the Regression method, Kendall tau distance is
3 due to three wrong ranked pairs ((S1,S5), (S2,S5)
and (S3,S5)). Hence, the C-Index is 6

9 = 0.66. Note
that S1 and S3 are incomparable here.

In order to adjust the input parameters, we use the
Grid Search algorithm for hyper-parameter optimiza-
tion (Bergstra and Bengio, 2012). Roughly speaking,
in the Grid Search, input parameters are tuned for
each rival method individually to yield the best per-
formance for that particular method. So, the accuracy
of models are compared at their optimal point.

Each run of the learning and testing phases for all
those 44 users takes less than a couple of minutes,
making use of a computer facilitated by a Core i7 2.60

GHz processor and 8 GB RAM memory. In our ex-
periments, simply averaging the accuracy of a model
among users is used to compute the overall accuracy
of the model in each run. Figure 2 depicts the ac-
curacy of models for those three aforementioned ker-
nels.

As seen in the figure, SVPL outperforms the re-
gression method overall where the difference between
two methods is most notable in the linear case. The
accuracy of Regression increases by utilizing the RBF
kernel, while it is not the case for SVPL. We should
note that kernel methods are supposed to ease rep-
resentation of points in the features space whilst in-
curring computational expense; that could mean if a
model has almost the same accuracy in a non-kernel
and kernel based formulation, the non-kernel one is
preferred.

5 CONCLUDING REMARKS

In this paper, we have presented novel aspects of
the potential automatic ride-matching system, mak-
ing use of user preferences. Unlike the prevalent sys-
tems in ridesharing, this approach gives freedom to
participants in the choice of ridesharing partner; it is
supported by the fact that the user may disapprove of
the assigned matching which is found from the op-
timization of the whole system. A model similar to
SVMRank(Joachims, 2002) in form, SVPL, was dis-
cussed in Section 3 with the ability of learning user
preferences in a natural way in order to finally con-
tribute in the suggestion of a menu of good choices to
the user. Moreover, despite providing the flexibility
in the matching process to deviate from the optimal
solution, learning user preferences softens the tradi-
tional way of setting hard constraints, and remove the
need for eliciting some complex parameters from par-
ticipants.

A natural extension would be if the preferences
set (pairwise trade-offs) derived from the user’s feed-
back could be associated with some degree of uncer-
tainty. For instance, if it is said that the user proba-

Learning User Preferences in Matching for Ridesharing

71



Figure 2: The accuracy of models when linear formulation, polynomial kernel and gaussian kernel are chosen.

bly prefers the case A to B, with certainty degree of
0.7. We plan to study the uncertainty in preferences
in our future works. Other interesting subjects related
to this paper that could be addressed in future works,
include handling nominal and unknown values in the
features space, online learning, and utilizing a general
model for users who still do not have enough records
for learning a dedicated model.

ACKNOWLEDGEMENT

This publication has emanated from research sup-
ported in part by a research grant from Sci-
ence Foundation Ireland (SFI) under Grant Num-
ber SFI/12/RC/2289, and also supported by Carma
(http://carmacarpool.com).

REFERENCES

Agatz, N., Erera, A., Savelsbergh, M., and Wang, X. (2012).
Optimization for dynamic ride-sharing: A review. Eu-
ropean Journal of Operational Research, 223(2):295
– 303.

Agatz, N. A., Erera, A. L., Savelsbergh, M. W., and Wang,
X. (2011). Dynamic ride-sharing: A simulation study
in metro atlanta. Transportation Research Part B:
Methodological, 45(9):1450–1464.

Aiolli, F. and Sperduti, A. (2011). A preference optimiza-
tion based unifying framework for supervised learn-
ing problems. In Fürnkranz, J. and Hüllermeier, E.,
editors, Preference Learning, pages 19–42. Springer
Berlin Heidelberg.

Aizerman, A., Braverman, E. M., and Rozoner, L. I.
(1964). Theoretical foundations of the potential func-
tion method in pattern recognition learning. Automa-
tion and Remote Control, 25:821–837.

Amey, A., Attanucci, J., and Mishalani, R. (2011).
Real-time ridesharing the opportunities and chal-

lenges of utilizing mobile phone technology to im-
prove rideshare services. Transportation Research
Record: Journal of the Transportation Research
Board, 2217(1):103–110.

Armant, V. and Brown, K. N. (2014). Minimizing the driv-
ing distance in ride sharing systems. In Tools with
Artificial Intelligence (ICTAI), 2014 IEEE 26th Inter-
national Conference on, pages 568–575. IEEE.

Baldacci, R., Maniezzo, V., and Mingozzi, A. (2004). An
exact method for the car pooling problem based on
lagrangean column generation. Operations Research,
52(3):422–439.

Ben-Hur, A. and Weston, J. (2010). A users guide to support
vector machines. In Carugo, O. and Eisenhaber, F.,
editors, Data Mining Techniques for the Life Sciences,
volume 609 of Methods in Molecular Biology, pages
223–239. Humana Press.

Bergstra, J. and Bengio, Y. (2012). Random search for
hyper-parameter optimization. The Journal of Ma-
chine Learning Research, 13(1):281–305.

Boyd, S. and Vandenberghe, L. (2004). Convex optimiza-
tion. Cambridge university press.

Burges, C. J. (1998). A tutorial on support vector machines
for pattern recognition. Data mining and knowledge
discovery, 2(2):121–167.

Chan, N. D. and Shaheen, S. A. (2012). Ridesharing in
north america: Past, present, and future. Transport
Reviews, 32(1):93–112.

Chaube, V., Kavanaugh, A. L., and Perez-Quinones, M. A.
(2010). Leveraging social networks to embed trust
in rideshare programs. In System Sciences (HICSS),
2010 43rd Hawaii International Conference on, pages
1–8. IEEE.

Duggan, M. and Smith, A. (2013). Cell internet
use 2013. Pew Research Center, http://www.
pewinternet.org/2013/09/16/cell-internet-use-2013/.

Emarketer (2014). 2 billion consumers worldwide to
get smart(phones) by 2016. http://www.emar
keter.com/Article/2-Billion-Consumers-Worldwide-
Smartphones-by-2016/1011694.

Fürnkranz, J. and Hüllermeier, E. (2010). Preference learn-
ing. Springer.

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

72



Furuhata, M., Dessouky, M., Ordóñez, F., Brunet, M.-E.,
Wang, X., and Koenig, S. (2013). Ridesharing: The
state-of-the-art and future directions. Transportation
Research Part B: Methodological, 57:28–46.

Ghoseiri, K., Haghani, A. E., and Hamedi, M. (2011). Real-
time rideshare matching problem.

Herbawi, W. M. and Weber, M. (2012). A genetic and inser-
tion heuristic algorithm for solving the dynamic ride-
matching problem with time windows. In Proceedings
of the 14th annual conference on Genetic and evolu-
tionary computation, pages 385–392. ACM.

Hwang, M., Kemp, J., Lerner-Lam, E., Neuerburg, N., and
Okunieff, P. (2006). Advanced public transportation
systems: state of the art update 2006. Technical report.

Joachims, T. (2002). Optimizing search engines using click-
through data. In Proceedings of the eighth ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 133–142. ACM.

Saranow, J. (2006). Carpooling for grown-ups—high gas
prices, new services give ride-sharing a boost; rating
your fellow rider. Wall Street Journal.

Simonin, G. and O’Sullivan, B. (2014). Optimisation for the
ride-sharing problem: a complexity-based approach.
In ECAI, pages 831–836.

Smith, A. (2015). Us smartphone use in 2015.
Pew Research Center, http://www.pewinternet.
org/2015/04/01/us-smartphone-use-in-2015/.

Zickuhr, K. (2012). Three-quarters of smartphone owners
use location-based services. Pew Research Cen-
ter, http://www.pewinternet.org/2012/05/11/three-
quarters-of-smartphone-owners-use-location-based-
services/.

Learning User Preferences in Matching for Ridesharing

73


