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Abstract: The images transmission become more and more widely used in everyday life and even have been known
to be vulnerable to interception and unauthorized access. The security of their transmission became neces-
sary. In this paper an improved version of the Achterbahn -128 for image encryption and decryption have
been proposed. The proposed design is based on seventeen binary primitive nonlinear feedback shift registers
(NLFSRs) whose polynomials are primitive and a nonlinear Boolean function. The outputs of seventeen regis-
ters are combined by the nonlinear Boolean function to produce keysteam sequence. The proposed scheme is
compared to a Achterbahn-128. The results of several experimental, statistical analysis and sensitivity analysis
show that the proposed image encryption scheme is better than Achterbahn-128 and provides an efficient and
secure way for image encryption and transmission.

1 INTRODUCTION

The images are very largely used in our daily life;
with recent development of information and com-
munication technology, images transmission becomes
more critical day by day. Higher security for trans-
mitting data is highly required. Therefore, the stream
cipher is an important issue.

Stream cipher is secret key encryption system,
which combines plain text bits with a pseudo-random
bit sequence. Stream ciphers are widely used in many
domains (industrial, governmental, telecommunica-
tions and individuals), because they have the advan-
tage of no error propagation, and are particularly suit-
able for use in environments where no buffering is
available and /or plaintext elements need to be pro-
cessed individually.

The multiplied number of attacks concerning
the stream cipher systems based on linear feed-
back shift registers (combination model or filtering
model) (Berlekamp, 1968), (Massey, 1969), (Siegen-
thaler, 1985), (Meier and Staffelbach, 1988), (Golic,
1994), (Courtois and Meier, 2003), and (Courtois,
2003) have led many researchers to be interested
to the design based on primitive nonlinear feedback
shift registers (NLFSRs), primarily motivated by eS-
TREAM, the ECRYPT stream cipher project (eS-

TREAM, 2002). Here we can mention the research
works (Gottfert and Kniffler, 2006) and (Johansson
and Meier, 2006).

In this paper a new version of Achterbahn-128
based on primitive NLFSRs oriented stream cipher
and also the implementation of this generator for im-
ages encryption is introduced. The new version is
based on seventeen binary primitive nonlinear feed-
back shift registers and a Boolean combining func-
tion. All feedback shift registers (NLFSRs) employed
are primitive and nonlinear. The combining function
achieves the best possible trade-offs between alge-
braic degree, resiliency order and nonlinearity (that
is, achieving Siegenthaler’s bound and Sarkar et al.’s
bound).

The proposed version is compared with the
Achterbahn-128. The comparison of the performance
of the two designs is investigated for different images.

The paper is organized as follows. In Section 2
we recall the Achterbahn-128. Section 3 gives the
specification of the proposed design. In Section 4
we consider the software implementation of the pro-
posed design for image encryption and decryption and
in section 5 we give the results of our visual testing.
In section 6 we give the security analysis. Section 7
concludes the paper.
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2 ACHTERBAHN-128 CIPHER

The Achterbahn-128 (Gottfert and Kniffler, 2006) is
a binary additive stream ciphers as candidates to eS-
TREAM. The Achterbahn-128 cipher is designed to
be small, simple and efficient in hardware.

The Achterbahn-128 consists of thirteen bi-
nary nonlinear feedback shift registers (NLFSRs) of
lengths between 21 and 33 plus a Boolean function
F . We denote byxk for 1 ≤ k ≤ 13 the output se-
quence generated by thek-th constituent NLFSR. All
NLFSRs deployed in the Achterbahn-128 are primi-
tive and nonlinear; they can produce binary sequences
of period 2Lk − 1, whereLk is the length of register
Rk. The output sequences of the thirteen NLFSR’sxk
are combined by a Boolean combining functionF of
thirteen variables. The combining functionF has re-
siliency 8, nonlinearity 3584, algebraic degree 4 and
algebraic immunity 4.

The output of the keystream generator of
Achterbahn-128 at timei, denoted byZ(i), is gener-
ated as:

Z(i) = F(x1(i), ...,x13(i)). (1)

3 IMPROVED VERSION

In this section we give an improved version of the
keystream generator of Achterbahn-128. The pro-
posed design consists of seventeen binary primitive
NLFSRs denotedRj of lengthsL j , where 1≤ j ≤ 17
and a nonlinear Boolean functionG : F17

2 → F2 . All
feedback shift registers employed in the proposed ver-
sion are primitive and nonlinear. The NLFSR’s are
such that they can produce binary sequences of pe-
riod 2L j − 1. Each shift register is described by its
feedback functiong j . For the eleven NLFSR’s whose
lengths 25≤ L j ≤ 33 , we us the feedback shift reg-
isters used in the keystream generator of Achterbahn-
128/80 (Gottfert and Kniffler, 2006).

For the others NLFSR’s the algebraic normal
forms of the feedback functions are given in appendix.
The nonzero output sequences of the seventeen binary
primitive NLFSRs are taken as input to a combining
function,G. It is defined as:

G= (1⊕P) f ⊕P f∗⊕Q= f ⊕ ( f ⊕ f ∗)P⊕Q. (2)

Where f , f ⊕ f ∗,P andQ are given in appendix.
For more detaill onG refer to construction 1 page 49
presented in (Dalai, 2006). The combining function
G is balanced, has algebraic degree 7, correlation im-
mune of order 9 and has nonlinearity 216−210.

The keystream sequence(Yi)i≥0 is computed as:

Y(i) = G(x1(i),x2(i), · · · ,x17(i)),∀i ≥ 0, (3)

where(x j(i))i≥0 denotes the output sequence gener-
ated by thej-th constituent NLFSR. The variables
x1(i),x2(i), ...,x17(i) corresponds to the tap positions
19,39,34,23,25,36,26,29,27,28,30,40,31,44,45,32
and 33 respectively.

4 IMPLEMENTATION

In this section we present the implementation of pro-
posed design for image encryption and decryption.
The implementation of the scheme is written by MAT-
LAB.7.5. By M(i), Y(i) andC(i) we denote respec-
tively original image digits, keystream digits and en-
crypted image digits at timei. The flow chart of the
encryption and decryption process are depicted in fig-
ures 1 and 2. Figure 3 illustrates the flow chart dia-
gram for keystream generator.

Figure 1: Flow chart of the encryption process.

5 VISUAL TESTING RESULTS
AND SECURITY ANALYSIS

In this section we discuss the obtained results from
implementing the proposed scheme system and the
Achterbahn-128. Two images Baboon and House in-
dicated in figures 4 and 5 are used. After loading
and processing the original image, it is converted into
original image digit then encrypted by the proposed
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Figure 2: Flow chart of the decryption process.

Figure 3: Flow chart of the keystream generator.

keystream generator and sent to the receiver. The
function of the receiver is to decrypt the encrypted
image with the same keystream in order to obtain the
original image.

As a general requirement for all the image encryp-
tion schemes, the encrypted image should be greatly
different from its original form.

From the original images shown in figures 4 and 5,
we applied the proposed encryption algorithm in or-
der to obtain the encrypted images illustrated by fig-
ures 4 and 5.

By comparing the original images and their en-
crypted images in figures 4 and 5, there is no vi-
sual information observed in the encrypted images,
and the encrypted images are visual indistinguishable
even with a big difference found in the original im-
ages.

From the encrypted images illustrated by the fig-
ures 4 and 5, we apply the decryption algorithm with
the same key in order to obtain the decrypted images
shown in figures 4 and 5.

An image histogram illustrates how pixels in an
image are distributed by graphing the number of pix-
els at each gray intensity level. The histograms of the
original images and the encrypted images are com-
pared in figures 4 and 5. Our ideal goal is the en-
crypted image has histogram with random behavior.
It is clear that the histograms of the encrypted im-
ages are almost uniformly distributed in gray scale
[0-255] and significantly different from the original
images histograms. Thus, our approach is more ro-
bust against statistical analysis.

Difference between original images and their cor-
responding decrypted images and their histograms are
prove that, there is no loss of information, the differ-
ence is always 0.

Figures 6 and 7. show the experimental results
of encryption and decryption for Baboon and House
using the Achterbahn-128.

5.1 Correlation Coefficient

As an example we take the original imageM and the
encrypted imageC. For gray scale image, the Pearson
correlation coefficient between the original imageM
and encrypted imageC is defined as:

Cor=
Σ j (M j −E(M))(Cj −E(C))√

Σ j(M j −E(M))2
√

Σ j(Cj −E(C))2
. (4)

WhereM j is the intensity of thej-th pixel in im-
ageM, E(M) is the mean intensity of the imageM.

Table 1 gives the correlation coefficient results. It
is observed that the values shown in the table 1 are
quite close to the value of zero, which implies that
the original images and its corresponding encrypted
images are totally different i.e. the encrypted image
has no features and highly independent on the original
image.
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Figure 4: Experimental results using proposed scheme:
Frame (a) show image Baboon, frame (b) show encrypted
image, frame (c) show decrypted image, frame (d) show the
difference between Baboon image and the corresponding
decrypted image, frames (e), (f), (g) and (h) respectively;
show the histograms of images shown in figures 4(a), 4(b),
4(c) and 4(d).

5.2 Information Entropy

The entropy of a message can be computed by the
formula:

E(m) =−Σ255
i=0Pr(mi) log2Pr(mi). (5)

WherePr(mi) represents the probability of sym-
bol mi . The entropy is expressed in bits.

Figure 5: Experimental results using proposed scheme:
Frame (a) show image House, frame (b) show encrypted
image, frame (c) show decrypted image, frame (d) show
the difference between House image and the corresponding
decrypted image, frames (e), (f), (g) and (h) respectively;
show the histograms of images shown in figures 5(a), 5(b),
5(c) and 5(d).

Table 2 gives the entropy results. The values pre-
sented in the table 2 are very close to the theoretical
value of 8. This means that information leakage in
the encryption process is negligible and the encryp-
tion system is secure upon the entropy attack.
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Figure 6: Experimental results using Achterbahn-128:
Frame (a) show image Baboon, frame (b) show encrypted
image, frame (c) show decrypted image, frame (d) show the
difference between Baboon image and the corresponding
decrypted image, frames (e), (f), (g) and (h) respectively;
show the histograms of images shown in figures 4(a), 4(b),
4(c) and 4(d).

5.3 Sensitivity Analysis

To test the influence of one-pixel change on the over-
all image encrypted by the proposed algorithm, three
common measures were used: the Mean Absolute Er-
ror (MAE), number of pixels change rate (NPCR) and
unified average changing intensity (UACI).

The MAE, NPCR and UACI are defined respec-
tively by:

Figure 7: Experimental results using Achterbahn-128:
Frame (a) show image House, frame (b) show encrypted
image, frame (c) show decrypted image, frame (d) show
the difference between House image and the corresponding
decrypted image, frames (e), (f), (g) and (h) respectively;
show the histograms of images shown in figures 5(a), 5(b),
5(c) and 5(d).

MAE=
1

h×w
Σh−1

i=0 Σw−1
j=0 |C(i, j)−M(i, j)|. (6)

WhereM(i, j) andC(i, j) be the gray level of the
pixels at thei-th row andj-th column of ah×w orig-
inal image and encrypted image, respectively.|.| de-
notes absolute value function. The NPCR of these
two images is defined by:

NPCR(M,C) =
1

h×w
Σi j D(i, j)×100%. (7)
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Table 1: Correlation Coefficients Analysis.

Images Proposed schemeAchterbahn-128
Baboon 0.0007805 0.0014
House 0.000070905 0.0066

Table 2: Entropy.

Cases Proposed schemeAchterbahn-128
Baboon 7.9985 7.9971
House 7.9992 7.9973

Table 3: MAE, NPCR and UACI between original image
and encrypted image using proposed scheme.

Image MAE NPCR (%) UACI(%)
Baboon 34.89 27,38 99,60
House 30.99 28,45 99,60

Table 4: MAE, NPCR and UACI between original image
and encrypted image using Achterbahn-128.

Image MAE NPCR (%) UACI(%)
Baboon 35.03 27,34 99,58
House 30.95 28,39 99,58

Where D(i, j) = 0, if C1(i, j) = C2(i, j) and
D(i, j) = 1, if C1(i, j) 6= C2(i, j), C1(i, j) andC2(i, j)
, whose corresponding original image have only one
pixel difference.

UACI(M,C) =
1

h×w
Σi j

D(i, j)
255

×100%. (8)

A sufficiently high NPCR/UACI score is usually con-
sidered to be a strong resistance against attacks.

The MAE,NPCR and UACI test results are shown
in table 3 and table 4. Higher NPCR values are de-
sired for ideal encryption schemes. The UACI values
must be in the range of 33%. The results demonstrate
that the proposed scheme can resist to differential at-
tack.

5.4 Peak Signal to Noise Ratio (PSNR
(dB)) Test

Peak signal to noise ratio can be used to evaluate
an encryption scheme. PSNR reflects the encryption
quality. This is a measurement which indicates the
changes in pixel values between the original image
and the encrypted image. The formula to calculate
PSNR is:

PSNR= 10× log10

[
n×m×2552

Σn−1
i=0 Σm−1

j=0 (C(i, j)−M(i, j))2

]
. (9)

Wheren and m are the width and height of the
original image. The lower value of PSNR represents
better encryption quality. The PSNR value of the pro-
posed scheme are 9.31 (dB) for image House and 9.74
(dB) for Baboon. The PSNR value of the Achterbahn-
128 are 9.33 (dB) for image House and 9.75 (dB) for
Baboon.

6 CONCLUSION

In this Work, a new version of Achterbahn-128 for
images encryption was introduced. Simulations were
carried out with two different images. The visual test
indicates that the encrypted image was very different
and no visual information can be deduced about the
original image for all images. The design is very sim-
ple, fast and easy to implement for the encryption and
decryption of image.

Several tests have been performed to compare the
proposed scheme with Achterbahn-128; likely, sta-
tistical analysis, which includes information entropy
analysis, correlation analysis and Histogram analysis;
and MAE, NPCR, UACI and PSNR analysis. The
experimental values show that the proposed scheme
yield a very good performance over the Achterbahn-
128.
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APPENDIX

The algebraic normal form of the functionf0 is:
f0 = (x5⊕ x8x5⊕ x8x6⊕ x8x7) (x1x4⊕ x3x4⊕ x2x3)⊕
x6⊕ x7x8x5⊕ x8x6⊕ x1x4⊕ x3x4⊕ x2⊕ x1.

f0 is balanced and is correlation immune of order
3,it has algebraic degree 4 and nonlinearity 112.

The algebraic normal form of the polynomialf0⊕
f ∗0 is:

f0 ⊕ f ∗0 = x5x8 ⊕ x5x9 ⊕ x5x10 ⊕ x6x8 ⊕ x6x9 ⊕
x6x10⊕x1x4x5x8⊕x1x4x5x9⊕x1x4x5x10⊕x3x4x5x8⊕
x3x4x5x9 ⊕ x3x4x5x10 ⊕ x2x3x5x8 ⊕ x2x3x5x9 ⊕
x2x3x5x10 ⊕ x1x4x6x8 ⊕ x1x4x6x9 ⊕ x1x4x6x10 ⊕
x3x4x6x8 ⊕ x3x4x6x9 ⊕ x3x4x6x10 ⊕ x2x3x6x8 ⊕
x2x3x6x9 ⊕ x2x3x6x10 ⊕ x1x4x7x8 ⊕ x1x4x7x9 ⊕
x1x4x7x10 ⊕ x3x4x7x8 ⊕ x3x4x7x9 ⊕ x3x4x7x10 ⊕
x2x3x7x8⊕ x2x3x7x9⊕ x2x3x7x10.

Where f ∗0 is Boolean function generated fromf0
by replacing the variablex8 by (x9⊕ x10).

The algebraic normal form of the polynomialP is:
P = x11⊕ x11x14⊕ x12x14⊕ x13x14⊕ x11x14x17⊕

x12x14x17 ⊕ x13x14x17 ⊕ x11x15x17 ⊕ x12x15x17 ⊕
x13x15x17⊕ x11x16x17⊕ x12x16x17⊕ x13x16x17.

The algebraic normal form of the polynomialQ is:
Q = x9 ⊕ x10 ⊕ x12 ⊕ x13 ⊕ x8x11 ⊕ x9x11 ⊕

x11x14 ⊕ x12x14 ⊕ x14x17 ⊕ x15x17 ⊕x8x11x14 ⊕
x8x12x14⊕x8x13x14⊕x9x11x14⊕x9x12x14⊕x9x13x14⊕
x11x14x17 ⊕ x12x14x17 ⊕ x11x15x17 ⊕ x12x15x17 ⊕
x11x16x17 ⊕ x12x16x17 ⊕ x8x11x14x17 ⊕ x9x11x14x17 ⊕
x8x12x14x17⊕x9x12x14x17⊕x8x13x14x17⊕x9x13x14x17
⊕x8x11x15x17 ⊕ x9x11x15x17 ⊕ x8x12x15x17 ⊕
x9x12x15x17 ⊕ x8x13x15x17 ⊕ x9x13x15x17 ⊕
x8x11x16x17⊕x9x11x16x17⊕x8x12x16x17⊕x9x12x16x17
⊕x8x13x16x17⊕ x9x13x16x17.

Agebraic normal forms of the feedback functions
used in proposed version

g1(u0,u1, · · · ,u18) =u0⊕u2⊕u3⊕u5⊕u8⊕u12⊕
u1u6 ⊕ u2s6 ⊕ u2u9 ⊕ u4u7 ⊕ u5u6 ⊕ u9u10⊕ u9u11⊕
u2u4u6 ⊕ u2u4u10 ⊕ u2u6u9 ⊕ u4u9u10 ⊕ u6u9u10 ⊕
u9u10u11⊕u2u4u6u9⊕u2u4u9u10⊕u4u6u9u10.

g2(u0,u1, · · · ,u38) = u0 ⊕ u1 ⊕ u3 ⊕ u5 ⊕ u12 ⊕
u16 ⊕ u37 ⊕ u38 ⊕ u1u5 ⊕ u5u8 ⊕ u6u10 ⊕ u11u37 ⊕
u4u6u16⊕u4u9u14⊕u6u15u16⊕u1u9u14u36.

g3(u0,u1, · · · ,u33) = u0 ⊕ u3 ⊕ u6 ⊕ u9 ⊕
u33 ⊕ u3u4 ⊕ u4u8 ⊕ u4u9 ⊕ u7u9 ⊕ u1u3u4 ⊕
u2u4u5 ⊕ u5u3u9 ⊕ u1u4u9 ⊕ u2u3u4u5 ⊕ u2u4u5u9 ⊕
u2u3u4u5u9.

g6(u0,u1, · · · ,u35) =u0⊕u2⊕u3⊕u5⊕u8⊕u35⊕
u1u6 ⊕ u2u6 ⊕ u2u9 ⊕ u4u7 ⊕ u5u6 ⊕ u9u10⊕ u9u11⊕
u2u4u6 ⊕ u2u4u10 ⊕ u2u6u9 ⊕ u4u9u10 ⊕ u6s9u10 ⊕
u9u10u11⊕u2u4u6u9⊕u2u6u9u10⊕u4u6u9u10.

g12(u0,u1, · · · ,u39)= u0⊕u2⊕u3⊕u4⊕u5⊕u6⊕
u8⊕u11⊕u37⊕u1u11⊕u2u11⊕u3u12⊕u4u6⊕u4u7⊕
u5u6 ⊕ u1u2u11 ⊕ u1u2u12 ⊕ u1u9u11 ⊕ u9u10u11 ⊕
u1u2u6u13 ⊕ u1u2u9u11 ⊕ u1u2u9u12 ⊕ u2u9u10u11 ⊕
u2u9u10u12⊕u1u2u6u9u13⊕u2u6u9u10u13.

g14(u0,u1, · · · ,u43) = u0 ⊕ u1 ⊕ u5 ⊕ u6 ⊕ u8 ⊕
u35 ⊕ u41 ⊕ u1u3 ⊕ u1u7 ⊕ u1u35 ⊕ u4u12 ⊕ u5u11 ⊕
u6u12⊕u7u9⊕u1u11u38⊕u1u4u11u38⊕u1u7u11u38⊕
u1u4u10u11u38⊕u1u7u9u11u38⊕u1u10u11u12u38.

g15(u0,u1, · · · ,u44) = u0 ⊕ u1 ⊕ u6 ⊕ u7 ⊕ u9 ⊕
u10⊕u11⊕u15⊕u16⊕u18⊕u22⊕u26⊕u1u8⊕u6u9⊕
u16u18⊕u17u19⊕u6u17u19⊕u9u11u12⊕u1u5u16u18⊕
u10u13u16u19.
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