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Abstract: With the recent advancements in distributed processing, sensor networks, cloud computing and similar 
technologies, big data has gained importance and a number of big data applications can now be envisaged 
which could not be conceptualised earlier. However, gradually as technologists focus on storing, processing 
and management of big data, a number of big data solutions have come up. The objective of this paper is to 
study two such solutions, namely Hadoop and Cassandra, in order to find their suitability for healthcare 
applications. The paper considers a data model for a remote health framework and demonstrates mappings 
of the data model using Hadoop and Cassandra. The data model follows popular national and international 
standards for Electronic Health Records. It is shown in the paper that in order to obtain an efficient mapping 
of a given data model onto a big data solution, like Cassandra, sample queries must be considered. In this 
paper, health data is stored in Hadoop using xml files considering the same set of queries. Next, the 
performances of these queries in Hadoop are observed and later, performances of executing these queries on 
the same experimental setup using Hadoop and Cassandra are compared. YCSB guidelines are followed to 
design the experiments. The study provides an insight for the applicability of big data solutions in healthcare 
domain. 

1 INTRODUCTION 

It is not always possible for a patient to get a doctor 
at the time and place of requirement. Moreover it is 
not always possible for a doctor to be physically 
present with all patients at the time and place of 
requirement. This situation particularly may occur in 
case of remote villages, hilly areas and in other 
places. The reason is that the ratio of patients to 
doctors is very poor in such areas. A remote health 
framework is proposed in (Mukherjee, 2014). The 
framework helps to monitor health parameters of a 
patient from a distance. Doctors can provide remote 
guidance to these patients. Sensors are used for 
continuous monitoring of patients' health on advice 
of doctors. This sensor data is to be stored. 

Health data is huge in volume. If we include 
sensor observation data as part of health data, it 
becomes more voluminous. 

Health data may consist of text (as in history of a 
patient),  images (as in X-Ray or USG), audio (as in 
heart beat), video (as in ECG) or many other 
formats. Thus, different data structures may be 

needed to store different parts of health data and 
therefore, health data usually have variety. 

Health data  contains sensor observation data that 
is generated and sent very fast. It has to be processed 
fast as well. Thus velocity is another characteristics 
of sensor data. 

Furthermore, sensor observation data may also 
have uncertainty and loss of accuracy is another 
feature of such type of data due to various obstacles 
and environmental situations. Thus, it is not 
trustworthy always. Hence, veracity is another 
property. Having all the above features of big data, it 
can be suggested that usual database schemas are not 
effective for health data and this data be stored in 
some big data solutions. 

However, in the present scenario, choice can be 
made among a large number of big data solutions. It 
is suggested that big data be stored in a NOSQL 
database, like Cassandra or MongoDB. On the other 
hand, Hadoop provides a Map-Reduce framework 
that enables distributed processing of large data sets 
across clusters of commodity servers. A big data 
solution must be judged on the basis of its 
operational ease, cost effectiveness and performance 
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scalability.  
The purpose of this paper is to study 

implementation of a data model in Cassandra and in 
Hadoop. The data model cannot be directly 
implemented in big data solutions. It is preferable 
that a set of queries are considered for deciding 
efficient storage of data in big data solutions. Thus, 
we present mappings from the proposed data model 
to data models suitable for Cassandra and Hadoop. 
Once this mapping is done, a comparative study is 
made for running queries in Hadoop and Cassandra.  

The remaining part of the paper is organised as 
follows. Section 2 discusses some big data solutions. 
Section 3 describes a data model for our remote 
healthcare framework. Section 4 and 5 discuss the 
mappings of the data model in Cassandra and in 
Hadoop-linked xml files respectively. Section 6 
presents the experimental setup and the results. 
Finally, Section 7 concludes with a direction of 
future work. 

2 BIG DATA SOLUTIONS 

In this section, two big data solutions, namely 
Cassandra and Hadoop, are described as they have 
been used in this research work. 

Cassandra NoSQL Database: Cassandra uses 
column family to store distributed NOSQL data. It 
provides high read throughput. Search latency is low 
in it because of replication of data across multiple 
nodes with a replication factor. Column family is 
similar to tables of RDBMS. Column families have 
schema but that can be dynamic and every record 
may not contain all fields of data. 

Row key of Cassandra can be formed using 
multiple keys. The first portion of such composite 
key is the partition key.  

Hadoop Map-Reduce Framework: Hadoop is 
an open source framework to provide scalability, 
reliability to distributed computing jobs. Hadoop 
follows a master-slave architecture with a master or 
name node and many slave or data nodes in a 
cluster. Name node manages namespace of a file 
system and controls access of files by clients. Files 
are divided into blocks and these blocks are mapped 
to different data nodes by the name node. Name 
node maintains meta data. Data nodes create, 
replicate and delete blocks and also read and write 
data following instructions of name node. Data 
nodes have access to one or more local disks. Scale 
in and scale out are done by adding and removing 
data nodes. There is a secondary name node that 
does housekeeping work for the name node. 

In Hadoop Map-Reduce framework, the Map 
function divides a task into subtasks that can be 
executed in parallel. Reduce function combines the 
output of the map phase into an output form that is 
the output of the complete task. 

Job tracker runs on the name node that accepts 
jobs from clients, schedules them on data nodes and 
gets status report of the jobs running. It gets 
information of number of slots available in map and 
reduce slots. One job tracker runs on a name node. 
Task tracker runs on data or worker node. It accepts 
task from job tracker and reports job status to it. 
Communication among job tracker and task tracker 
uses RPC for communication. 

If one of the parallel jobs fails due to storage or 
processing failure then it can be completed on some 
other node as Hadoop manages component failure 
by replicating data on different nodes. 

Map-Reduce framework can execute on a file 
system which is considered as unstructured, though 
it can also work on structured databases. Map-
Reduce ensures locality of data through processing 
data on local nodes. In this work, health data is 
stored in xml files for use in Hadoop framework. 

3 A DATA MODEL FOR 
HEALTHCARE DOMAIN 

In this section, a data model (Sil Sen, 2014) for 
healthcare delivery is presented. The data model is 
developed on the basis of guidelines provided by 
Indian Standard for Electronic Health Records 
approved by Ministry of Health and Family Welfare, 
Government of India (2013) and also other popular 
international standards of Electronic Health records 
and Electronic Medical Records. The member 
variables in each of the classes are added following 
the above mentioned standards. In contrast to many 
other health data models published in the literature, 
our data model (Sil Sen, 2014) is hierarchical. This 
data model can be improved further to address 
complexities of Electronic Health Record. The class 
diagram is shown in Figure 1. 

A brief description of the important classes is 
provided in this section. However, the data members 
are not shown, because of space limitation. A patient 
may have one or more complaints. A complaint is 
treated by one or many treatment_episodes. A 
treatment_episode is handled by a doctor. A doctor 
may be engaged in one or more treatment_episodes. 
A treatment_episode contains one or more visits. In 
a visit, doctor may prescribe one or more 
investigations. Investigation can be of two types – 

Comparative Study of Query Performance in a Remote Health Framework using Cassandra and Hadoop

331



continuous_monitoring and discrete_monitoring. 
Discrete_monitoring can be either 
one_time_investigation (such as X-Ray) or 
periodic_investigation (such as blood pressure 
monitoring). Continuous_monitoring is done using 
body sensor networks (not shown in the diagram). 
Diagnosis may be concluded in a Visit. 
Treatment_plan is prescribed in a Visit. 

 

Figure 1: Proposed data model for Remote Health 
framework. 

4 STORING HEALTH RECORD 
IN CASSANDRA 

There is no formal method to migrate a data model 
from one form to another form suitable for a big data 
datastore. It has been felt that every big data solution 
has its own advantages and disadvantages and 
signature characteristics. Implementation of a data 
model in a big data solution requires trial and error 
depending on few factors. These factors are: 
 Nature of the application and its requirements 

involving type of data; 
 The queries that the system will execute; 
 Performance requirement of these queries; 
 Amount of data involved; 
 Features of the target big data solution; 
 Statistics related to the queries like the 

frequency of running a query. 

In the remote health framework presented in 
(Mukherjee, 2014), the following characteristics of 

health data have been observed: 
 data is stored in various formats, like text, 

image, audio, video and sensor observed data; 
 some part of health data changes frequently, 

while some other part hardly changes, e.g. 
demographic information. Thus every part of 
health data is not read/ written with same 
frequency; 

 huge volume of sensor data are generated at 
high velocity and with  uncertainty and are 
stored as part of health data. 

 

To implement the data model, initially all fields are 
kept together in denormalized form. Later, 
depending on different queries from the designed set 
of queries, the initial column family is broken into 
more than one column families. A data field may be 
replicated several times in different column families 
to improve query performance. It is to be noted that, 
in contrast with RDBMS which tries to avoid 
redundancy of data, in many big data solutions data 
redundancy is preferred to improve availability and 
performance. The entire procedure is repeated until 
the query performance reaches the desired level 

 

Patel (2012) discussed some best practices of 
Cassandra. These are discussed below.  
 Data is to be kept in denormalized form to 

improve the query performance. Cassandra has 
data compression facility embedded within it to 
manage redundancy of data. 

 Join operation incurs overhead and therefore is 
avoided in Cassandra. The seek time also 
increases after joining. 

 Read heavy data is to be kept separately from 
write heavy data. The query performance 
improves if a proper row key is chosen.  

 Finally, if all the fields related to a query is kept 
in one partition, then Cassandra performs well. 
However, this leads to redundancy in data. 

 

Dynamic column family, super column family and 
indexes are avoided as they are inappropriate here. 
Index ensures order on one field. In real life 
situation, all the required search order cannot be 
based on one index. Performance using indexes has 
shown poor performance (Naguri, 2015). Therefore 
indexes are avoided in this implementation. 

Some sample queries are considered as follows: 
specialization wise doctor search, patient wise 
information (demographic, food habit etc.) search, 
patient wise complaint search, complaint wise 
treatment search, treatment wise investigation 
search. 

Initially, in order to facilitate the patient-related 
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information search and doctor-related information 
search, two column families are designed, these are 
Patient and Doctor. It may be noted that these 
queries mostly search data that are less frequently 
updated. For rest of the queries, the 
Treament_Episode and the Visit column families 
along with one separate column family for sensor 
data are created. . Relevant medical information 
related to a specific complaint is kept in 
treatment_Episode and Visit files. Visit file also 
contains all generally observed medical parameters 
like pulse rate etc. 

Initially sensor data has been stored in Visit 
column family. But this degrades the query 
performance and as size of file increases time out 
happens. Therefore, the above decision was made. 

5 STORING HEALTH RECORD 
IN HADOOP 

The data model discussed in the previous section is 
converted to a structural form for analysis of data 
through Hadoop. The classes are stored in xml as it 
has a standard interoperable format. The data are 
fetched from the database using CQL/SQL and 
connected to a java program to build large xml file 
to run analysis. The important attributes of patient 
column family are shown in Table 1. 

Table 1: Patient File. 

Patient 

patient_id,  
patient_name,  
patient_dob,  
alternate_patient_ids,  
patient_gender,  
patient_occupation,  
patient_address_type, 
patient_address,  
patient_email_id, 
patient_phone_ll,  
patient_mob,  
Emergencycontactperson _name,  
Emergencycontactperson _relation, 
Emergencycontactperson_address,  
pt_foodhabbit,  

 

XML File Description for Patients:  
<?xml version="1.0" encoding="UTF-
8"?> 
<properties> 
 <pt_id> Patient Unique ID </pt_id> 
 <pt_name> Patient's  name  
</pt_name> 
 <pt_dob> Patient's date of birth 

</pt_dob> 
 : : : : : 
 : : : : : 
<properties> 

 

For the remaining files, their respective fields are 
given in Tables 2, 3, 4 and 5. It must be noted that 
the files do not exactly correspond to the classes 
shown in Figure 1. Based on the discussion in 
Section 4, data fields are repeated in different files, 
so that a file is able to produce answers to all the 
queries considered initially. 
The large volume of health records is stored in 
Hadoop file system using these tables.  Map-Reduce 
programs are written for retrieval and analysis of 
data that are run on Hadoop file system. 

Table 2: Doctor File. 

Doctor 
doctor_id 
doctor_name 
doctor_type 
doctor_specialization 
doctor_organization 
doctor_address_type 
doctor_address 
doctor_email_id 
doctor_mob 

Table 3: Treatment_Episode File. 

Treatment_Episode 
treatment _episode_id,  
patient_id,  
patient_name,  
patient_address,  
patient_gender, 
patient_food_habbit, 
patient_allergy,  
blood_group,  
doctor_id,  
doctor_name,  
 doctor_specialization,  
start_date,  
is_active,  
complaint,  
diagnosis,  
clinical_status
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Table 4: Visit File. 

Visit 
visit_id,  
patient_id,  
patient_name,  
patient_address,  
patient_food_habbit, 
allergy,  
blood_group,  
treatment_episode_id,  
treatment_start_date, 
initial_complaint, 
visit_time, 
reason,  
systolic_bp,  
diastolic_bp,  
pulse_rate,  
temp,  
respiration_rate, 
height_cms,  
weight_kgs,  
investigations, 
investigation_reports,  
medication,  
diagnosis,  
therapies 
surgeries,  
current_status 

Table 5: Sensed_data File. 

sensor_data 
patient_id,  
treatment_episode_id,  
visit_id,  
parameter,  
data  
.... 

6 EXPERIMENTAL RESULTS 

(A) Experimental Setup – This paper presents two 
sets of experiments – (i) using Map-Reduce 
programs in Hadoop with varied amount of data on 
different number of Hadoop nodes, (ii) varying the 
amount of data, while keeping the number of 
Hadoop nodes fixed (16 here) and comparing the 
results with Cassandra implementation in the same 
environment. 

All experiments are performed on a 16 node 
cluster. Each node has the configuration of 2.93 
GHz Intel Core2 Duo Processor with 3GB RAM and 
1 TB storage space. 

From the initial set of queries (considered for 
designing the databases), a subset of queries is 
chosen with the support of YCSB guidelines 
(research.yahoo.com/files/ycsb.pdf). Eight simple 
queries and one statistical queries are processed by 
customized Hadoop Map-Reduce code.  

 

The queries are given below. 
1. Find all doctor's names and their details with 

specialization string 'cardiologist'. 
2. Find all information of patients like 

demographic info, religion, food habit etc, for a 
patient. 

3. Find all ECG reports of a patient. 
4. Find history of 'Diabetes' of a patient. 
5. Find sensor data of a patient for one hour. 
6. Patient treatment case history for a patient. 
7. Find all the doctor's names who are attached 

with an organization. 
8. Find all the complaint details of a Patient. 
9. Retrieving sensor data for a particular patient 

observed during one hour time. 
 

The statistical query is 
1. Find the number of babies with age is between 0 

and 5 and suffering from malnutrition.  
 

Each time number of data records in respective files 
is varied from 50 to 800,000 of records and number 
of Hadoop nodes is varied from 1 to 16. Every 
experiment is performed three times for each query 
and the average of the three results is taken. 
The same queries are executed in Cassandra on 16 
nodes. Data volume is varied as in the previous case. 
 

(B) Results - (i) Experiments running on different 
number of Hadoop nodes: Based on the above 
experimental setup, a study is made on the data 
retrieval time with varied amount of data stored in 
Hadoop. All the nine queries and the statistical query 
are run. Due to space limitation, only the results of 
query 1 (Figure 2), query 9 (Figure 4) and the 
statistical query (Figure 3) are presented in this 
paper. 

DISCUSSION 
It is observed that while executing the queries is 
Hadoop, higher number of slaves does not signify 
better performance. Optimal performance is 
obtained when a particular load is given to a 
particular number of slaves. For example, the 
performance of the implementation with 8 nodes is 
poor, even worse than one or two slaves.  

It is also observed that performance on 16 slaves 
improves and become better in comparison with 
others when number of records is high (above 
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500,000). Thus, with low volume of data, Hadoop 
Map-Reduce code on different number of slaves has 
almost no effect. 

 

Figure 2: Query performance of specialization-wise doctor 
search in Hadoop. 

 

Figure 3: Query performance of number of babies between 
age 0 and 5 suffering from malnutrition. 

 

Figure 4: Query performance of Sensor observation data 
of a patient during an hour. 

The above observations can be explained from 
the study presented in (Guo, 2012) (Bezerra, 2013). 
It has clearly been shown that Hadoop scheduling is 
non-optimal. The scheduling algorithm in Hadoop 
for the Map tasks considers data locality, but 
overlooks other factors such as system load and 
fairness. 
 

(ii) Comparative study between Hadoop and 
Cassandra: Same set of queries as given in Section 
6 are executed on the data stored in Cassandra with 
varying number of records in respective column 
families corresponding to each query. Number of 
nodes in the set up is taken as 16.  

Figures 5, 6, 7 and 8 depict the results of the 
comparison for queries 1, 2, 3 and 4 respectively. 
Data retrieval time required by Hadoop is shown as 
th and time required by Cassandra is shown as tc. 
Number of records shown is in 100,000.  

 

 

Figure 5: Execution of query1 in Cassandra and Hadoop. 

 

Figure 6: Execution of query2 in Cassandra and Hadoop. 

Figure 5 depicts the retrieval time for doctors’ 
names and their details with specialization string 
'cardiologist'. It is clear that Hadoop performs much 
better as number of records increases.  

Performance of query 2 is shown in Figure 6. 
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Here Patient_id is used as the row key, the time of 
retrieving patient information decreases with 
increase in number of records in Cassandra. For this 
query, Cassandra performs better than Hadoop. 

Performance of query 3 is shown in Figure 7. 
Time of accessing ECG data of a patient increases 
slowly with increase in number of records. Hadoop 
performs much better than Cassandra. 

Performance of query 4 is shown in Figure 8. 
Time to retrieve records of a diabetic patient 
increases with number of records. 

 

 

Figure 7: Performance of query 3 in Cassandra and 
Hadoop. 

 

Figure 8: Performance of query 4 in Cassandra and 
Hadoop. 

DISCUSSION 
The above results show that Hadoop performs better 
in case of all queries leaving one. The performance 
of Cassandra improves significantly with increase in 
number of records for patient wise information 
search (Figure 6). Cassandra, when compared with 
Hadoop in this case, performs well in spite of the 
fact that Hadoop is well known for large volume of 
data processing. In case of query 2, the Patient_id is 

used as the row key (similar to primary key in 
RDBMS), and the query is made on the basis of the 
primary key. Therefore, data retrieval becomes fast. 
In other cases, queries do not involve the row key 
and therefore query performance is poor. 

Cassandra particularly performs poorly in case of 
query 4. The data mapping strategy can be 
responsible for this. There are two conflicting goals 
in Cassandra data mapping – (i) data must be spread 
evenly around the cluster, and (ii) the number of 
partitions read must be minimized. On the basis on 
these two goals, a trade-off is to be made while 
implementing in Cassandra for a set of queries. 
Requirements for one query may be conflicting with 
another leading to performance degradation.  

The study further demonstrates that Hadoop has 
the capacity to work with voluminous data set as 
expected.  

7 RELATED WORK 

With the recent advancements in sensor networks 
and cloud computing, scientists have focussed on 
application of big data concepts in healthcare 
domain. However, much of the contemporary 
research works actually consider big data analytics 
utilizing large volumes of medical data and 
combining multimodal data from disparate sources 
(Belle, 2015). Only few aim at studying various big 
data tools in order to develop an insight about 
suitability of these tools for healthcare data storage, 
processing and management. A comparative study of 
NOSQL databases is provided in (Manoj, 2014). 
However, the authors only provide a theoretical 
study of architecture and internal working of 
Cassandra, MongoDB and HBase and carry out an 
evaluation of Cassandra for performance and 
concurrency in comparison with relational databases 
within only a limited scope. Lourenço et al 
(Lourenço, 2015) provides a detailed study on 
various big data solutions including Cassandra, 
HBase etc. However, the study is based on literature 
review and no performance evaluation is presented. 
The architecture for a distributed sensor data 
collection, storage, and analysis system developed 
using Hadoop in a cloud environment is presented in 
(Aydin, 2015). Performance of this implementation 
is also observed. However, this work does not 
address the specific issues in healthcare domain. 
Performance of Hadoop is also studied in (Guo, 
2012) and (Bezerra, 2013) for generic applications. 

Our work is different from the above mentioned 
research works, because we consider the specific 
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issues related to healthcare applications and carry 
out experimental study regarding the performance of 
two big data solutions with particular consideration 
of healthcare applications. 

8 CONCLUSIONS 

This paper has studied the performance of two big 
data solutions in healthcare domain. We have 
considered a healthcare data model proposed on the 
basis of national and international EHR standards 
and demonstrate its mapping onto two big data 
solutions, namely Cassandra and Hadoop. The 
performance of a representative set of queries has 
been studied using Hadoop. Further, we have also 
carried out a comparative study of query 
performance in Cassandra and in Hadoop systems. 

It is observed that the mapping strategy is an 
important issue in improving performance of any big 
data solution. However, this should be based on 
some queries which are considered to be frequent in 
the application domain. It is also observed that 
Hadoop performs better with large data sets in 
comparison with Cassandra. The observations from 
the experimental study clearly establish the fact that 
Hadoop is more focussed on data processing and 
therefore, scheduling strategy is important in case of 
Hadoop. On the other hand, because data storage 
and distribution is the main goal in Cassandra, 
implementation is Cassandra should consider the 
data mapping strategy as the primary issue. 

In future, our goal is to develop algorithms for 
transformation of data models to big data solutions. 
In order to combine the strengths of Hadoop (in 
terms of data processing) and Cassandra (in terms of 
storage), it is planned to extend the work to use 
Hadoop integrated with Cassandra. Other big data 
solutions, like Mongodb and Hbase may also be 
considered and their performances can be compared. 
It is interesting to investigate the impact of other file 
formats used to store data on the performance of 
Hadoop Map-Reduce framework.  
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