
Comparative Study of Query Performance in a Remote Health
Framework using Cassandra and Hadoop

Himadri Sekhar Ray1, Kausik Naguri1, Poly Sil Sen2 and Nandini Mukherjee1
1Department of Computer Science and Engineering, Jadavpur University, Kolkata, India

2Department of Information Technology, Techno India, Salt Lake, Kolkata, India

Keywords: Electronic Health Record, Big Data, Sensors, Hadoop, Cassandra.

Abstract: With the recent advancements in distributed processing, sensor networks, cloud computing and similar
technologies, big data has gained importance and a number of big data applications can now be envisaged
which could not be conceptualised earlier. However, gradually as technologists focus on storing, processing
and management of big data, a number of big data solutions have come up. The objective of this paper is to
study two such solutions, namely Hadoop and Cassandra, in order to find their suitability for healthcare
applications. The paper considers a data model for a remote health framework and demonstrates mappings
of the data model using Hadoop and Cassandra. The data model follows popular national and international
standards for Electronic Health Records. It is shown in the paper that in order to obtain an efficient mapping
of a given data model onto a big data solution, like Cassandra, sample queries must be considered. In this
paper, health data is stored in Hadoop using xml files considering the same set of queries. Next, the
performances of these queries in Hadoop are observed and later, performances of executing these queries on
the same experimental setup using Hadoop and Cassandra are compared. YCSB guidelines are followed to
design the experiments. The study provides an insight for the applicability of big data solutions in healthcare
domain.

1 INTRODUCTION

It is not always possible for a patient to get a doctor
at the time and place of requirement. Moreover it is
not always possible for a doctor to be physically
present with all patients at the time and place of
requirement. This situation particularly may occur in
case of remote villages, hilly areas and in other
places. The reason is that the ratio of patients to
doctors is very poor in such areas. A remote health
framework is proposed in (Mukherjee, 2014). The
framework helps to monitor health parameters of a
patient from a distance. Doctors can provide remote
guidance to these patients. Sensors are used for
continuous monitoring of patients' health on advice
of doctors. This sensor data is to be stored.

Health data is huge in volume. If we include
sensor observation data as part of health data, it
becomes more voluminous.

Health data may consist of text (as in history of a
patient), images (as in X-Ray or USG), audio (as in
heart beat), video (as in ECG) or many other
formats. Thus, different data structures may be

needed to store different parts of health data and
therefore, health data usually have variety.

Health data contains sensor observation data that
is generated and sent very fast. It has to be processed
fast as well. Thus velocity is another characteristics
of sensor data.

Furthermore, sensor observation data may also
have uncertainty and loss of accuracy is another
feature of such type of data due to various obstacles
and environmental situations. Thus, it is not
trustworthy always. Hence, veracity is another
property. Having all the above features of big data, it
can be suggested that usual database schemas are not
effective for health data and this data be stored in
some big data solutions.

However, in the present scenario, choice can be
made among a large number of big data solutions. It
is suggested that big data be stored in a NOSQL
database, like Cassandra or MongoDB. On the other
hand, Hadoop provides a Map-Reduce framework
that enables distributed processing of large data sets
across clusters of commodity servers. A big data
solution must be judged on the basis of its
operational ease, cost effectiveness and performance

330
Ray, H., Naguri, K., Sen, P. and Mukherjee, N.
Comparative Study of Query Performance in a Remote Health Framework using Cassandra and Hadoop.
DOI: 10.5220/0005706803300337
In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2016) - Volume 5: HEALTHINF, pages 330-337
ISBN: 978-989-758-170-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

scalability.
The purpose of this paper is to study

implementation of a data model in Cassandra and in
Hadoop. The data model cannot be directly
implemented in big data solutions. It is preferable
that a set of queries are considered for deciding
efficient storage of data in big data solutions. Thus,
we present mappings from the proposed data model
to data models suitable for Cassandra and Hadoop.
Once this mapping is done, a comparative study is
made for running queries in Hadoop and Cassandra.

The remaining part of the paper is organised as
follows. Section 2 discusses some big data solutions.
Section 3 describes a data model for our remote
healthcare framework. Section 4 and 5 discuss the
mappings of the data model in Cassandra and in
Hadoop-linked xml files respectively. Section 6
presents the experimental setup and the results.
Finally, Section 7 concludes with a direction of
future work.

2 BIG DATA SOLUTIONS

In this section, two big data solutions, namely
Cassandra and Hadoop, are described as they have
been used in this research work.

Cassandra NoSQL Database: Cassandra uses
column family to store distributed NOSQL data. It
provides high read throughput. Search latency is low
in it because of replication of data across multiple
nodes with a replication factor. Column family is
similar to tables of RDBMS. Column families have
schema but that can be dynamic and every record
may not contain all fields of data.

Row key of Cassandra can be formed using
multiple keys. The first portion of such composite
key is the partition key.

Hadoop Map-Reduce Framework: Hadoop is
an open source framework to provide scalability,
reliability to distributed computing jobs. Hadoop
follows a master-slave architecture with a master or
name node and many slave or data nodes in a
cluster. Name node manages namespace of a file
system and controls access of files by clients. Files
are divided into blocks and these blocks are mapped
to different data nodes by the name node. Name
node maintains meta data. Data nodes create,
replicate and delete blocks and also read and write
data following instructions of name node. Data
nodes have access to one or more local disks. Scale
in and scale out are done by adding and removing
data nodes. There is a secondary name node that
does housekeeping work for the name node.

In Hadoop Map-Reduce framework, the Map
function divides a task into subtasks that can be
executed in parallel. Reduce function combines the
output of the map phase into an output form that is
the output of the complete task.

Job tracker runs on the name node that accepts
jobs from clients, schedules them on data nodes and
gets status report of the jobs running. It gets
information of number of slots available in map and
reduce slots. One job tracker runs on a name node.
Task tracker runs on data or worker node. It accepts
task from job tracker and reports job status to it.
Communication among job tracker and task tracker
uses RPC for communication.

If one of the parallel jobs fails due to storage or
processing failure then it can be completed on some
other node as Hadoop manages component failure
by replicating data on different nodes.

Map-Reduce framework can execute on a file
system which is considered as unstructured, though
it can also work on structured databases. Map-
Reduce ensures locality of data through processing
data on local nodes. In this work, health data is
stored in xml files for use in Hadoop framework.

3 A DATA MODEL FOR
HEALTHCARE DOMAIN

In this section, a data model (Sil Sen, 2014) for
healthcare delivery is presented. The data model is
developed on the basis of guidelines provided by
Indian Standard for Electronic Health Records
approved by Ministry of Health and Family Welfare,
Government of India (2013) and also other popular
international standards of Electronic Health records
and Electronic Medical Records. The member
variables in each of the classes are added following
the above mentioned standards. In contrast to many
other health data models published in the literature,
our data model (Sil Sen, 2014) is hierarchical. This
data model can be improved further to address
complexities of Electronic Health Record. The class
diagram is shown in Figure 1.

A brief description of the important classes is
provided in this section. However, the data members
are not shown, because of space limitation. A patient
may have one or more complaints. A complaint is
treated by one or many treatment_episodes. A
treatment_episode is handled by a doctor. A doctor
may be engaged in one or more treatment_episodes.
A treatment_episode contains one or more visits. In
a visit, doctor may prescribe one or more
investigations. Investigation can be of two types –

Comparative Study of Query Performance in a Remote Health Framework using Cassandra and Hadoop

331

continuous_monitoring and discrete_monitoring.
Discrete_monitoring can be either
one_time_investigation (such as X-Ray) or
periodic_investigation (such as blood pressure
monitoring). Continuous_monitoring is done using
body sensor networks (not shown in the diagram).
Diagnosis may be concluded in a Visit.
Treatment_plan is prescribed in a Visit.

Figure 1: Proposed data model for Remote Health
framework.

4 STORING HEALTH RECORD
IN CASSANDRA

There is no formal method to migrate a data model
from one form to another form suitable for a big data
datastore. It has been felt that every big data solution
has its own advantages and disadvantages and
signature characteristics. Implementation of a data
model in a big data solution requires trial and error
depending on few factors. These factors are:
 Nature of the application and its requirements

involving type of data;
 The queries that the system will execute;
 Performance requirement of these queries;
 Amount of data involved;
 Features of the target big data solution;
 Statistics related to the queries like the

frequency of running a query.

In the remote health framework presented in
(Mukherjee, 2014), the following characteristics of

health data have been observed:
 data is stored in various formats, like text,

image, audio, video and sensor observed data;
 some part of health data changes frequently,

while some other part hardly changes, e.g.
demographic information. Thus every part of
health data is not read/ written with same
frequency;

 huge volume of sensor data are generated at
high velocity and with uncertainty and are
stored as part of health data.

To implement the data model, initially all fields are
kept together in denormalized form. Later,
depending on different queries from the designed set
of queries, the initial column family is broken into
more than one column families. A data field may be
replicated several times in different column families
to improve query performance. It is to be noted that,
in contrast with RDBMS which tries to avoid
redundancy of data, in many big data solutions data
redundancy is preferred to improve availability and
performance. The entire procedure is repeated until
the query performance reaches the desired level

Patel (2012) discussed some best practices of
Cassandra. These are discussed below.
 Data is to be kept in denormalized form to

improve the query performance. Cassandra has
data compression facility embedded within it to
manage redundancy of data.

 Join operation incurs overhead and therefore is
avoided in Cassandra. The seek time also
increases after joining.

 Read heavy data is to be kept separately from
write heavy data. The query performance
improves if a proper row key is chosen.

 Finally, if all the fields related to a query is kept
in one partition, then Cassandra performs well.
However, this leads to redundancy in data.

Dynamic column family, super column family and
indexes are avoided as they are inappropriate here.
Index ensures order on one field. In real life
situation, all the required search order cannot be
based on one index. Performance using indexes has
shown poor performance (Naguri, 2015). Therefore
indexes are avoided in this implementation.

Some sample queries are considered as follows:
specialization wise doctor search, patient wise
information (demographic, food habit etc.) search,
patient wise complaint search, complaint wise
treatment search, treatment wise investigation
search.

Initially, in order to facilitate the patient-related

HEALTHINF 2016 - 9th International Conference on Health Informatics

332

information search and doctor-related information
search, two column families are designed, these are
Patient and Doctor. It may be noted that these
queries mostly search data that are less frequently
updated. For rest of the queries, the
Treament_Episode and the Visit column families
along with one separate column family for sensor
data are created. . Relevant medical information
related to a specific complaint is kept in
treatment_Episode and Visit files. Visit file also
contains all generally observed medical parameters
like pulse rate etc.

Initially sensor data has been stored in Visit
column family. But this degrades the query
performance and as size of file increases time out
happens. Therefore, the above decision was made.

5 STORING HEALTH RECORD
IN HADOOP

The data model discussed in the previous section is
converted to a structural form for analysis of data
through Hadoop. The classes are stored in xml as it
has a standard interoperable format. The data are
fetched from the database using CQL/SQL and
connected to a java program to build large xml file
to run analysis. The important attributes of patient
column family are shown in Table 1.

Table 1: Patient File.

Patient

patient_id,
patient_name,
patient_dob,
alternate_patient_ids,
patient_gender,
patient_occupation,
patient_address_type,
patient_address,
patient_email_id,
patient_phone_ll,
patient_mob,
Emergencycontactperson _name,
Emergencycontactperson _relation,
Emergencycontactperson_address,
pt_foodhabbit,

XML File Description for Patients:
<?xml version="1.0" encoding="UTF-
8"?>
<properties>
 <pt_id> Patient Unique ID </pt_id>
 <pt_name> Patient's name
</pt_name>
 <pt_dob> Patient's date of birth

</pt_dob>
 : : : : :
 : : : : :
<properties>

For the remaining files, their respective fields are
given in Tables 2, 3, 4 and 5. It must be noted that
the files do not exactly correspond to the classes
shown in Figure 1. Based on the discussion in
Section 4, data fields are repeated in different files,
so that a file is able to produce answers to all the
queries considered initially.
The large volume of health records is stored in
Hadoop file system using these tables. Map-Reduce
programs are written for retrieval and analysis of
data that are run on Hadoop file system.

Table 2: Doctor File.

Doctor
doctor_id
doctor_name
doctor_type
doctor_specialization
doctor_organization
doctor_address_type
doctor_address
doctor_email_id
doctor_mob

Table 3: Treatment_Episode File.

Treatment_Episode
treatment _episode_id,
patient_id,
patient_name,
patient_address,
patient_gender,
patient_food_habbit,
patient_allergy,
blood_group,
doctor_id,
doctor_name,
 doctor_specialization,
start_date,
is_active,
complaint,
diagnosis,
clinical_status

Comparative Study of Query Performance in a Remote Health Framework using Cassandra and Hadoop

333

Table 4: Visit File.

Visit
visit_id,
patient_id,
patient_name,
patient_address,
patient_food_habbit,
allergy,
blood_group,
treatment_episode_id,
treatment_start_date,
initial_complaint,
visit_time,
reason,
systolic_bp,
diastolic_bp,
pulse_rate,
temp,
respiration_rate,
height_cms,
weight_kgs,
investigations,
investigation_reports,
medication,
diagnosis,
therapies
surgeries,
current_status

Table 5: Sensed_data File.

sensor_data
patient_id,
treatment_episode_id,
visit_id,
parameter,
data
....

6 EXPERIMENTAL RESULTS

(A) Experimental Setup – This paper presents two
sets of experiments – (i) using Map-Reduce
programs in Hadoop with varied amount of data on
different number of Hadoop nodes, (ii) varying the
amount of data, while keeping the number of
Hadoop nodes fixed (16 here) and comparing the
results with Cassandra implementation in the same
environment.

All experiments are performed on a 16 node
cluster. Each node has the configuration of 2.93
GHz Intel Core2 Duo Processor with 3GB RAM and
1 TB storage space.

From the initial set of queries (considered for
designing the databases), a subset of queries is
chosen with the support of YCSB guidelines
(research.yahoo.com/files/ycsb.pdf). Eight simple
queries and one statistical queries are processed by
customized Hadoop Map-Reduce code.

The queries are given below.
1. Find all doctor's names and their details with

specialization string 'cardiologist'.
2. Find all information of patients like

demographic info, religion, food habit etc, for a
patient.

3. Find all ECG reports of a patient.
4. Find history of 'Diabetes' of a patient.
5. Find sensor data of a patient for one hour.
6. Patient treatment case history for a patient.
7. Find all the doctor's names who are attached

with an organization.
8. Find all the complaint details of a Patient.
9. Retrieving sensor data for a particular patient

observed during one hour time.

The statistical query is
1. Find the number of babies with age is between 0

and 5 and suffering from malnutrition.

Each time number of data records in respective files
is varied from 50 to 800,000 of records and number
of Hadoop nodes is varied from 1 to 16. Every
experiment is performed three times for each query
and the average of the three results is taken.
The same queries are executed in Cassandra on 16
nodes. Data volume is varied as in the previous case.

(B) Results - (i) Experiments running on different
number of Hadoop nodes: Based on the above
experimental setup, a study is made on the data
retrieval time with varied amount of data stored in
Hadoop. All the nine queries and the statistical query
are run. Due to space limitation, only the results of
query 1 (Figure 2), query 9 (Figure 4) and the
statistical query (Figure 3) are presented in this
paper.

DISCUSSION
It is observed that while executing the queries is
Hadoop, higher number of slaves does not signify
better performance. Optimal performance is
obtained when a particular load is given to a
particular number of slaves. For example, the
performance of the implementation with 8 nodes is
poor, even worse than one or two slaves.

It is also observed that performance on 16 slaves
improves and become better in comparison with
others when number of records is high (above

HEALTHINF 2016 - 9th International Conference on Health Informatics

334

500,000). Thus, with low volume of data, Hadoop
Map-Reduce code on different number of slaves has
almost no effect.

Figure 2: Query performance of specialization-wise doctor
search in Hadoop.

Figure 3: Query performance of number of babies between
age 0 and 5 suffering from malnutrition.

Figure 4: Query performance of Sensor observation data
of a patient during an hour.

The above observations can be explained from
the study presented in (Guo, 2012) (Bezerra, 2013).
It has clearly been shown that Hadoop scheduling is
non-optimal. The scheduling algorithm in Hadoop
for the Map tasks considers data locality, but
overlooks other factors such as system load and
fairness.

(ii) Comparative study between Hadoop and
Cassandra: Same set of queries as given in Section
6 are executed on the data stored in Cassandra with
varying number of records in respective column
families corresponding to each query. Number of
nodes in the set up is taken as 16.

Figures 5, 6, 7 and 8 depict the results of the
comparison for queries 1, 2, 3 and 4 respectively.
Data retrieval time required by Hadoop is shown as
th and time required by Cassandra is shown as tc.
Number of records shown is in 100,000.

Figure 5: Execution of query1 in Cassandra and Hadoop.

Figure 6: Execution of query2 in Cassandra and Hadoop.

Figure 5 depicts the retrieval time for doctors’
names and their details with specialization string
'cardiologist'. It is clear that Hadoop performs much
better as number of records increases.

Performance of query 2 is shown in Figure 6.

Comparative Study of Query Performance in a Remote Health Framework using Cassandra and Hadoop

335

Here Patient_id is used as the row key, the time of
retrieving patient information decreases with
increase in number of records in Cassandra. For this
query, Cassandra performs better than Hadoop.

Performance of query 3 is shown in Figure 7.
Time of accessing ECG data of a patient increases
slowly with increase in number of records. Hadoop
performs much better than Cassandra.

Performance of query 4 is shown in Figure 8.
Time to retrieve records of a diabetic patient
increases with number of records.

Figure 7: Performance of query 3 in Cassandra and
Hadoop.

Figure 8: Performance of query 4 in Cassandra and
Hadoop.

DISCUSSION
The above results show that Hadoop performs better
in case of all queries leaving one. The performance
of Cassandra improves significantly with increase in
number of records for patient wise information
search (Figure 6). Cassandra, when compared with
Hadoop in this case, performs well in spite of the
fact that Hadoop is well known for large volume of
data processing. In case of query 2, the Patient_id is

used as the row key (similar to primary key in
RDBMS), and the query is made on the basis of the
primary key. Therefore, data retrieval becomes fast.
In other cases, queries do not involve the row key
and therefore query performance is poor.

Cassandra particularly performs poorly in case of
query 4. The data mapping strategy can be
responsible for this. There are two conflicting goals
in Cassandra data mapping – (i) data must be spread
evenly around the cluster, and (ii) the number of
partitions read must be minimized. On the basis on
these two goals, a trade-off is to be made while
implementing in Cassandra for a set of queries.
Requirements for one query may be conflicting with
another leading to performance degradation.

The study further demonstrates that Hadoop has
the capacity to work with voluminous data set as
expected.

7 RELATED WORK

With the recent advancements in sensor networks
and cloud computing, scientists have focussed on
application of big data concepts in healthcare
domain. However, much of the contemporary
research works actually consider big data analytics
utilizing large volumes of medical data and
combining multimodal data from disparate sources
(Belle, 2015). Only few aim at studying various big
data tools in order to develop an insight about
suitability of these tools for healthcare data storage,
processing and management. A comparative study of
NOSQL databases is provided in (Manoj, 2014).
However, the authors only provide a theoretical
study of architecture and internal working of
Cassandra, MongoDB and HBase and carry out an
evaluation of Cassandra for performance and
concurrency in comparison with relational databases
within only a limited scope. Lourenço et al
(Lourenço, 2015) provides a detailed study on
various big data solutions including Cassandra,
HBase etc. However, the study is based on literature
review and no performance evaluation is presented.
The architecture for a distributed sensor data
collection, storage, and analysis system developed
using Hadoop in a cloud environment is presented in
(Aydin, 2015). Performance of this implementation
is also observed. However, this work does not
address the specific issues in healthcare domain.
Performance of Hadoop is also studied in (Guo,
2012) and (Bezerra, 2013) for generic applications.

Our work is different from the above mentioned
research works, because we consider the specific

HEALTHINF 2016 - 9th International Conference on Health Informatics

336

issues related to healthcare applications and carry
out experimental study regarding the performance of
two big data solutions with particular consideration
of healthcare applications.

8 CONCLUSIONS

This paper has studied the performance of two big
data solutions in healthcare domain. We have
considered a healthcare data model proposed on the
basis of national and international EHR standards
and demonstrate its mapping onto two big data
solutions, namely Cassandra and Hadoop. The
performance of a representative set of queries has
been studied using Hadoop. Further, we have also
carried out a comparative study of query
performance in Cassandra and in Hadoop systems.

It is observed that the mapping strategy is an
important issue in improving performance of any big
data solution. However, this should be based on
some queries which are considered to be frequent in
the application domain. It is also observed that
Hadoop performs better with large data sets in
comparison with Cassandra. The observations from
the experimental study clearly establish the fact that
Hadoop is more focussed on data processing and
therefore, scheduling strategy is important in case of
Hadoop. On the other hand, because data storage
and distribution is the main goal in Cassandra,
implementation is Cassandra should consider the
data mapping strategy as the primary issue.

In future, our goal is to develop algorithms for
transformation of data models to big data solutions.
In order to combine the strengths of Hadoop (in
terms of data processing) and Cassandra (in terms of
storage), it is planned to extend the work to use
Hadoop integrated with Cassandra. Other big data
solutions, like Mongodb and Hbase may also be
considered and their performances can be compared.
It is interesting to investigate the impact of other file
formats used to store data on the performance of
Hadoop Map-Reduce framework.

REFERENCES

Aydin. G., Hallac I.R., and Karakus B. (2015)
Architecture and Implementation of a Scalable Sensor
Data Storage and Analysis System Using Cloud
Computing and Big Data Technologies. Journal of
Sensors, Volume 2015, Article ID 834217, Hindwai
Publishing Corporation.

Belle A., Thiagarajan R., Soroushmehr S.M.R., Navidi F.,

Beard D.A., and Najarian K. (2015) Big Data
Analytics in Healthcare, BioMed research
international. Volume 2015, Article ID 370194,
Hindwai Publishing Corporation.

Bezerra A., Hernández P., Espinosa A., and Carlos J.
(2013) Job scheduling for optimizing data locality in
Hadoop clusters. Proceedings of the 20th European
MPI Users' Group Meeting (EuroMPI'13). ACM, New
York, NY, USA, pp 271-276.

Guo Z., Fox G., and Zhou M. (2012) Investigation of data
locality and fairness in MapReduce, In Proceedings of
third international workshop on MapReduce and its
Applications Date, pp. 25-32. ACM.

Lourenço J.R., Cabral B., Carreiro P., Vieira M., and
Bernardino J. (2015) Choosing the right NoSQL
database for the job: a quality attribute evaluation.
Journal of Big Data, 2 (1), pp 1-26.

Manoj V. (2014) Comparative study of NoSQL
Document, Column Store Databases And Evaluation
Of Cassandra. International Journal of Database
Management Systems, 6 (4), pp11-26.

Ministry of Health and family Welfare, Government of
India (2013) Approved “Electronic Health Record
Standards for India”, August 2013.

Mukherjee, N., Bhunia, S. S., and Sil Sen, P. (2014) A
Sensor-Cloud Framework for Provisioning Remote
Health-Care Services. Proceedings of the Computing
& Networking for Internet of Things (ComNet-IoT)
workshop co-located with 15th International
Conference on Distributed Computing and
Networking.

Naguri, K., Sil Sen P., Mukherjee, N. (2015) Design of a
Health-Data Model and a Query-driven
Implementation in Cassandra, Proceedings of the 3rd
International Workshop on Service Science for e-
Health (SSH), co-located with IEEE HealthCom.

Patel J. (2012) (Online)
www.ebaytechblog.com/2012/07/16/cassandra-data-

modeling-best-practices-part-1/ & -part-2/
Sil Sen, P., Mukherjee, N. (2014) Standards of EHR and

their scope of implementation in a sensor-cloud
environment, Proceedings of the international
Conference on Medical Imaging, m-health and
Emerging Communication System (MedCom), IEEE,
pp241-246.

Comparative Study of Query Performance in a Remote Health Framework using Cassandra and Hadoop

337

