Automated Quality Analysis of Software Engineering Method Models

Masud Fazal-Baqaie and Frank Kluthe
s-lab — Software Quality Lab, University of Paderborn, Zukunftsmeile 1, Paderborn, Germany

Keywords:

Abstract:

Process Model Quality, Situational Method Engineering, Method Pattern, Static Analysis, OCL.

Using a suitable software engineering method (SEM) for a specific project and following it properly is im-

portant for the resulting software quality. However, SEMs described in natural language are often ambiguous
and lack automated guidance for the team members, causing impediments for the project. The model-based
approach Method Engineering with Method Services and Method Patterns (MESP) allows to model enactable
SEM models by composing pre-defined building blocks. Up to now, the quality of MESP models had to be
checked manually which was tedious and error-prone at times. In this paper, we present an automated design-
time quality analysis for MESP SEM models. In particular, our analysis allows to automatically evaluate
generic quality characteristics relevant for all SEM models as well as specific quality requirements specified
using MESP method patterns. We integrated the quality analysis framework into the MESP Workbench and
our evaluation shows that the analysis is fast enough to provide timely feedback even for large SEM models.

1 INTRODUCTION

Using a suitable software engineering method (SEM)
is important for the resulting software quality
(Fitzgerald et al., 2003), hence SEMs need to be cus-
tomized to the specific project, e.g., to the level of
risk (Cockburn, 2000). In addition, their representa-
tion needs to be unambiguous and descriptive enough
to be followed properly. For example, SEMs in nat-
ural language tend to be ambiguous, thus misunder-
standings can lead to coordination overhead. In con-
trast, models created with formal process description
languages describe the flow of activities in an unam-
biguous manner allowing for automation.

Method Engineering with Method Services and
Method Patterns (MESP) (Fazal-Baqaie and Engels,
2016) is a situational method engineering approach
(Henderson-Sellers et al., 2014) that supports the cre-
ation of such formal SEM models based on the spe-
cific project characteristics. Following the assembly-
based paradigm (Brinkkemper, 1996), SEM models
are composed based on pre-defined method services
and method patterns. These models can be enacted
with a workflow engine that supports the project team
in applying the SEM. In addition, MESP introduces
the notion of method patterns that describe quality re-
quirements for a SEM model, e.g., that tasks with spe-
cific output have to be part of it.

As SEMs can comprise hundreds of tasks and
work products (e.g. RUP (Kruchten, 1999)), models

Fazal-Bagaie, M. and Kluthe, F.
Automated Quality Analysis of Software Engineering Method Models.
DOI: 10.5220/0005743205270534

can become quite large. Thus, automated feedback
about the quality of SEM models is desirable. This
paper presents an automated quality analysis frame-
work for the MESP approach. It makes the follow-
ing contributions: (i) introduction of a set of general
quality characteristics for MESP models, which are
formally specified using the Object Constraint Lan-
guage (OCL), (ii) translation of quality requirements
specified with MESP method patterns into OCL, (iii)
a framework to automatically analyze the quality of
MESP models and its implementation and integration
into the MESP workbench, and (iv) a performance
evaluation of the analysis.

This paper is structured as follows: Section 2 ex-
plains the MESP approach and the structure of SEM
models. Section 3 presents our automated quality
analysis framework. Section 4 describes the results
of our performance analysis. Section 5 discusses re-
lated work. Finally, Section 6 concludes the paper.

2 BACKGROUND

In the following, we provide a brief overview of the
MESP approach and explain which part is supported
by our quality analysis. Subsequently, we explain
how SEM models are modeled and especially the use
of method patterns.

527

In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2016), pages 527-534

ISBN: 978-989-758-168-7

Copyright (© 2016 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

2.1 Overview of the MESP Approach

As illustrated in Figure 1, MESP differentiates three
roles that are responsible for different tasks:

Senior Method Engineer
\f‘j‘ (1] Define Method Services &
&) Method Patterns
‘ Supported by Quality Analysis
@ @characterize I|.ﬁCom ose Suitable-=» O Transform and
Project Deploy Method
Project Method Engineer

()

] Enact Method

Project Team

Figure 1: Overview of MESP, highlighting the task sup-
ported by the quality analysis.

The senior method engineer is responsible for
formalizing reusable SEM model building blocks by
defining method services and method patterns. The
building blocks are stored in a repository and can be
reused in arbitrary many SEM models.

The project method engineer is responsible for
composing a customized SEM model with respect to
a specific project. Based on the characterization of
a project (@), suitable method services and method
patterns are retrieved from the repository and com-
posed by specifying control and data flow between
them (®). Thereby, method services must not vio-
late the chosen method patterns (Fazal-Baqaie et al.,
2013). The automated quality analysis, which is in-
troduced in Section 3, is performed during the high-
lighted task (®). When the method composition is
completed, the project method engineer invokes a
transformation into a mainstream process description
language and deploys the method model into a work-
flow engine (Fazal-Baqaie et al., 2014) (®).

The project team is guided by the workflow en-
gine, which enacts the SEM model (@). It creates
tasks and assigns them to the team and thereby en-
sures that the team follows the SEM model.

2.2 Running Example

In this section, we illustrate the building blocks of
SEM models and their composition to a SEM model,
in order to show how MESP methods are formalized.
We also briefly discuss examples for quality issues
and method pattern violations.

2.2.1 Defining Method Services and Method
Patterns

The senior method engineer creates method ser-

vices and method patterns and maintains them in the
method repository. Figure 2 shows an example for a

528

method service that we derived from tasks in the prac-
tices library of the Eclipse Process Framework!. On
the top, it shows the textual description of the task
that is used by the project team during enactment. On
the bottom, it shows further information as part of the
interface that is used to identify suitable method ser-
vices and to compose them correctly. Here, the senior
method engineer describes the relation to work prod-
ucts and roles, for which project context the method
service is suitable (situational factors), and what kind
of task it describes (categories).

Content
Name: ,Refine the Architecture”
Content Description: "This task builds upon the outlined architecture and makes con-

Icrete and unambiguous architectural decisions to support development. It takes into...”
T

/] A [:\
linterface

Input: Architecture Notebook
Role: Architect
Categories: Plan-Driven; Development; Design System Criticality Medium — High;

Output: Architecture Notebook
Situational Factors: Agility Medium;

Figure 2: Illustration of an exemplary method service.

Method patterns are used as context-specific qual-
ity requirements for the SEM model contents (Fazal-
Baqaie et al.,, 2013). To illustrate this, we use a
sprint loop as an example. A sprint loop is a com-
mon construct in agile methodologies, e.g., Scrum
(Schwaber and Sutherland, 2013). It prescribes a
repetitive loop of fixed length, where planning activi-
ties are followed by implementation activities, which
in turn are followed by reviewing activities. Fig-
ure 3 shows a partially composed method using a
“Sprint Loop” method pattern. The figure also shows
a sequence and three method services, which are not
part of the method pattern and which we ignore for
the moment. The method pattern contains three so
called constrained scopes, denoted by dotted rectan-
gles. Constrained scopes are connected by control
flow, e.g., sequential or parallel flow, or, like in this
case, an iteration (loop). Each constrained scope
contains a constraint in the lower half (grey back-
ground) that needs to be fulfilled by the upper half
(white background), which potentially hosts method
services.

Constraints are formulated with a specialized
domain-specific language that is part of the MESP
meta-model. In this paper, we describe how these
constraints are translated to OCL as part of our qual-
ity analysis in order to evaluate them automatically.
For example, the constraint of the constrained scope
in the center of Figure 3 describes that all method ser-
vices (A11 MS) need to be of category “Development”

Uhttp://epf.eclipse.org/wikis/epfpractices/index.htm

Method Pattern ,Sprint Loop*

Automated Quality Analysis of Software Engineering Method Models

Constrained Scope

Control Flow

seesseernaniien P TP sestasmrn G ————

Method Service (MS)

0 0]

Constraint

Exists
I_g amspl That s p Meeting]

Of Category [i)
Has Output [\ ")

Figure 3: Partly composed MESP method with issues highlighted by our quality analysis.

(0f Category) or alternatively (Or) produce the out-
put work product “Task List” (Has Output). Addi-
tionally (And), at least one method service (Exists a
MS) must be “Hold Standup Meeting”.

2.2.2 Composing Suitable Patterns and Services

The project method engineer chooses suitable method
patterns and method services and composes the SEM
model for his project. Figure 3 shows a partially com-
posed SEM model. It contains a method pattern and
three method services. Also, the control flow was
refined with a “Sequence” element that denotes that
“Envision the Architecture” is executed after “Refine
the Architecture”. These two method services were
also connected with data flow (dotted arrow) that de-
notes that the output of “Envision the Architecture” is
used by “Refine the Architecture”.

To ensure that the method is enactable, control and
data flow must be consistent. In addition, all con-
straints of the used method patterns have to be ful-
filled. Looking at the example in Figure 3, as the first
constrained scope is empty, the respective constraint
is not fulfilled as denoted by an @. In addition, the
control and data flow between “Envision the Archi-
tecture” and “Refine the Architecture” is contradict-
ing and marked with an ©.

2.3 Overview of the MESP Meta-Model

‘While the meta-model is hidden to the users of MESP,
our quality analysis is build on top of it, because
OCL constraints are formulated with respect to meta-
models. Figure 4 shows an excerpt of the main classes
of the MESP meta-model. The left side shows classes
that are created and maintained by the senior method
engineer and stored in the method repository. As il-
lustrated, Method Patterns and Method Service
contain a defined Interface that references Role,
Situational Factor Value, etc. to characterize
the pattern or service (cf. Figure 2).

The right shows classes that are part of a com-
posed MESP SEM model and which are thus used
by the project method engineer. A SEM model con-
tains a Process that contains Activity elements.
These can be control flow elements like sequences
and parallel flows (classes not depicted), references
to method services (Method Service Descriptor),
or references to method patterns (Method Pattern
Descriptor). The data flow between Method
Service Descriptor elements is modeled using
Activity Input Mappings elements.

Method Repository Building Blocks]

| Constraint
! ope
(e
1
Method Pattern
e]. i X
Situational (—I Interface |_‘| MESP Method |
Factor Value T
3 T
1) ,
[
> Category | <| Process |’_| Activity |
et
Work Product Method Service
: *|__Descriptor
¥ 1 4
L

Activity Input
Mappin:

MESP Software Engineering Method]

@ N
" [Scope Descriptos
Method Pattern
*|__Descriptor

Structured
Activit)

Constrained
Scop

(3K 1
MethodService|<
T

Figure 4: An overview of relevant MESP meta-model
classes.

3 AUTOMATED QUALITY
ANALYSIS

In this section, we present our automated quality anal-
ysis that can be used by the method engineer during
the composition. We first discuss the requirements
for an automated quality analysis framework. Then
we provide an overview of how the analysis frame-
work evaluates constraints on a SEM model. Af-
terward, we describe the general quality characteris-
tics and their formalization with OCL. Thereafter, we
explain the on-the-fly translation of method pattern

529

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

constraints into OCL constraints.
3.1 Requirements for the Analysis

The overall goal of the automated quality analysis is

to support the project method engineer to “Compose

Suitable Patterns & Services” (cf. Section 2.1) by re-

porting quality issues and method pattern violations.

More specifically, we have identified the following re-

quirements for an automated quality analysis frame-

work:

R1 Partial Analysis of Models: In order to provide
early feedback, the analysis shall be applicable to
incomplete SEM models and restrictable to single
regions of the model.

R2 Traceability of Issues: In order to help in fixing
quality issues, the elements of a SEM model that
cause quality issues shall be reported.

R3 Categorization of Issues: In order to help in as-
sessing quality issues, the analysis shall classify
quality issues. Most importantly, critical (prevent-
ing prevent SEM models from being enacted) and
non-critical issues shall be distinguished.

R4 Extensibility of the Analysis Framework: In
order to implement further quality checks easily,
the analysis framework shall be extensible.

RS High Performance of the Analysis: In order to
be used frequently throughout the composition of
a SEM model, the analysis shall not take longer
than a couple of seconds.

3.2 Overview of the Quality Analysis
Framework

We have created a quality analysis framework to
implement the quality analysis. We integrated this
framework into the existing MESP workbench of
the MESP approach (Fazal-Baqaie and Engels, 2016;
Fazal-Baqaie et al., 2014). It is based on the Eclipse
Modeling Framework (Steinberg et al., 2009) that al-
lows to automatically check conformance of models
with their meta-models. This allows to ensure that all
elements referenced from the method repository exist,
a quality characteristic we call “Reference Complete-
ness” (see Section 3.3). However, other quality char-
acteristics and the fulfillment of constraints described
in method patterns cannot be checked out of the box.

Figure 5 provides an overview of our extensible
quality analysis framework that is based on the Object
Constraint Language (OCL) (OMG, 2014). The anal-
ysis consists of two parts. First, the SEM model is
evaluated against generic quality constraints derived
from general quality characteristics (1.). This will be

530

explained in the following Section 3.3. Second, the
SEM model is evaluated against MESP method pat-
tern constraints that are extracted from the model and
transformed into equivalent OCL expressions (2.).
This will be explained in Section 3.4. For the eval-
uation of OCL constraints, our framework reuses the
Eclipse OCL Component. Together with the respon-
sible model elements, the detected issues and pat-
tern violations are passed to the Eclipse Problems
View component and then are presented to the project

method engineer.
Pattern-
‘ Constraints as

OCL expressions'
Generic Quality

Constraints as
OCL expressions

MESP Pattern

Translation

MESP SEM Model
Model Constraints

N o B

Evaluation

references

Method Services &
Method Patterns

Detected Quality
Issues + Pattern
Violations

& Problems 52 @ Javadoc | (& Declaration
1 error, Lwarning, 0 others
Description - Resourc
4 @ Errors (Litem) [[1
& ActivityOutputMapping is missing for provided Output: Sprint Planning i

4 & Wamnings (Litern)
41 Only 9% of the produced Outputs are actually used Method

Figure 5: Quality analysis framework of MESP.

3.3 Formalization and Analysis of
General Quality Characteristics

We defined several quality characteristics for MESP-
based SEM models based on the categories proposed
in (Harmsen, 1997) and considering additional litera-
ture from the method engineering and process model
domains. As shown in Table 1, we have currently im-
plemented a basic set of 4 critical and 2 non-critical
quality characteristics (cf. requirement R3) to demon-
strate the approach and the extensibility of the frame-
work (cf. requirement R4). While our defined char-
acteristics cover all essential aspects to ensure the en-
actment of SEM models, providing a “complete” set
of quality characteristics is not in scope of this pa-
per. Instead, we focused on creating a quality analy-
sis framework, which makes the integration of further
quality characteristics fairly easy.

For each of the quality characteristics we derived
an OCL constraint. Every time the user invokes the
analysis, the SEM model is checked against all of
these general quality constraints (see 1. in Figure 5)
and the quality issues are reported. In this section,

Table 1: Implemented Quality Characteristics.

Critical Quality Characteristics

Reference All referenced elements exist in the
Completeness | method repository.
Input/Output For all requireq input WQrk products
of method service descriptors the
Completeness . .
necessary data flow is specified.
Flow The control flow order of method
. service descriptors does not contradict
Consistency .
the specified data flow.
Input/Output The specified data flow is consistent
Consistency to the referenced method services.
Non-Critical Quality Characteristics
Work Product | The percentage of produced, but
Efficiency unused outputs of service descriptors.
Structural The percentage of empty, thus un-
Soundness necessary control flow constructs.

we use “Flow Consistency” as an example to exem-
plify the derivation of OCL constraints. The MESP
SEM model illustrated in Figure 3 violates the quality
characteristic, because the method service descriptor
“Refine the Architecture” needs an input work prod-
uct from “Envision the Architecture”, which is ex-
ecuted afterward. In other words, it is required to
check whether an input of a method service descrip-
tor X (here “Refine the Architecture”) is created by
another method service descriptor Y (here “Envision
the Architecture”), where Y is not a predecessor of
X. This would signify a contradiction between the
control flow order (X before Y) and the data flow (X
needs input from Y).

3.4 Formalization and Analysis of
Method Pattern Constraints

As explained in Section 2.2, constraints in method
patterns are formulated using a structured language
that is designed to be used by senior and project
method engineers and which is part of the MESP
approach. Translating method pattern constraints to
OCL allows to reuse the existing Eclipse OCL Com-
ponent to evaluate constraints against the SEM model.
The translation works as follows (see Figure 5):
Based on the pattern references in the SEM model,
the corresponding constraints from method repository
are extracted and translated into equivalent OCL con-
straints. Then these are checked against the SEM
model. While the general quality constraints pre-
sented in the previous section are defined statically,
these pattern-related constraints are created on-the-fly
during each run of the analysis. In addition, pattern-
related constraints are evaluated only against the re-
spective constrained scope descriptor, while general
quality constraints are evaluated against all elements
in the scope of the analysis, so usually the whole SEM

Automated Quality Analysis of Software Engineering Method Models

model.

We illustrate the translation of method pattern
constraints using the constraint depicted in the mid-
dle constrained scope of Figure 3. The internal re-
presentation of this constraint is shown in Figure 6.
Underneath each object the corresponding concrete
syntax element is presented. As depicted, some in-
formation is stored as attributes of the objects, e.g.,
whether negation was used. As part of the analy-
sis, the Pattern-Constraint-to-OCL-Translation com-
ponent translates the presented pattern constraint into
the two OCL constraints in Figure 7. We marked
the constraint language constructs of MESP in Fig-
ure 6 and the corresponding OCL statements in Fig-
ure 7 with the same number. As shown, based on
the quantifier of the statement, i.e., OrStatement or
AtomicStatement, a “forAll” or “exists” con-
struct is used in OCL (1., 6.). The body of this
construct then depends on the type of the term,
i.e., CategoryTerm (2.), WorkProductTerm (4.), or
IdentityTerm (7.). If a term was negated, “exist”
would be replaced by “not exist” (2.,4.,6.). From
the referenced Category (3.), Work Product (5.),
and Method Service (8.) the “Name” attribute is
used to create the respective search expressions.

The two OCL constraints are evaluated against
the respective constrained scope descriptors us-
ing the Eclipse OCL Component. The result
of the overall constraint consisting of the two
ConjunctivePartialConstraint is then computed
using a Java “AND”-Statement. The evaluation of our
example, the pattern-related constraint of the middle
constraint scope in Figure 3 would evaluate to false:
With the assumption that both referenced method ser-
vices have the “Development” category, the upper
conjunctive partial constraint would be fulfilled, how-
ever, as there is no “Hold Standup Meeting” method
service referenced in the constrained scope, the lower
conjunctive partial constraint B is not fulfilled. Thus,
the overall evaluation result is also negative. Simi-
lar to the discussed example, all possible method pat-
tern constraints can be translated to OCL and conse-
quently evaluated with our quality analysis.

3.5 Fulfillment of Stated Requirements

After we explained the quality analysis, we revisit
the requirements described in Section 3.1 and discuss
their fulfillment.

R1: The analysis is accessible via the Eclipse Val-
idation menu and can be invoked on the whole
Process, but also on single Activities (cf. Fig-
ure 4). It runs also on SEM models that are only
partially completed. Thus, R1 is fulfilled.

531

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

a :WorkProductTerm

references :Work Product

n :OrStatement

:ConjunctivePartialConstraint

g

- Quantifier = All MSD

Negated = false
Type = Output

- Name = Task List

All

wso

/

:Constraint

And\

N

:ConjunctivePartialStatement :AtomicStatement

Of Categol
:CategoryTerm |references :Category
- Negated = false - Name = Development
Has Output [[TaskList]]
u :IdentityTerm references :Method Service

-Quantifier = Exists a MSD|

>—|

- Negated = false

-Name = Hold Standup Meeting

=

Thatls { Standup Meeting] |

Figure 6: The object model representation of a MESP Constraint.

1 ConjunctivePartialConstraint A
2 context ConstrainedScopeDescriptor
3 getNested()->

4 select(oclIsTypeOf(MethodServiceDescriptor))->

5 forAll(msd | -(1.)
6 msd.methodService.interface.categories-> -(2.)
7 exist(category | category.name @™
8 = 'Development') (3.)
9 or --(1.)
10 msd.methodService.interface.mandatoryQutput->--(4.)
11 exist(workProduct | workProduct.name (4.)
12 = 'Task List') (5.)
13)

14

15 -- ConjunctivePartialConstraint B

16 context ConstrainedScopeDescriptor

17 getNested()->

18 select(oclIsTypeOf(MethodServiceDescriptor))->

19 exists(msd | (6.)
20 msd.methodService.name --(7.)
21 = 'Hold Standup Meeting' --(8.)
22)

Figure 7: Generated Method Pattern Constraints.

R2: In our analysis quality issues are presented to the
user in the Eclipse Problems View (cf. Figure 5).
If the user double-clicks on an issue in the Prob-
lems View, he jumps to the causing element. In
addition, the elements that cause quality issues are
highlighted in the modeling editors. Thus, R2 is
fulfilled.

R3: In the Problems View, critical issues are pre-
sented as errors and non-critical issues as warn-
ings (cf. Figure 5). Thus R3 is fulfilled.

R4: The quality analysis framework is not limited to
a specific set of quality characteristics, because
additional quality characteristics can always be
added by extending the OCL quality constraints.
In Section 3.3, we explained the basic set of qual-
ity constraints that we have already provided us-
ing this mechanism. Thus, R4 is fulfilled.

R5: As shown in the evaluation (see Section 4), the
analysis is fast enough for realistically sized SEM
models, thus R5 is fulfilled.

532

4 PERFORMANCE EVALUATION

We fully implemented and integrated the quality anal-
ysis into the existing MESP workbench. In this sec-
tion, we discuss the runtime performance based on the
implementation of realistically sized SEM models in
order to determine the fulfillment of requirement RS.

4.1 Evaluation Approach

For the evaluation, we composed SEM models from a
method repository derived from the practices library
of the Eclipse Process Framework”>. We prepared
SEM models focusing on the parameters that impact
the runtime of the analysis (see Table 2). For exam-
ple, the number of detected issues has no noticeable
effect on the runtime and thus was omitted.

We created three sets of models. We created a set
“A” of SEM models to investigate the analysis of gen-
eral quality characteristics that is influenced mainly
by the number of method service descriptors and in-
put mappings (data flow specifications). In addition,
we created a set “B” of models to investigate the in-
fluence of the method pattern analysis on the runtime
(cf. Section 3.4). Here, the influencing parameters are
the number of constrained scopes, the number of par-
tial constraints (that are evaluated individually by the
OCL Component), and the number of method service
descriptors per constrained scope. Both sets exceed
the complexity of big well-known SEMs like RUP
and represent an upper bound for realistically sized
SEM models. Set “C” of SEM models contains mod-
els that are unrealistically big and aims primarily at
investigating the boundaries of the analysis.

Zhttp://epf.eclipse.org/wikis/epfpractices/index.htm

4.2 Results and Interpretation

Table 2 shows an excerpt of the results of our runtime
evaluation. For each model, we took the average of
10 runs, although the measurements deviated only in
fractions of a second. The evaluation shows that real-
istically sized models (sets A and B) are analyzed in
a few seconds. Thereby, the analysis of method pat-
tern constraints seems to have a minor influence on
the runtime compared to the evaluation of the gen-
eral quality characteristics (cf. A3 to B2/B3 and Cl1
to C2). The analysis of the unrealistically big SEM
models (set C), which are about 4 times bigger, takes
about 30 seconds (cf. C1/C2).

Table 2: Results of the runtime evaluation of the analysis
framework.

ID | SDs | IMs | CSs | PCs | D/S | t

Al | 500 - - - - 0.1
A2 | 500 | 1000 - - - 2.0
A3 | 500 | 2000 - - 3.4

B2 | 500 | 2000 5 15 100 | 3.9

B3 | 500 | 2000 | 20 60 25 | 40

C1 | 2000 | 4000 - - - 31

C2 | 2000 | 4000 | 20 60 100 | 34

SDs: Service Descriptors IMs: Input Mappings CSs: Constrained
Scopes PCs: Partial Constraints D/S: Descriptors per Scope

t: Runtime (sec)

The evaluation shows that the runtime perfor-
mance of the analysis fulfills the requirement RS and
allows its continuous use during method composition.
For the evaluation, we considered the runtime of the
analysis of complete SEM models. However, the user
has the choice to run the analysis on parts of the model
to get specific results that are computed more quickly.

Regarding threats to validity, there is the risk that
the SEM models that we created are not representa-
tive. However, we do not consider this to be very
likely, because of the variety of characteristics we in-
vestigated in our experiments.

S RELATED WORK

There are two directions of related work: Firstly,
approaches to use enactable process description lan-
guages to represent software engineering methods.
Models of these approaches can be enacted with
workflow engines that support the project team in fol-
lowing the SEM. Secondly, approaches for situational
method engineering that focus on the modeling of
SEMs with respect to project characteristics.

Automated Quality Analysis of Software Engineering Method Models

5.1 Process Description Languages

BPMN (OMG, 2011) and BPEL (OASIS, 2007) are
established languages to modeling processes for busi-
ness workflow management (Aalst and Hee, 2002).
For the domain of SEMSs, there is no such estab-
lished enactable process description language (Ben-
draou et al., 2010).

Formalizing and automatically checking quality
characteristics has been done for various other lan-
guages, e.g. Little-JIL (Chen et al., 2008) or UML
acitivity diagrams (Khaluf et al., 2011). Yet, these
languages do not support assembly-based method en-
gineering and the method patterns of MESP.

The de facto standard description language for
SEMs is SPEM (OMG, 2008). It offers some limited
method engineering capability (Rougemaille et al.,
2009), but SPEM models are not enactable. Bendraou
et al. (Bendraou et al., 2007) and Ellner et al. (Ellner
et al., 2012) propose extensions to SPEM and tool-
ing to model and enact their models. However, they
offer at most basic quality assurance support and do
not support a notion similar to method patterns, while
their evaluation is one of our main goals.

5.2 Situational Method Engineering

There is a broad range of situational method engineer-
ing approaches (Henderson-Sellers et al., 2014), we
focus on approaches with formal modeling languages
and tool support here. Until the beginning of the
last decade, several tool-supported method engineer-
ing approaches were proposed, but did not gain accep-
tance and are not available for current software plat-
forms. Brinkkemper et al. proposed the method en-
gineering tool Demacrone (Brinkkemper et al., 1998;
Harmsen, 1997) that used a set-based formalism and
offered method model consistency rules formalized in
first order predicate logic. They defined five quality
categories that we re-use for our quality characteris-
tics.

To the best of our knowledge there is only one
approach that was proposed lately. The assembly-
based approach is build with a Eclipse-based model-
ing platform called MOSKitt (Cervera et al., 2011)
and specifically focuses on deriving a suitable CASE
environment to use with the SEM. Similar to our ap-
proach, method fragments are defined and annotated
with meta-information that can be facilitated during
method assembly to find suitable fragments. How-
ever, a notion similar to method patterns is not sup-
ported and quality analysis is not described as part of
their approach.

533

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

6 CONCLUSIONS

In this paper, we presented an automated quality anal-
ysis for models composed with the approach Method
Engineering with Method Services and Method Pat-
terns (MESP). The composed models are formal rep-
resentations of software engineering methods (SEMs)
used by a project team to create software in the con-
text of a specific project. Our extensible approach al-
lows to check MESP SEM models against statically
defined quality characteristics formalized with the
Object Constraint Language (OCL) and we demon-
strate that by offering a basic set of these constraints.
In addition, based on an on-the-fly translation to OCL,
it supports the analysis against method pattern con-
straints, a notion to define quality requirements intro-
duced by the MESP approach. Our analysis runs on
partial models and it traces quality issues back to their
cause. We provide a quality analysis framework that
is integrated into the MESP workbench and our per-
formance evaluation shows that the quality analysis
runs fast enough to be used in practice.

In the future, we want to formalize further quality
constraints, e.g., the degree to which method patterns
are used in a SEM model.

REFERENCES

Aalst, W. M. P. and Hee, K. M. (2002). Workflow manage-
ment: Models, methods, and systems. MIT Press.

Bendraou, R. et al. (2007). Definition of an Executable
SPEM 2.0. In 14th Asia-Pacific Softw. Eng. Conf.,
pages 390-397. IEEE.

Bendraou, R. et al. (2010). A Comparison of Six UML-
Based Languages for Software Process Modeling.
IEEE Trans. on Soft. Eng., 36(5):662—-675.

Brinkkemper, S. (1996). Method engineering: engineer-
ing of information systems development methods and
tools. Information & Softw. Technology, 38(4):275—
280.

Brinkkemper, S., Saeki, M., and Harmsen, A. F. (1998). As-
sembly Techniques for Method Engineering. In Per-
nici, B. and Thanos, C., editors, Proc. of the 10th Int.
Conf. on Advanced information systems engineering,
volume 1413 of LNCS, pages 381-400. Springer.

Cervera, M. et al. (2011). Turning Method Engineering
Support into Reality. In Ralyté, J., Mirbel, 1., and
Deneckere, R., editors, IFIP Advances in Information
and Communication Technology, volume 351, pages
138-152. Springer.

Chen, B. et al. (2008). Analyzing medical processes. In
Proceedings of the 30th Int. Conf. on Software Engi-
neering, pages 623-632. ACM.

Cockburn, A. (2000). Selecting a project’s methodology.
IEEE Software, 17(4):64-71.

534

Ellner, R. et al. (2012). An Integrated Tool Chain for Soft-
ware Process Modeling and Execution. In Storrle
et al., editors, Joint Proc. of the 8th European Conf. on
Modelling Foundations and Applications, pages 73—
82. Technical University of Denmark.

Fazal-Baqaie, M. and Engels, G. (to appear in 2016). Man-
aging Software Processes Evolution by Assembly-
Based Method Engineering with MESP. In Kuhrmann
et al., editors, Managing Software Process Evolution.
Springer.

Fazal-Baqaie, M., Gerth, C., and Engels, G. (2014). Breath-
ing life into situational software engineering methods.
In Jedlitschka et al., editors, Proc. of the 15th Int.
Conf. of Product Focused Software Process Improve-
ment, volume 8892, pages 281-284. Springer.

Fazal-Baqaie, M., Luckey, M., and Engels, G. (2013).
Assembly-Based Method Engineering with Method
Patterns. In Wagner, S. and Lichter, H., editors, Proc.
of the Software Engineering 2013, volume 215 of LNI,
pages 435-444. GI.

Fitzgerald, B., Russo, N. L., and O’Kane, T. (2003).
Software development method tailoring at Motorola.
Communications of the ACM, 46(4):64-70.

Harmsen, A. F. (1997). Situational method engineering.
Moret Ernst & Young.

Henderson-Sellers, B. et al. (2014). Situational Method En-
gineering. Springer.

Khaluf, L., Gerth, C., and Engels, G. (2011). Pattern-based
modeling and formalizing of business process quality
constraints. In Mouratidis, H. and Rolland, C., edi-
tors, 23rd Int. Conf. on Advanced Information Systems
Engineering, volume 6741 of LNCS, pages 521-535.
Springer.

Kruchten, P. (1999). The rational unified process: An intro-
duction. Object technology series. Addison-Wesley.

OASIS (2007). Web Services Business Process Execution
Language.

OMG (2008). Software & Systems Process Engineering
Metamodel Specification (SPEM).

OMG (2011). Business Process Model and Notation.

OMG (2014). Object Constraint Language.

Rougemaille, S. et al. (2009). Methodology Fragments Def-
inition in SPEM for Designing Adaptive Methodol-
ogy: A First Step. In Luck, M. and Gomez-Sanz,
J. 1., editors, Proc. of the 9th int. workshop on Agent-
oriented software engineering, volume 5386 of LNCS,
pages 74-85. Springer.

Schwaber, K. and Sutherland, J. (2013). The Scrum Guide.

Steinberg, D. et al. (2009). EMF: Eclipse Modeling Frame-
work. Addison-Wesley.

