
Student Progress Modeling with Skills Deficiency Aware Kalman Filters

Carlotta Schatten and Lars Schmidt-Thieme
Information Systems and Machine Learning Lab,

University of Hildesheim, Universitätsplatz 1, 31141, Hildesheim, Germany

Keywords: Performance Prediction, Kalman Filter, Matrix Factorization, Student Simulator, Sequencing, Progress
Modeling.

Abstract: One new usage of Learning Analytics in Intelligent Tutoring Systems (ITS) is sequencing based on perfor-
mance prediction, which informs sequencers whether a student mastered or not a specific set of skills. Matrix
Factorization (MF) performance prediction is particularly appealing because it does not require tagging in-
volved skills in tasks. However, MF’s difficult interpretability does not allow to show the student’s state evolu-
tion, i.e. his/her progress over time. In this paper we present a novel progress modeling technique integrating
the most famous control theory state modeler, the Kalman Filter, and Matrix Factorization. Our method, the
Skill Deficiency aware Kalman State Estimation for Matrix Factorization, (1) updates at each interaction the
student’s state outperforming the baseline both in prediction error and in computational requirements allowing
faster online interactions; (2) models the individualized progress of the students over time that could be later
used to develop novel sequencing policies. Our results are tested on data of a commercial ITS where other
state of the art methods were not applicable.

1 INTRODUCTION

In Intelligent Tutoring Systems (ITS), adaptive se-
quencers can take past student performance into ac-
count to select the next task or feedback which best
fits the student’s learning needs. One way to approach
the problem is based on assessing the student skills
and matching them to the required skills and difficul-
ties of the available tasks. In this paper we want to
go a step forward with respect to domain independent
performance prediction. From an approach informing
only on the current/next state of the user, we move
to progress modeling, where the students’ state has to
evolve in a meaningful, plausible and therefore inter-
pretable way over time. In this scenario three prob-
lems arise:
1. Tagging tasks with required skills necessitates ex-

perts and thus is a time-consuming, costly, and,
especially for fine-grained skill levels, also poten-
tially subjective.

2. Progress modeling requires the interpretability of
performance prediction’s models that should in-
struct with the student’s inferred state efficient se-
quencing policies.

3. Student progress modeling updates need to occur
online so that each event can be used as refinement
of the prediction.

Problem (1) involves common performance predic-
tion methods and their extensions: Bayesian Knowl-
edge Tracing (BKT) (Corbett and Anderson, 1994)
and Performance Factors Analysis (PFA)(Pavlik
et al., 2009). Therefore, other algorithms like Ma-
trix Factorization (MF) were proposed, which are do-
main agnostic and do not require the authoring ef-
fort of skills’ tagging (Schatten et al., 2015). By us-
ing MF and a simple policy inspired by Vygotsky’s
concept of Zone of Proximal Development (Vygot-
sky, 1978), the so-called Vygotsky Policy Sequencer
(VPS) obtained comparable results with state of the
art rule based sequencers without using rich experts’
knowledge (Schatten and Schmidt-Thieme, 2014). As
pointed out by Manouselis et al. (2011), too high re-
quirements for intelligent components dramatically
affect their integration. Therefore, domain indepen-
dence is particularly appealing because it allows the
integration of adaptive components in large ITS that
do not possess the skills involved in the tasks and can-
not invest the effort of tagging all their contents.
If MF is able to solve Problem (1), it unfortunately
suffers from Problem (2), i.e. it is able to predict
next performances without domain information, but
the parameters of the model cannot be used to in-
terpret the current state of the user and therefore its
progress over time. Moreover, MF online update suf-

Schatten, C. and Schmidt-Thieme, L.
Student Progress Modeling with Skills Deficiency Aware Kalman Filters.
In Proceedings of the 8th International Conference on Computer Supported Education (CSEDU 2016) - Volume 1, pages 31-42
ISBN: 978-989-758-179-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

31

fers of Problem (3). When MF is used for Item Rec-
ommendation, its main application, the time affects
the users differently than in ITS, since voting movies
in different permuted orders will not affect the user’s
ratings. For this reason it is possible to model user
evolution and item characteristics in aggregated time
slices, where more subsequent ratings are considered
as generated from the same static model. On the con-
trary, in ITS after each exercise the students learn
something according to their learning rate. If a stu-
dent sees exercises in order or in reverse order of dif-
ficulty there will be not only a change in the scores
obtained, but also in the acquired knowledge. In order
to be able to use the latest model for each decision, an
online updating model is required. Ideally this should
happen in ITS at event level to reflect, in the future,
also the influence of feedbacks and hints.
To overcome these three problems, we developed do-
main independent progress modeling by integrating
the MF algorithms with Kalman Filters, one of the
most famous state modeling techniques of control the-
ory. This is achieved by exploiting equations of a stu-
dent simulator, which mimics the learning process of
a student.
As a result, the model:
• has reduced computational requirements,
• remains domain independent,
• has a reduced prediction error,
• is less sensitive to the lack of user data,
• and is made interpretable.

The presented paper is organized as follows. We first
introduce the state of the art about students’ perfor-
mance prediction done with MF (Sec. 2). Then, in
Sec. 3 the algorithms of MF and its online update are
explained. After the Kalman Filters are presented to
the reader in Sec. 4, we combine the latter with MF
and the equations of a student simulator to obtain a
student progress modeler. Finally, in the Experiment
Section (Sec. 5), we analyze the novel algorithm un-
der different perspectives, which involves prediction
error and progress modeling.

2 STATE OF THE ART

MF has many applications like, for instance, dimen-
sionality reduction, clustering and also classification
(Cichocki et al., 2009), but its most famous appli-
cation is for Recommender Systems (Koren et al.,
2009), where the algorithm recommends items to a
user by predicting the ratings (s)he would give to
them. Recently the algorithm was extended to time
modeling. In papers predicting movie ratings or doing
item recommendations, such as Xiong et al. (2010)

and Li et al. (2011) the time is modeled with time
slices, so that the user’s model needs to be updated at
each time slice. Because of that, no forecasting can
be done for time slices after the current and last one,
for which data are available. More similar to our ap-
proach is the online method proposed in Rendle and
Schmidt-Thieme (2008) that we explain in detail in
Section 3.2. There, for each new sample available
the model of the user is accordingly updated. Un-
fortunately, the algorithm requires for each update the
entire student’s history. Therefore, computational re-
quirements for systems that work in real time perfor-
mances, such as ITS, becomes too restrictive. As re-
ported by Schatten et al. (2015) 6 seconds were re-
quired for an update, whereas real time performances
should stay under the 0.1 seconds threshold (Nielsen,
1994).
As we explained in the introduction, when the afore-
mentioned algorithms are applied in a new domain
other problems arise. The first time that MF was
applied to ITS, Thai-Nghe et al. (2011, 2010, 2012)
associated users with students, items with tasks, and
ratings to the probability of a correct answer at first
attempt. Alternatively, as in Schatten et al. (2014a)
and Voss et al. (2015), ratings could be associated to
the percentage of correctly answered questions. Also
other Machine Learning techniques have been used
to model the students’ state. Bayesian Knowledge
Tracing (BKT) is built on a given prior knowledge of
the students and a data set of binary students’ perfor-
mances. It is assumed that there is a hidden state rep-
resenting the knowledge of a student and an observed
state given by the recorded performances. The model
learned is composed by slip, guess, learning and not
learning probability, which are then used to compute
the predicted performances (Corbett and Anderson,
1994). In the BKT extensions difficulty, multiple skill
levels and personalization are taken into account sep-
arately (Wang and Heffernan, 2012; Pardos and Hef-
fernan, 2010, 2011; D Baker et al., 2008), whereas
in our framework those aspects are considered at the
same time. MF most famous advantage in comparison
to BKT is the reduced authoring effort, since experts
are not requested to insert the required skills to solve
a task or use a hint. However, MF computed param-
eters cannot be associated to the student’s knowledge
as BKT modeled skills (Pardos and Heffernan, 2011).
In this paper we want to develop a progress modeling
algorithm based on MF online-updating performance
prediction that can work with fast performances to
schedule the recommendation of tasks, hints and feed-
backs. Usual approaches for sequencing are Rein-
forcement Learning techniques, which are applicable
in ITS with strong restrictions (Schatten et al., 2014b),

CSEDU 2016 - 8th International Conference on Computer Supported Education

32

0.1

0.95 0.1

 1 0.5

0.35

0.87 0.2 0.1

0.95 0.1

 1 0.5

0.35

0.87 0.20.1

0.12

0.3

0.95

0.83

0.85

0.79

0.85

0.85

0.2 0.2 1

Students

Contents

Students

Contents

Figure 1: Table of scores given for each student on tasks (or
interacting with generic tasks) (left), completed table by the
MF algorithm with predicted scores (right).

since the collection of an exploratory corpus implies
frustrating users with either too easy and too diffi-
cult tasks or random hints and feedbacks. Therefore,
we started from the implementation of Schatten et al.
(2015), where MF was used successfully combined
with a simple policy to schedule tasks with particular
attention to the computational requirements defined
in Schatten et al. (2014c). An additional reason for
choosing Schatten et al. (2015) is the possible exten-
sion to multi-modal data analysis as presented in Jan-
ning et al. (2014a) and Janning et al. (2014b), or hint
sequencing as suggested by Schatten et al. (2014b).

3 ONLINE MATRIX
FACTORIZATION

We define our problem as a tuple (S,C, ŷ,τ) where,
given a set S of students, si ∈ {1, . . .S} is the i–th stu-
dent modeled as a vector ϕt ∈ S :=RK , where K is the
number of skills involved and S is the student’s space.
C is a set of tasks, where c j ∈ {1, . . .C} is the j–th
task, defined with a vector ψ j ∈ C := RK represent-
ing the K skills required to solve a task defined in the
tasks’ space C. In this context we want to find a suit-
able prediction function able to compute the predicted
performance ŷ(ϕi,ψ j) of a student si on a task c j con-
sidering all his past interactions. In order to do so we
need also to find τ : S×C→ S a function defining the
follow-up state ϕt+1 of a student si after interacting
with task c j. We explain hereafter how this is done
with pure MF techniques.

3.1 Static Matrix Factorization

Generally, in Recommender Systems MF predicts
which are the future user ratings on a specific item
based on its previous ratings and the previous rat-
ings of other users (Koren et al., 2009). The concept
has been extended to student performance prediction,
where a student’s next performance, or score is pre-
dicted. The matrix Y ∈ Rns×nc can be seen as a table
of nc total tasks and ns students used to train the sys-
tem, where for some tasks and students performance

measures are given. MF decomposes the matrix Y in
two other ones Ψ ∈ Rnc×K and Φ ∈ Rns×K , so that
Y ≈ Ŷ = ΨΦT . Ψ and Φ are matrices of latent fea-
tures, where each task c j, and each student si, is rep-
resented, i.e. modeled, with a vector of K latent fea-
tures (ψ and ϕ respectively). Although these latent
features cannot be mapped to an exact meaning as
done in BKT technology, in Thai-Nghe et al. (2010)
those values were associated with the skills involved
in the tasks and the skills of the students. The latent
features learned with stochastic gradient descent from
the given performances allow computing the missing
elements of Y for each student i in each task j of a
dataset D (Fig. 1) without manually tagging the skills
of the domain. For this reason this approach has been
called domain independent in Schatten and Schmidt-
Thieme (2014). The optimization function of MF is
represented by:

min
ψ j ,ϕi

∑
i, j∈D

(yi j− ŷi j)
2 +λ(‖Ψ‖2 +‖Φ‖2) (1)

where one wants to minimize the regularized Root
Mean Squared Error (RMSE) on the set of known
scores. The prediction function is represented by:

ŷi j =
K

∑
k=0

ϕikψ jk, (2)

3.2 Online Update

Input: Historyi, λ,Ψ, β, K, iterMax
Output: ϕt

Ψ∼ N(0,σ2)
iterMax= Historyi.length∗ iterMax;
for iter = 1 to iterMax do

Select j randomly from Historyi;
err = y−

(
∑K

k=0 ϕikψ jk
)
;

for k = 1 to K do
∂err
∂ϕik

+= β
(
err ∗ψ jk−λϕik

)
;

update ϕik;
end

end
Algorithm 1: UpMF Rendle et al (2008), where β is the
learning rate, λ is the regularization parameter, Ψ are the
tasks’ latent features, iterMax is the number of algorithm’s
iterations, Historyi are all the tasks IDs j the student i
interacted with with performance y.

One of the criticized problems of MF is that it does
not deal with time, i.e. the latent features are constant
after the first training. In order to keep the model
up to date, Schatten et al. (2015) implemented, in a
large commercial ITS, the online update proposed in
Rendle and Schmidt-Thieme (2008). The update, that

Student Progress Modeling with Skills Deficiency Aware Kalman Filters

33

we will call hereafter UpMF, consists in solving again
the minimization problem of Eq. (1) optimizing only
ϕ with stochastic gradient descent algorithm. This
means the student’s model is learned at each interac-
tion from scratch. Schatten et al. (2015) coherently
with Rendle and Schmidt-Thieme (2008) noticed that
after approximately 20 interactions the model up-
date’s error for UpMF was degenerating. Schatten
et al. (2015) overcame the problem by retraining the
model each night, assuming students would see ap-
proximately 10 tasks per day. This was of course
imposing strong requirements on the machine where
the application ran since the training is more demand-
ing computationally in comparison to the prediction
phase. According to the pseudo-code Alg. 1 reported,
there are two main limitations of this algorithm. The
first one is the dependency between the history length
and the number of algorithm’s iterations required to
converge to a solution. The more student’s interac-
tions are available, the more iterations are needed by
UpMF to converge (see Alg. 1). As a consequence the
time required to update the model increases over time.
To keep the update time constant one should select
meaningful samples out of the given history. Unfor-
tunately, we are not aware of previous work analyzing
this aspect in detail. The second issue is related to the
invariance to the samples sequence, i.e. when a sam-
ple is selected out of the ones available old and new
ones are considered equally. This means that the se-
quence has no influence in the model computation.

4 KALMAN STATE ESTIMATION
FOR MF (KSEMF)

In this Section we present a novel update method that
overcomes the main issues of the current state of the
art. Kalman Filters are one of the most used state es-
timation algorithms in operations research (Kalman,
1960) and therefore constitute a valid approach to our
progress modeling problem. First of all the sequen-
tiality of the measurements plays a major role. Then,
for their recursive structure they do not require the
load of the entire student’s history to compute the
update, so that the update time is constant. Finally,
thanks to our approach, we maintain the domain in-
dependence of the baseline.

4.1 Kalman Filter Theory

The state x at time t is modeled as a linear combina-
tion of the state at time t− 1 and a control input u at
time t− 1 with additive Gaussian noise w (Eq. (3)),

where A and B are matrices of coefficients multiply-
ing the state and control variables respectively.

xt+1 = Axt +But +wt (3)

In Eq. 4 the measurements of the environment are
predicted adding the current state estimation multi-
plied by a coefficient matrix H to Gaussian noise v.

yt+1 = Hxt + vt (4)

Instead of learning from scratch the student’s param-
eters after each interaction, the Kalman Filter updates
its estimation at each time step with predict (Eq. (5))
and correct (Eq. (6)) phases integrating in its predic-
tion the novel available information. Kalman Filters
predict the current state x̂−t and the error covariance
matrix P−t by means of Eq. (5), where Q is the state
noise covariance matrix derived from the Gaussian
noise variance w of the state variables.

x̂−t+1 = Ax̂t +But

P−t+1 = APtAT +Q (5)

Then, with a new measurement yt , state estimation
x̂t and error covariance matrix Pt are corrected with
Eqs. 6, where Kt is the so-called Kalman Gain and
R the measurement noise covariance matrix derived
from the variance of the measurement noise vt .

Kt = P−t+1HT (HP−t+1HT +R
)−1

x̂t+1 = x̂−t+1 +Kt
(
yt −Hx̂−t+1

)

Pk = (I−KtH)P−t (6)

R, Q and P0 are all diagonal matrices whose values
are treated as hyperparameters, e.g. Q = diag(0.01)
means that all Q values on the diagonal are assigned
to 0.01. We want to use this approach to model the
evolution over time of the MF’s latent features and
consequently show the students’ progress over time.

4.2 Kalman State Estimation for Matrix
Factorization (KSEMF)

In this Section we present our novel method for
progress modeling: the Kalman State Estimation for
Matrix Factorization (KSEMF). In order to integrate
the Kalman Filter and MF we first need to identify
the state and the control of the system. As aforemen-
tioned, at each time step ϕt of student si, i.e. the stu-
dent’s MF latent features, needs to be updated to ϕt+1

with a function τ. Under this interpretation, ϕt
i should

be the evolving state. The control over the system are
the tasks’ latent features ψ j presented to the student,
whereas the score yt represents the measurement and
its prediction ŷt at time t (Eq. (7)). Since this algo-
rithm is modeling the state and the interaction with the

CSEDU 2016 - 8th International Conference on Computer Supported Education

34

environment explicitly, a working Kalman Filter does
not only show that the approach is valid for perfor-
mance prediction, but also that (1) the students’ latent
features can be interpreted as the students’ state and
that (2) the tasks’ latent features can be interpreted as
the tasks’ characteristics.

ϕ1
...

ϕk

t+1

= A

ϕ1
...

ϕk

t

+B

ψ1
...

ψk

t

+wt

ŷt+1 = H

ϕ1
...

ϕk

t

+vt (7)

In order to integrate the prediction function of MF
(Eq. (2)) we formalized the relationship between state
ϕt

i and predicted measurement ŷt as in (8), having then
H = ψT .

ŷt =

ψ1
...

ψk

T

t−1

ϕ1
...

ϕk

t−1

+vt−1 (8)

Still missing is Eq. (3), i.e. the function τ mapping
the state ϕi

t with the state at time t +1.

4.3 Skill Deficiency aware
KSEMF(KSEMF SD)

In order to make KSEMF aware of the student’s
skills deficiency, we will model the update function τ,
which represents the learning from one task interac-
tion, in a specific way. We started from the simulated
student developed in Schatten and Schmidt-Thieme
(2014) that was able to simulate a learning process
with continuous knowledge and score representation
and tasks with multiple difficulty levels. Neverthe-
less, we do not exclude the possibility to use also
other equations to model the relationship between ϕt

and ϕt+1. The simulator models a learning process
defined by the Zone of Proximal Development (ZPD)
(Vygotsky, 1978), i.e. a student can learn from a task
only if it is of the correct difficulty level. This is de-
fined in the simulated environment as the difference
αi, j between the skills of the student ϕt

i and those re-
quired to solve the task ψ j. As a consequence αi, j

represents the skill deficiency of the student.

ỹ(ϕi,ψ j) =max(1− ||α
i, j||
||ϕi||

,0)

τ(ϕi,ψ j)k =ỹ(ϕik,ψ jk)α
i, j
k

αi, j
k =max(ψ jk−ϕik,0) (9)

In Eq. (9) ỹ represents the simulated score of the
student and the skills are positively definite. There-
fore ϕik > ϕi2k means student i is more knowledge-
able than student i2 and ψ jk > ψ j2k means task j is
more difficult than task j2. Finally ψ jk < ϕik means
a task j is too easy for student i and (s)he cannot
learn from it (Schatten and Schmidt-Thieme, 2014).
To develop the Skill Deficiency aware Kalman State
Estimation for Matrix Factorization (KSEMF SD) we
interpreted the simulator modeled skills ψ jk and ϕik,
for all i, j, and k as the from MF computed latent fea-
tures. We then reformulated the equations modeling
the process, Eq. (9), to fit Eq. (3) and work also with
negative latent features. Therefore, we slightly modi-
fied Eq. (9) to Eq. (10). These changes allowed also
negative latent features, but kept the ZPD properties
of the simulator, i.e. a student cannot learn from too
easy tasks and learns from a task proportionally to his
knowledge and the skills required to solve the task.
The equations were changed as shown in Eq. 10.

ỹ(ϕi,ψ j) = max(1− ||α
i, j||
||ϕi||

,0)

τ(ϕi,ψ j)k = ỹ(ϕik,ψ jk)γδ(αi, j
k > 0)ψ jk

αi, j
k = ψ jk max(1−ϕik/ψ jk,0), (10)

where γ is a weight and δ is a Kronecker δ that is equal
to 1 when its condition αi, j

k > 0 is verified and 0 else-
where. αi, j

k > 0 for max(ψ jk −ϕik,0) when ψk > 0
and for min(ψ jk −ϕik,0) for ψk < 0. Under the in-
terpretation ϕi,k = 0 means student i does not possess
skill k and

∣∣ϕi,k
∣∣ > 0 now means having some ability

in skill k. The mathematical properties of the equa-
tions did not change much from the previous version
and are:
1. The simulated performance ỹ of a student on a

task decreases proportionally to his skill deficien-
cies w.r.t. the required skills.

2. The student will improve all the required skills of
a task proportionally to his simulated performance
ỹ, his learning rate γ up to the skill level a task
requires.

3. As a consequence it is not possible to learn from
a content more than γ times the required skills.

4. A further property of this model is that tasks re-
quiring twice the skills level a student has, i.e.∥∥ψ j

∥∥≥ 2‖ϕi‖, are beyond the reach of a student.
Given Eq. (10) we obtained
ϕ(t)

ik = ϕ(t−1)
ik +(ỹ(ϕik,ψ jk)γδ(|ϕik|<

∣∣ψ jk
∣∣))ψ jk,

i.e.
A = diag(1)

and
B = diag(ỹ(ϕik,ψ jk)δ(|ϕik|<

∣∣ψ jk
∣∣)γ). (11)

Student Progress Modeling with Skills Deficiency Aware Kalman Filters

35

5 EXPERIMENT SECTION

In this Section we analyze different aspects of the al-
gorithm. First, we describe the dataset used for the
experiments; then, we analyze the hyperparameters’
selection and the model initialization. Afterwards, we
discuss the ability of the algorithm to model the stu-
dent progress. This is done from different perspec-
tives, which involve the personalization of the state
and the update rate. sensitiveness of the algorithm to
the lack of data.

5.1 Dataset Characteristics

To test the presented algorithm and model the
progress of the students we use the dataset collected
with an ITS with 20 topics about maths for children
aged from 6 to 14, who can practice with over 2000
tasks at school or at home.
An example of questions proposed to the students can
be found in Fig. 2. From these questions proposed
in sets, that we call interactions or tasks, we do not
know which ones precisely were answered correctly
since the ITS aggregates the information in a single
score. For these multiple-skills interactions we do not
possess the skills involved, therefore, in this context,
we cannot use classic BKT and PFA approaches. The
score, as in Schatten and Schmidt-Thieme (2014), is
represented in a continuous interval which goes from
0 to 1. The topics and new skills to be acquired are
introduced following the curriculum of the country.
The tasks are presented with a rule-based sequencer,
which increases the difficulty of the tasks once the
student completed and passed all the tasks of the dif-
ficulty level. If the tasks are not passed the student
gets a regression exercise or can try again to solve the
task.

Figure 2: Two questions of the commercial ITS.

Of the large dataset of the commercial ITS we se-
lected two subsets described in Tab. 1 in order to
minimize the noise due to the lack of data and monitor

Table 1: Dataset Statistics.

DTrain DTest
Number of Tasks 2035 2035
Number of Students 24288 713
Total Student-Task 751109 102038
Interactions, N

the progress of the error and latent features over time.
Consequently, we selected only the students i with at
least Ni > 10 interactions, where one interaction cor-
respond to a student solving a set of 10 questions ag-
gregated in a single score. The available students are
then divided in two groups. The group of those with
10 < Ni < 100 is used to initialize the latent features
of all algorithms (DTrain, Tab. 1), whereas the others
with Ni > 100 are used to test online updates UpMF
and KSEMF SD (DTest Tab. 1).

5.2 Hyperparameters’ Selection

All the model hyperparameters of MF, UpMF and
KSEMF SD were selected with a full Grid Search,
i.e. the influence on the model error of different
combinations of hyperparameters is analyzed in a
brute force manner. First MF ones were evaluated
considering the RSME obtained with a further split of
DTrain. 66% of DTrain was used to train the MF model
and its 34% was used to test the model with the
different hyperparameters. UpMF and KSEMF SD
best hyperparameters are then selected in the ranges
presented in Tab. 2 according to the performances in
DTest in particular we used the value Total RMSE
computed as in Alg. 2 to evaluate the performances
of the algorithm.

Input: DTrain, DTest , Q, R, P0
Use DTrain and Eq. (1) to obtain Φ(t=0) and Ψ;
for each si c j interactions in Dtest N do

A = diag(1), H = ψ j
T ;

Compute B using Eq. (11);
ŷ=Predict, Eq. (5);
Correct, Eq. (6);
Err+= (y− ŷ)2;

end
Total RMSE=

√
Err/N;

Algorithm 2: Experiments’ Framework.

UpMF and MF hyperparameters are λ, β, iterMax and
K. In addition to these, KSEMF SD possesses four
more hyperparameters: Q, R, γ, and P0. The empirical
approach is to model Q, R, and P0 as diagonal matri-
ces and test their diagonal values with a logarithmic
scale. The selected hyperparameters are reported in
Tab. 3.

CSEDU 2016 - 8th International Conference on Computer Supported Education

36

Table 2: Hyperarameters rages tested for UpMF and
KSEMF SD.

Parameters Range Step
Learning Rate β 0.01-0.1 0.01

Latent Features K 2-120 20
Regularization λ 0.01-0.1 0.01

0.001-0.01 0.001
Number of Iterations 10-200 10

IterMax
State Noise Cov. Q 0.00001-1 logarithmic
Error Noise Cov. P0 0.00001-1 logarithmic
Measurement Noise 0.00001-1 logarithmic

Cov. R
Weight γ 0.00001-1 logarithmic

Table 3: Selected hyperarameters UpMF and KSEMF SD.

Parameters UpMF KSEMF SD
Learning Rate β 0.01 0.01

Latent Features K 102 62
Regularization λ 0.01 0.01

Number of Iterations 100 25
IterMax

State Noise Cov. Q - 0.00001
Error Noise Cov. P0 - 1
Measurement Noise - 0.001

Cov. R
Weight γ - 0.001

In the future more efficient approaches to hyperpa-
rameters’ selection could be used as the ones sug-
gested by Wistuba et al. (2015) and Schilling et al.
(2015).

5.3 State Variables Initialization

The next question to answer was how to initialize
the latent features of UpMF and KSEMF SD. Since
both algorithms are fully personalized they both suf-
fers from the so called cold-start problem, which oc-
curs when no information is available about the stu-
dents or the tasks. Therefore, a random initialization
of the latent features would lead to very bad perfor-
mances (Voss et al., 2015). Usual approach to solve
the problem is to train a model with the classic MF
algorithm and use the computed tasks’ latent features
to initialize KSEMF SD and UpMF. These are then
kept constant while applying Alg. 2 or Alg. 1. Since
DTrain and DTest have no overlapping students, the
DTest students’ cold-start problem is solved by includ-
ing in DTrain data of their first interactions with the
ITS, so that their latent features can be learned in a
full training. The samples necessary to avoid the cold
start problem, both for students and tasks, are gen-

0 50 100 150 200

0.15

0.2

0.25

0.3

0.35

Interactions

T
ot

al
_R

M
S

E

Total_RMSE

UpMF
KSEMF_SD
MF
KSEMF_SD Cold
UpMF Cold

Figure 3: DTest Total RMSE behavior over time: Models
marked with ”Cold” label are initialized with only 1 inter-
action in DTrain whereas the others with 10.

erally 10. This amount was empirically defined by
Pilászy and Tikk (2009). Since these 10 interactions
are not always available, we show also results when
just one interaction is included in DTrain. The by MF
computed students’ and tasks’ latent features are then
used to initialize respectively Φ(t=0) and Ψ of UpMF
and KSEMF SD. The MF results shown in all the sub-
sequent figures are the ones of the MF used to initial-
ize KSEMF SD, so that it is possible to see the lift
obtained by the KSEMF SD update.
In Fig. 3 we can see how the Total RMSE, computed
as in Alg. 2, evolves over time. Models marked with
the ”Cold” label are initialized with only 1 sample
whereas the others are initialized with 10. MF Cold
behaved like a random predictor with an error around
0.5 and is not shown in Fig. 3. As it is possible to
see, the 10 samples substantially improved the error.
Nevertheless, we believe this is still not an optimal
initialization for KSEMF SD, since for the first inter-
actions KSEMF SD is outperformed by UpMF and
MF with 10 samples initialization. KSEMF SD, ini-
tialized with 10 samples, has a similar behavior as MF
because it inherits the error of MF tasks’ latent fea-
tures whereas KSEMF SD error amelioration is due
to the better students’ latent features modeling.
If these 10 interactions are not available, KSEMF SD
Cold converges faster to smaller errors than UpMF
Cold. In Voss et al. (2015) it was discussed how the
cold start problem limits the usage of MF in small ITS
or for short experiments with new students. There-

Student Progress Modeling with Skills Deficiency Aware Kalman Filters

37

0 20 40 60 80 100 120 140
0.22

0.225

0.23

0.235

0.24

0.245

0.25

0.255

Latent Features

R
M

S
E

Sensitiveness of RMSE to number of Latent Features

KSEMF_SD
MF
UpMF

Figure 4: RMSE sensitiveness analysis to latent features.

fore, a faster converging error is an appealing prop-
erty, that could further reduce the requirements of MF.
Despite a better performance in the first interactions
UpMF error increases over time. The problem was
reported also by Schatten et al. (2015), who, to avoid
this issue, retrained the model each night. This is
however a quite demanding computational require-
ment and, as we will see in Sec. 5.5, can affect the
progress modeling approach we want to use. More-
over, UpMF requires the entire history of one stu-
dent as input parameter for Alg. 1 that in case of DB
implementation will not only slow down the perfor-
mances but also increase the complexity of the sys-
tem. KSEMF SD does not require demanding DB ac-
cesses to extract the entire student’s history since it
uses only information of the current time step to pre-
dict the next one.
Finally, in this experiment we also provide the first
proof that KSEMF SD is able to predict the student
performances, meaning that it is possible to interpret
the student’s latent features as their state.

5.4 RMSE Evaluation

In this Section we evaluate the overall algorithm per-
formances by computing the Total RMSE, as in Alg.
2. For MF, UpMF and KSEMF SD we analyze the
sensitiveness to the number of latent features. More-
over, we repeated the experiment five times to be able
to exclude the variance influence due to the random
initialization of the MF. As shown in Fig. 4 the algo-
rithm is able to outperform our reference baselines in
all tried latent features configurations.

5.5 Modeling Student Progress

In order to use the developed algorithm to model stu-
dent progress, it is important to be able to use the
performance predictor as model for the user state and

take decisions accordingly. One of the claimed dis-
advantages of MF approaches in comparison to BKT
and PFA is that the amount of knowledge of the stu-
dent cannot be extracted directly from the latent fea-
tures computed by the algorithms. For this reason
Schatten and Schmidt-Thieme (2014) proposed a se-
quencer which uses only the information coming from
the predicted score. In Fig. 5 it is shown (a) how the
latent features evolve according to KSEMF SD algo-
rithm in a scenario with 62 latent features and (b) how
the latent features evolve according to UpMF algo-
rithm in a scenario with 102 latent features. Fig. 5 (f)
shows the actual score of the student (blue) and the
predicted performance of the student by KSEMF SD
(green) and MF (red). In all displayed examples it
is not possible to understand what is the overall state
evolution of the student. However, the predicting abil-
ity of KSEMF SD let us suppose that the latent fea-
ture have indeed a state meaning for the algorithm
and consequently an evolution according to the stu-
dent’s performance should be monitored. Therefore,
to monitor a meaningful trend, we aggregated the fea-
tures computing the norm 1 normalized for the num-
ber of latent features as in Eq. (12) and depicted the
results in Fig. 5 (c) for KSEMF SD and (d) for UpMF.

kn =
1
K

K

∑
k=0
|ϕk| (12)

Under the interpretation that ϕi,k = 0 means student
i does not possess skill k, whereas

∣∣ϕi,k
∣∣ > 0 means

having some ability in skill k, variable kn could be
understood as the personalized knowledge evolution
or the learning curve of the user. Although UpMF
latent features are learned from scratch after each in-
teraction one can notice in the figures an evolution
trend, which is as plausible as the one of KSEMF SD.
This also confirms that the latent features in MF ap-
proaches represents the state of the user and their
value could be used to retrieve the students knowledge
amount. We believe this works because the tasks’
latent feature are kept constant. Therefore, in order
to keep track of the current state of the students one
cannot do a full retrain of the UpMF model, as done
by Schatten et al. (2015), since this would reset the
values of the tasks’ latent features, that allow recon-
structing at each interaction the state of the student by
means of the student’s history.

5.6 Personalization

One important aspect of progress modeling is per-
sonalization. MF creates an individualized model
as well for tasks as for students. In order to do so
also for KSEMF SD, each student has his/her own

CSEDU 2016 - 8th International Conference on Computer Supported Education

38

0 50 100 150 200
−2

0

2
(a) State Evolution KSEMF

0 50 100 150 200
−0.5

0

0.5
(b) State Evolution UpMF

0 50 100 150 200
0

0.5

1
(c) Knowledge Evolution KSEMF

0 50 100 150 200
0.05

0.1
(d) Knowledge Evolution UpMF

0 50 100 150 200
0

0.1

0.2
(e) RMSE Error

0 50 100 150 200
0

0.5

1
(f) Score

Figure 5: x-Axis: Number of tasks seen by the student
or interactions. y-Axis: (a) state evolution according to
KSEMF SD with K=62. (b) state evolution according to
UpMF with K=102. (c) and (d): knowledge evolution
for KSEMF SD and UpMF computed as in Eq. (12). (e)
Total RMSE of KSEMF SD (blue), MF (green) and UpMF
(black). (f) Actual performance of the student (blue), pre-
dicted performance by KSEMF SD (green), MF (red).

KSEMF SD equations updating according to his/her
modeled state and performances. Since the simula-
tor equations are based on the state variable, in this
context, also the B matrix is personalized and change
at each interaction. Therefore, the update equations
of KSEMF SD model personalization in two differ-
ent ways. The B matrix represents the influence of
the student on the update, i.e. what is his/her learn-
ing rate and its skills’ deficiency. The control u, i.e.
the tasks’ latent features ψ, represents the influence
of the task on the knowledge acquisition of the stu-
dent. Hereafter, we will see how the state as well as
the update evolve over time in a personalized way.

0 50 100 150 200
−5

0

5
(a) State Evolution Student 1

0 50 100 150 200
0

1

2
(b)Knowledge Evolution Student 1

0 50 100 150 200
0

0.2

0.4
(c) Error Student 1

0 50 100 150 200
−5

0

5
(d) State Evolution Student 2

0 50 100 150 200
0

1

2
(e) Knowledge Evolution Student 2

0 50 100 150 200
0

0.2

0.4
(f) Error Student 2

Figure 6: x-Axis: Number of tasks seen by the student or
interactions. y-Axis:(a) and (d): KSEMF SD state evolu-
tion of two different students, K=62. (b) and (e): kn of
KSEMF SD latent features computed as in Eq. 12. (c)
and (f): Total RMSE of KSEMF SD (blue), MF (green)
and UpMF (black) of two different students.

5.6.1 Personalized State Evolution

See Fig. 6 (b) and (d) to see the personalized latent
features’ trends of KSEMF SD. In Fig. 4 (c) and (f)
and in Fig. 5 (e) we can see the Total RMSEs of the
models for three specific students. These are overall
coherent with the results presented in Fig. 3. This
information could be used in several ways, e.g. by
later establishing the mapping between the computed
kn trend and the actual knowledge acquisition of the
users, we could design novel policies for sequencing
tasks, feedbacks and hints. In addition, the relation-
ship between kn and the model error should be further
analyzed. This will allow also to monitor the perfor-
mances of the performance predictor over time.

Student Progress Modeling with Skills Deficiency Aware Kalman Filters

39

0 50 100 150 200
−5

0

5
(a) State Evolution KSEMF

0 50 100 150 200
−0.5

0

0.5
(b) State Evolution UpMF

0 50 100 150 200
0

0.5

1
(c) Knowledge Evolution KSEMF

0 50 100 150 200
0.05

0.1
(d) Knowledge Evolution UpMF

0 50 100 150 200
0

0.5
(e) RMSE Error

0 50 100 150 200
0

0.5

1
(f) Update

Figure 7: x-Axis: Number of tasks seen by the student or
interactions. y-Axis: (a) how the state evolves according to
KSEMF SD with K=62. (b) shows how the state evolves
according to UpMF algorithm with K=102. (c) and (d)
show the knowledge evolution, computed as in Eq. (12).
(e) RMSE of KSEMF SD (blue), RMSE of MF (green)
and UpMF (black). (f) Actual Performance of the stu-
dent (blue), predicted performance of the student by the
KSEMF SD (green), predicted performance by MF (red)
and ỹ (turquoise).

5.6.2 Personalized Update Evolution

In this Section we discuss the plausibility of the per-
sonalized update trend derived through Eqs. (10). For
simplicity we considered ỹ, which represents the up-
date of the state, since it is later multiplied with con-
stant γ to obtain B (See Eq. 3). In Fig. 7 (f) we show,
for a student, how ỹ evolves over time. An almost con-
stant update is plausible, since it mimics the learning
rate of the student, which is related to his/her learning
ability. However, its adaptive computation through
the state is of advantage, since it allows the model to
faster adjust to the students’ states changes. In Fig. 8

0 50 100 150 200
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26
Mean Update

Interactions

U
pd

at
e

Figure 8: Mean Update Over Time Update behavior at
each interaction on average for all students.

we see that the average update for all students evolves
over time converging only in the last interactions to a
constant value. This is explicable with the previously
seen behavior of KSEMF SD in the first interactions
(see Fig. 3) and should be seen as another indicator
that the initialization of the algorithm is not optimal.
Although we were not interested in keeping the sim-
ulation properties of the simulator from which we
derived our equations, we briefly discuss why ŷ is
smaller than the actual performance. Since the vari-
ables of ϕ and ψ are not clipped between 0 and 1 as in
Schatten and Schmidt-Thieme (2014)

∥∥∥αi, j
k

∥∥∥ is con-
sequently bigger on average and ỹ smaller than the
actual performance. In conclusion, given the amelio-
rated results of KSEMF SD over UpMF, reported in
both Fig. 3 and Fig. 4, we overall showed that the de-
signed equations for KSEMF SD are suitable to up-
date the students’ latent features.

6 CONCLUSIONS

In this paper we presented KSEMF SD a novel
method for student progress modeling based on online
updating MF performance prediction and skills’ defi-
ciency aware Kalman Filters. We go a step forward
with respect to domain independent performance pre-
diction with progress modeling; showing how to rep-
resent the evolution of the students over time in a
plausible way. This is done by assigning a specific
interpretation to latent features which represents the
state of the student and the characteristics of a task.
In future work, we believe to be able to map the rela-
tionship between the computed kn and the real knowl-
edge evolution. This will hopefully deliver an effort-
less analysis tool to teachers and developers.
The developed algorithm also showed appealing
properties in comparison to another domain indepen-

CSEDU 2016 - 8th International Conference on Computer Supported Education

40

dent progress modeler. First, the computational re-
quirements are reduced because the entire student’s
history is not necessary to compute the updated la-
tent features. Then, the algorithm remains domain in-
dependent because the tagged skills of the tasks are
not necessary to deliver a score prediction. Finally,
KSEMF SD reduced the prediction error and is less
sensitive to the lack of that. In future work we believe
to further be able to reduce the error by developing a
better initialization of the students’ latent features.

ACKNOWLEDGEMENT

This research has been co-funded by the Sev-
enth Framework Programme of the European Com-
mission, through project iTalk2Learn (#318051).
www.iTalk2Learn.eu.

REFERENCES

Cichocki, A., Zdunek, R., Phan, A. H., and Amari, S.-i.
(2009). Nonnegative matrix and tensor factorizations:
applications to exploratory multi-way data analysis
and blind source separation. Wiley. com.

Corbett, A. and Anderson, J. (1994). Knowledge tracing:
Modeling the acquisition of procedural knowledge.
UMAI.

D Baker, R. S., Corbett, A. T., and Aleven, V. (2008). More
accurate student modeling through contextual estima-
tion of slip and guess probabilities in bayesian knowl-
edge tracing. In ITS, pages 406–415. Springer.

Janning, R., Schatten, C., and Lars, S.-T. (2014a). Fea-
ture analysis for affect recognition supporting task se-
quencing. In ECTEL.

Janning, R., Schatten, C., and Schmidt-Thieme, L. (2014b).
Multimodal affect recognition for adaptive intelligent
tutoring systems. In FFMI EDM.

Kalman, R. E. (1960). A new approach to linear filtering
and prediction problems. Journal of Fluids Engineer-
ing, 82(1):35–45.

Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factor-
ization techniques for recommender systems. Com-
puter, 42(8):30–37.

Li, B., Zhu, X., Li, R., Zhang, C., Xue, X., and Wu,
X. (2011). Cross-domain collaborative filtering over
time. In Proceedings of the Twenty-Second inter-
national joint conference on Artificial Intelligence-
Volume Volume Three, pages 2293–2298. AAAI Press.

Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H.,
and Koper, R. (2011). Recommender systems in tech-
nology enhanced learning. In Recommender systems
handbook, pages 387–415. Springer.

Nielsen, J. (1994). Usability engineering. Elsevier.

Pardos, Z. A. and Heffernan, N. T. (2010). Modeling indi-
vidualization in a bayesian networks implementation
of knowledge tracing. In UMAP. Springer.

Pardos, Z. A. and Heffernan, N. T. (2011). Kt-idem: intro-
ducing item difficulty to the knowledge tracing model.
In UMAP, pages 243–254. Springer.

Pavlik, P., Cen, H., and Koedinger, K. (2009). Performance
factors analysis-a new alternative to knowledge trac-
ing. In AIED.

Pilászy, I. and Tikk, D. (2009). Recommending new
movies: Even a few ratings are more valuable than
metadata. In RecSys.

Rendle, S. and Schmidt-Thieme, L. (2008). Online-
updating regularized kernel matrix factorization mod-
els for large-scale recommender systems. In Proceed-
ings of the 2008 ACM conference on Recommender
systems, pages 251–258. ACM.

Schatten, C., Janning, R., and Schmidt-Thieme, L. (2014a).
Vygotsky based sequencing without domain informa-
tion: A matrix factorization approach. In Computer
Supported Education, pages 35–51. Springer.

Schatten, C., Janning, R., and Schmidt-Thieme, L. (2015).
Integration and evaluation of a machine learning se-
quencer in large commercial its. In AAAI2015.
Springer.

Schatten, C., Mavrikis, M., Janning, R., and Schmidt-
Thieme, L. (2014b). Matrix factorization feasibility
for sequencing and adaptive support in its. In EDM.

Schatten, C. and Schmidt-Thieme, L. (2014). Adaptive
content sequencing without domain information. In
CSEDU.

Schatten, C., Wistuba, M., Schmidt-Thieme, L., and
Gutirrez-Santos, S. (2014c). Minimal invasive inte-
gration of learning analytics services in its. In ICALT.

Schilling, N., Wistuba, M., Drumond, L., and Schmidt-
Thieme, L. (2015). Joint model choice and hyperpa-
rameter optimization with factorized multilayer per-
ceptrons. In Tools with Artificial Intelligence (ICTAI),
2015 IEEE 27th International Conference on, pages
72–79. IEEE.

Thai-Nghe, N., Drumond, L., Horvath, T., Krohn-
Grimberghe, A., Nanopoulos, A., and Schmidt-
Thieme, L. (2011). Factorization techniques for pre-
dicting student performance. Educational Recom-
mender Systems and Technologies: Practices and
Challenges. IGI Global.

Thai-Nghe, N., Drumond, L., Horvath, T., and Schmidt-
Thieme, L. (2012). Using factorization machines for
student modeling. In UMAP Workshops.

Thai-Nghe, N., Drumond, L., Krohn-Grimberghe, A., and
Schmidt-Thieme, L. (2010). Recommender system
for predicting student performance. Procedia Com-
puter Science, 1(2):2811–2819.

Voss, L., Schatten, C., and Schmidt-Thieme, L. (2015). A
transfer learning approach for applying matrix factor-
ization to small its datasets. In EDM2015.

Vygotsky, L. L. S. (1978). Mind in society: The develop-
ment of higher psychological processes. HUP.

Wang, Y. and Heffernan, N. T. (2012). The student skill
model. In ITS2012.

Student Progress Modeling with Skills Deficiency Aware Kalman Filters

41

Wistuba, M., Schilling, N., and Schmidt-Thieme, L. (2015).
Sequential model-free hyperparameter tuning. In
Data Mining (ICDM), 2015 IEEE International Con-
ference on, pages 1033–1038. IEEE.

Xiong, L., Chen, X., Huang, T.-K., Schneider, J. G., and
Carbonell, J. G. (2010). Temporal collaborative filter-
ing with bayesian probabilistic tensor factorization. In
SDM, volume 10, pages 211–222. SIAM.

CSEDU 2016 - 8th International Conference on Computer Supported Education

42

