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Abstract: Healthcare data visualization is challenging due to the needs for integrating geospatial information, 
temporal information, text information, and heterogenious health attributes within a common visual context. 
We recently developed a web-based healthcare data visualization system, Health-Terrain, based on a 
Notifiable Condition Detector (NCD) use case. In this paper, we will describe this system, with emphasis on 
the visualization techniques developed specifically for healthcare data. Two new visualization techniques 
will be described: (1) A spatial texture based visualization approach for multi-dimensional attributes and 
time-series data; (2) A spiral theme plot technique for visualizing time-variant patient data. 

1 INTRODUCTION 

As electronic healthcare systems are being fully 
integrated nationally, the effective visualization of 
large and complex healthcare data becomes 
increasingly desirable for timely decision making 
(Grossman et al., 2011). The problem, however, is 
very challenging for several reasons: 

1) Health data is a data-rich, information-poor 
domain. In Electronic Health Record (EHR) 
systems, data are almost always heterogeneous, 
unstructured, hierarchical, and longitudinal.  

2) EHR systems are large. While it is possible to 
visualize an EHR system in small scales with a 
focused scope, high impact knowledge 
discoveries may come from population-wide 
visualization and knowledge mining.  

3) Visualizing population-level health data often 
involves presenting geospatial and time-series 
data in a common visual context. This presents a 
challenge in visual encoding of the information 
space. 

For heterogeneous and complex data, feature 
extraction through data mining is critical. For 
healthcare data, this feature space often consists of 
healthcare terms (ontology) and their relationships. 

Therefore, the effective integration of data 
processing, data mining, and text mining is 
necessary in healthcare data visualization. Although 
healthcare data is very large, the visualization of 
aggregated features, combined with patient level 
visualization, can be very effective in revealing the 
patterns and trends of population health. It is 
therefore important to develop multiple visualization 
tools to be integrated within a common visual 
interface to allow users to visually explore the data 
through an easily accessible platform such as a web 
browser. 

One of the unique challenges in healthcare data 
visualization is how to visualize multi-attributes and 
time-series data with associated geospatial 
information. In our approach, we embed multiple 
attributes and the time variable within a geospatial 
representation to take advantage of the available 
geographic space. This can be done by mapping 
texture images onto the geospatial surfaces. The key 
is then to properly represent the multi-attributes and 
time-series information in a texture image by 
constructing visually effective texture 
representations. While visualizing aggregated data 
for geospatial areas provides global trends and 
patterns in a geospatial context, we are often 
interested in visualizing individual patient records 
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and their development over time. To this end, we 
also developed a spiral theme plot technique for 
visualizing time-variant patient records and 
attributes. These new visualization techniques have 
been implemented in a web-based healthcare data 
visualization system called Health-Terrain, and 
tested on real healthcare databases. 

2 RELATED WORK 

There are several existing works and visualization 
systems that deal with the secondary use of 
electronic health record data in a limited scope. 
LifeLines (Plaisant et al., 1996) uses a traditional 2D 
time line visualization technique to visualize specific 
patient medical and health history. It emphasizes the 
visualization of temporal ordering of events with 
limited aggregation effect. An extension of LifeLine, 
LifeLine2 (Wang et al., 2008), enables multiple 
patient comparisons and aggregation for analysis, 
but the visualization design limited its scalability. A 
similar system, call TimeLine (Bui et al., 2007), re-
organizes and re-groups multiple EHR content types 
in a layout of Y-axis to track multiple events along 
the same time line. A set of visualization tools are 
described for visualizing a patient’s electronic health 
record to aid physicians’ diagnosis and decision-
making. The traditional matrix view and parallel 
coordinates are the main techniques applied. The 
VISITORS system (Klimov and Shahar, 2005; 2009) 
combines a clinical knowledge base with 
visualization to enable users to explore multiple 
clinical records. It relies on domain ontologies to 
define clinically meaningful higher abstractions 
given raw, temporal data. CLEF (Hallett, 2008) is a 
system enabling visual navigation through a 
patient’s medical record using semantically and 
temporally organized networks to represent events 
throughout the patient’s medical history. CLEF also 
supports limited text processing capabilities for 
generating textual summaries. Interactive techniques 
have also been developed for the navigation of space 
and time dimensions (Bade et al., 2004; Maciejewski 
et al., 2009). None of these existing systems is 
capable of visualizing large-scale integrated EHR 
datasets. A review paper on visualization tools for 
infectious diseases is given in (Carroll et al., 2014). 
A more general survey was given in (Chittaro, 2001) 
about information visualization in Medicine. 

Population-level healthcare data visualization 
involves both geospatial information and time-
variant attributes. The geospatial visualization of 
time-series data is challenging because it is difficult 

to encode the time axis in a geospatial context. 
Animation based techniques (e.g. Gemmell et al., 
2005) do not provide a good space-time overview. 
Other techniques, such as color-coding of time (The 
New York Times, 2013), connecting time-lines 
(Google, 2013), and time-curves (Eccles et al., 
2007), often introduces visual clutter and occlusion, 
which are infeasible for large scale datasets. A well-
known technique in geospatial time-series 
visualization is Space-Time-Cube (Kraak et al., 
2003; 2007; 2004; Kwan, 2000; Andrienko et al., 
2003). It is a 3D representation of a combination of 
time axis (Z-axis) and a 2D geographic map (X-Y 
plane). Time-lines or time-curves are used to depict 
data evolution over time. While time and spatial 
information are integrated in a 3D visual 
representation in a space-time-cube, the sense of 
space-time embedding diminishes as the data moves 
up in the time axis. Visual clutter will also be a 
problem with large datasets. Similar 3D 
representation of spatio-temporal data using 3D 
icons have also been presented in (Tominski et al., 
2005). Many other techniques have been developed 
for the visualization of time-series data without 
explicit geospatial information such as time-series 
plot (Tufte, 1983) and ThemeRiver (Havre et al., 
2000). Many variations of ThemeRiver styled 
techniques have been applied in different time-series 
visualization applications, in particular text 
visualization (Cui et al., 2011). Spiral patterns have 
also been used in visualizing time-series data 
(Weber et al., 2001; Tominski et al., 2008) to 
provide better identification of periodic structures in 
the data. 

Texture-based visualization techniques have 
been widely used for vector field data, in particular, 
flow visualization. Typically, a grayscale texture is 
smeared in the direction of the vector field by a 
convolution filter, for example, the Line Integral 
Convolution (LIC), such that the texture reflects the 
properties of the vector field (Cabral and Leedom, 
1993; Stalling and Hege, 1995; Laramee et al., 
2004). Similar techniques have also been applied to 
tensor fields (McGraw and Nadar, 2007; Auer et al., 
2012). 

3 THE HEALTH-TERRAIN 
SYSTEM 

3.1 System Overview and Use Case 

Our goal is to develop a prototype system, Health-
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Terrain, to support visual exploration of large 
healthcare data sets on a browser based interface. 
The system integrates information visualization, 
web-based user interaction, and text and data mining 
techniques. A concept space approach is used to 
unify data representation unified data representation 
through data and text mining. 

To test our visualization system we used a large 
public health notifiable disease reporting system. 
The Regenstrief Institute implemented and maintains 
an unparalleled HIE-based, automated electronic lab 
reporting (ELR) and case-notification system for 
over ten years in the State of Indiana. The Notifiable 
Condition Detector (NCD) System uses a standards-
based messaging and vocabulary infrastructure that 
includes Health Level Seven (HL7) and Logical 
Observation Identifiers Names and Codes (LOINC) 
(Overhage, et al., 2008). The NCD receives real-
time HL7 version 2 clinical transactions daily, 
including diagnoses, laboratory studies, and 
transcriptions from hospitals, national labs and local 
ancillary service organizations. The NCD dataset 
contains 833,710 public health notifiable cases 
spanning more than 10 years from among 439,547 
unique patients. An additional dataset containing 
325,791 unstructured clinical discharge summaries, 
laboratory reports, and patient histories were 
extracted. In order to comply with the patient 
privacy policies and protocols of the institutes where 
the datasets came from, the actual data visualized in 
this paper has been altered or perturbed. 

3.2 Concept Space 

The “concept space” represents a uniform layer of 
clinical observations and their associations, and 
enables users to explore data using various 
visualization and analysis methods. Concept terms 
are derived from data mining and text-mining 
processes applied to the use case datasets. Disease 
concepts were extracted from the NCD dataset. Text 
mining algorithms were then applied to additional 
linked text dataset (unstructured clinical summaries) 
to construct ontologies for different concept types, 
including disease, symptom, mental behaviour, and 
risky behaviour. 

The concept space uses a controlled vocabulary 
that can be pre-defined based on application needs, 
and enhanced by data/text mining algorithms. These 
terms and their relationships are represented in an 
association map, as a space of extracted partial 
knowledge. This association map is often the 
starting point of a visual exploration process. Figure 
1 shows an example of the association map of 

diseases. Association map is a graph visualization of 
the association relationships among the diseases and 
other terms in the concept space. It can serve as a 
platform supporting interactive selection of concepts 
to dynamically visualize data using a variety of tools 
in the visualization system. To draw an association 
graph, a spring-embedder algorithm (Kobourov, 
2012) is used to layout the graph nodes. Nodes 
picked on the association map are then be visualized 
with geospatial information, possibly with time 
varying variables. 

 

Figure 1: A Disease association map. 

In text mining, we processed 325,791 
unstructured clinical notes containing patient 
discharge summaries, laboratory reports, and 
medical histories. Advanced NLP was applied in the 
form of named entity recognition (NER) for 
extracting diseases and other terms, with the help of 
the Unified Medical Language System (UMLS) 
(Humphreys, et al., 1998). Stemming and concept 
clustering algorithms (Osinski and Weiss, 2005) 
were applied to normalize the lexical variants and 
duplications of the terms. Term correlations were 
computed using the tf-idf (term frequency – inverse 
document frequency) vector space model to identify 
the significantly co-occurring diseases. An 
association-mining algorithm was applied to the 
combined terms to generate an association graph 
among all the concepts terms. The resulting concept 
space, along with the processed NCD data, is 
represented in a data model designed to support our 
specific ontology. 

4 SPATIAL TEXTURE BASED 
APPROACH 

Population-level healthcare data and information are 

IVAPP 2016 - International Conference on Information Visualization Theory and Applications

216



 

often tightly coupled with geospatial regions. The 
visualization of this type data requires the 
integration of geo-visualization and multi-
dimensional and time-variant information 
visualization. For this purpose, we propose a Spatial 
Texture based approach. In this approach, we encode 
multi-dimensional attributes or time-variant 
attributes for a geospatial region into a texture 
image, and then map the texture image to the surface 
of the geospatial region to provide an integrated 
visual representation. The key is the visual encoding 
of multiple attributes or a time-variant attribute in a 
texture image. 

4.1 Noise Texture 

We aim to represent multiple attributes for each 
geospatial region using color coded texture patterns 
so that the users can visually perceive the 
representations of different attributes, not only 
within one region, but also its overall geospatial 
distributions across many regions in a geographic 
area (e.g. a state). 

We first construct noise patterns to create a 
random variation in color intensity, similar to the 
approach in (Gossett and Chen, 2004). Different 
color hues will be used to represent different types 
of attributes, for example the occurrences of 
different diseases. A turbulence function (Perlin, 
1985) will be used to generate the noise patterns of 
different frequencies (sizes of the sub-regions of the 
noise pattern). These multi-scale patterns may be 
applied to different scales of geographic areas (e.g. 
counties vs zip-codes). Since the noise pattern 
involves the mixing and blending of different color 
hues, we choose to use an RYB color model instead 
of RGB model, as proposed in (Gossett and Chen, 
2004), since RYB color model provides more 
intuitive representation of the weights of different 
colors after blending. Figure 2 shows two examples 
of the texture mapped views of three diseases, 
Diabetes. Hepatitis B, and Chlamydia, over the 
Indiana state map. For example, more reddish areas 
exhibits higher rate of Diabetes and bluish areas 
show higher occurrence of Chlamydia. 

4.2 Offset Contours 

Offset contouring is designed to represent attribute 
changes over time within a geographic region. It can 
also be used to represent multiple attributes by 
assigning each attribute to each contour. Similar to 
the Noise Pattern texture, we first construct a texture 
image using offset contour curves to form shape-

preserving sub-regions. We will then use varying 
color shades or hues to fill the sequence of sub-
regions to represent the change of attribute values 
over time, or to simply fill the sub-regions with 
different color values to represent multiple 
attributes. 

The offset contours are generated by offsetting 
the boundary curve toward the interior of the region, 
creating multiple offset boundary curves (Figure 3). 
There are several offset curve algorithms available 
in curve/surface modeling. But since in our 
application, the offset curves do not need to be very 
accurate, we opt to use a simple image erosion 
algorithm (Rosenfeld and Kak, 1982) directly on the 
2D image of the map to generate the offset contours. 

 
                        (a)                                               (b) 

Figure 2: Noise textures mapped over the Indiana State 
map: (a) county based; (b) zip-code based. 

 

Figure 3: Offset contours with different colors or different 
shades of the same color. 

In time-series data visualization, the time line 
can be divided into multiple time intervals and 
represented by the offset contours. Varying shades 
of a color hue can be used to represent the attribute 
changes (e.g. occurrence of a disease) over time. 
This approach, however, has two limitations. First, 
when the boundary shape of a region is highly 
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concave, the image erosion technique sometimes 
does not generate clean offset contours. This usually 
can be corrected using a geometric offset curve 
algorithm such as the one in (Hoschek, 1988). A 
second limitation of this approach is that it requires a 
certain amount of spatial area to layout the contours 
and color patterns. In public health data, however, 
these attributes are typically defined on geographic 
areas, which provides a perfect platform for texture 
based visual encoding. Figure 4 shows a few 
examples of the texture mapped views of offset 
contours over the Indiana state map. Figure 4 (a-b) 
show the time-series views of Influenza, from 2004 
to 2012. The time interval is divided into 8 
subintervals. Figure 4 (c-d) show three diseases, 
Influenza, Typhoid Fever, and Hepatitis B. 

 
                             (a)                                               (b) 

 
                       (c)                                                (d) 

Figure 4: Texture mapped views of offset contours over 
the Indiana state map: (a) County based time-series data; 
(b) Zip-code based time-series data; (c) County based 
multi-diseases data; (d) Zip-code based multi-diseases 
data. 

5 SPIRAL THEME PLOT 

Spatial texture provides overviews of health care 
data associated with geographic regions. It is 
however often desirable for health administrators 
and physicians to also see the details of individual 
patients and theirs medical history (over time). 
When this is done with a large population, the 
collective view of patient medical histories often 
exhibit identifiable patterns and trends that may not 
be easily detected from the visualization of statistical 
data over geographical regions.  

We developed a new time-series visualization 
method called Spiral Theme Plot by integrating 
ThemeRiver (Havre et al., 2000) and spiral pattern 
(Weber et al., 2001) to plot patients as points in 
stacked spiral rings. Time is represented as a spiral 
base curve. Diseases (or any other term) are 
represented as stacked themes along a spiral base 
curve. Patients are plotted within the regions of the 
themes as points with proper visual attributes. One 
significant attribute, for example “age”, will be 
represented as radius. Other attributes of the 
patients, such as race and gender, are represented as 
color and shape of the dots. Spiral Theme Plot 
allows multiple years of patients data be plotted 
periodically such that seasonal patterns or abnormal 
patterns for seasonal diseases can be easily detected. 
For patients with multiple hospital visits at different 
times for the same or different conditions, curves are 
drawn to connect these multiple occurrences by the 
same patient. 

The base spiral curve is: 

൜
ݔ ൌ ሻߠሺݎ sin ߠ
ݕ ൌ ሻߠሺݎ cos  ߠ

where ݎሺߠሻ is a monotonic continuous radius 
function of angle θ. When ݎሺߠሻ is a linear function 
ሻߠሺݎ ൌ ܽ   the gap between the spirals is a ,ߠܾ
constant 2ܾߨ, which can be estimated based on the 
maximum cumulative width of the themes (Fig. 5). 

When plotting patient data within each theme, 
the width of the theme at a particular angle is 
determined by the total occurrence of the disease at 
that particular time. The boundary curve of each 
theme can then be interpolated by spline curves. 
This interpolation is done by splitting the time axis 
into a fixed number of segments. The maximum 
width of each segment is used as an interpolation 
point. This leads to a discrete set of interpolation 
points from which the spline curve can be generated 
as the boundary curve of the theme.  When plotting a 
point for each patient, the width of the theme needs 
to be computed first in order to determine the proper 
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radius of the point. Although this width information 
can theoretically be computed from the spline 
representations, we found that it is more efficient to 
simply check the color values along the normal 
direction of the spiral curve to estimate the width of 
a theme at each angle.  

Lines are drawn between points representing 
multiple occurrences of the same patient. Such lines 
sometimes can become very dense leading to a 
cluttered image. We implemented an edge bundling 
strategy to bundle these connecting lines for each 
pre-defined time interval (Fig. 6). Figure 7 show a 
periodical (seasonal) pattern of Flu over 4 years. 

 

Figure 5: Spiral Theme Plot for Hepatitis A, B, and C over 
four years. 

 

Figure 6: Spiral Theme Plot with bundled links. 

 

Figure 7: Seasonal pattern of Flu. 

6 SYSTEM INTERFACE AND 
EVALUATION 

The system is implemented using Javascript in an 
HTML5 canvas. The visualization algorithms are 
implemented using HTML, CSS, SVG, and WebGL 
technologies with a number of open-source 
Javascript libraries. 

The user interface uses multiple split windows so 
that multiple types of visualizations can be applied 
and compared for the same dataset. Fig. 8 show a 
screen shot of three visualizations for a dataset 
selected from an association map. Visualization 
results can also be saved into a slider bar, with time 
stamps, and be brought back later (Fig. 9). This 
provides a flexible workspace for health 
administrators or physicians to explore and compare 
different scenarios for health policy planning, 
decision making, resource management, etc. 

 

Figure 8: A screen shot of a split window interface. 
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Figure 9: System interface with saved working windows. 

To evaluate the system, we adopted the National 
Institute of Standards and Technology (2007) 
definition of usability for our participants. Using an 
unstructured qualitative interview process, we 
explored dimensions of effectiveness, efficiency, 
and satisfaction. Due to the data privacy policy 
provisions of the institutional review board research 
process, we used obfuscated de-identified clinical 
data for the usability assessment.  

Prior to reviewing the interviewees were oriented 
to a few detailed dimensions of the application: The 
interviewees’ responses can be summarized as 
follows:  
• Users were pleased with the abilities to quickly 

identify associations of different terms and form 
subnetworks. Some felt that the visualization has 
the potential to make them think about things 
that they wouldn't otherwise, and that has value 
to them.  

• Some users felt that they may not use 
visualization to identify disease outbreaks, but 
would instead use this visualization after an 
outbreak has been detected through other means 
in order to explore the relationships and 
characteristics of individuals within an outbreak 
in order to identify potential risk factors and 
target interventions.  

• Users felt that this visualization system was very 
complex and exhibited high information density, 
which sometimes can obfuscated important 
information. More in-line guidance or pop-up 
descriptions (e.g., mouse-overs) would be 
helpful.  

• For geospatial data visualization, some suggested 
adding a nonlinear scaling to highlight details in 
lower prevalence regions, or presenting the data 

as incident rates. Epidemiologist interviewees 
requested extended functionality to visualize the 
highest prevalence diseases in each county.  

7 CONCLUSIONS 

We present a health data visualization system which 
emphasizes the integration of geospatial and 
temporal information in healthcare data. We focus 
on two new visualization methods we developed 
specifically for public health data: Spatial Textures, 
and Spiral Theme Plot. Spatial Texture approach is 
effective because geospatial visualization 
intrinsically provides additional screen space 
(surface areas) that can be taken advantages of to 
encode additional data and attributes. The Spiral 
Theme Plot technique is a combination of several 
information visualization methods including Theme 
River, Spiral Plot and Scatter Plot. For public health 
data with large patient databases, this particular 
combination satisfies several key requirements for 
visualizing time-variant patient records. With the 
rich set of tools available to support web based user 
interface, graphics, and data communications, we 
also feel that it is as efficient to develop a web based 
visualization system as in a traditional programming 
environment. 

In the future, we would like to continue refining 
and expanding this visualization system by adding 
new visualization tools and improving the existing 
ones, in particular, the desired features and 
improvements suggested by the evaluators. We 
would also like to develop a configurable user and 
data interface so that the system can be easily 
configured for other types of use cases in public 
health applications. 
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