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Abstract: In this paper, conventional modal wavefront reconstruction is compared with compressed wavefront sensing 
to reconstruct freeform surface profiles using the Shack-Hartmann wavefront sensor. The modal wavefront 
reconstruction represents the phase or the wavefront in the Zernike domain. The compressed wavefront 
sensing method based on the sparse Zernike representation (SPARZER) represents the phase slopes in the 
Zernike domain. The effectiveness of compressed wavefront sensing in freeform surface profile 
measurements is investigated. 

1 INTRODUCTION 

The Shack-Hartmann wavefront sensor has been 
popular due to its simplicity in measuring the shape 
of a wavefront. Since the start of its development in 
the late 1960s for the use of improving images 
captured from ground telescopes (Platt & Shack, 
2001), its applications expanded to measurement of 
aberrations of the eye and optical component 
characterization among others (Schwiegerling & 
Neal, 2005). There have been a great amount of 
research to improve the accuracy of the Shack-
Hartmann wavefront sensor. This includes new 
centroid detection algorithms (Yin, et al., 2009), de-
noising centroid images (Basden, et al., 2015), use of 
new basis functions (Lundstrom & Unsbo, 2004), and 
new wavefront reconstruction algorithms (Rostami, 
et al., 2012).  

Compressive sensing meanwhile is a great 
optimization technique to recover sparse signals even 
when the sampling rate is lower than required by the 
Shannon-Nyquist sampling theorem (Donoho, 2006). 
This is done by solving underdetermined linear 
systems where the signal is sparse in a particular 
domain. Another requirement is the incoherence 
between the sampling and the representing domains 
e.g. the time and frequency domains (Candes & 
Romberg, 2005). The linear equations are solved 
using l1 minimization, which does not have an 

analytical solution. It is solved using iterative 
numerical methods such as linear programming etc. 
(Candes, et al., 2006) 

Application of compressed sensing on the Shack-
Hartmann wavefront sensor is possible because there 
exist a sparse representation of the projected 
wavefront. A popular representation of the wavefront 
is in the Zernike domain (Noll, 1976). Early work has 
shown different implementations of compressive 
sensing in Shack-Hartmann wavefront sensors. This 
includes the representation of phase slopes in the 
Zernike domain (Polans, et al., 2014), and defining 
the sensing domain as the Dirac comb (Hosseini & 
Michailovich, 2009).  

The use of Shack-Hartmann wavefront sensing on 
free-form surfaces presents some challenges due to 
the nature of freeform surfaces themselves. Due to 
large slopes or curvature of freeform surfaces, the 
focal spot on the image sensor could be distorted 
(Guo, et al., 2013). This causes the centroid detection 
algorithm to be inaccurate, and thus producing 
inaccurate phase slope measurements. Compressive 
wavefront sensing has shown to reconstruct 
wavefronts accurately even with noisy measurements 
(Polans, et al., 2014). 
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2 THEORY 

2.1 Modal Wavefront Reconstruction 

The classic modal reconstruction of Shack-Hartmann 
wavefront sensors uses the least squares optimization 
to solve the linear equations which approximate the 
wavefront to a summation of some decomposed 
polynomials (Dai, 1994). ߶ =	ܼܽஶ

ୀଵ  (1)

Where ai is the ith coefficient, and Zi is the ith 
polynomial. The commonly used polynomials are the 
Zernike polynomials and Fourier transforms. 

The information obtained from the Shack-
Hartmann wavefront sensor meanwhile are the phase 
slopes in the x and y direction of phase Φ, which can 
be approximated to the distance of a focal spot to its 
reference divided by the focal length of the lenslets. ߲߶߲ݔ = ݔ݂∆	 = ௫݂ (2)

ݕ߲߶߲  = ݕ݂∆ = 	 ௬݂ (3)

For a Shack-Hartmann wavefront sensor with 
lenslets of n×n grid, the number of phase slope 
measurements will be 2n2. In matrix form, the above 
equations can be represented as ࡲ = (4) ࡱ

Where F is the column matrix of phase slope 
measurements, E is matrix of the partial differentials 
of polynomials Z in the x and y direction, and A is the 
matrix of coefficients of Z.  

The elements in matrix E, are the average Zernike 
derivatives over the corresponding sub-apertures of 
the Shack-Hartmann wavefront sensor.  

The least squares solution to the above equation 
would be   = (5) ࡲࢀࡱି(ࡱࢀࡱ)

2.2 Compressed Wavefront Sensing 

The method used for compressed wavefront sensing 
is the sparse Zernike representation (SPARZER). 
SPARZER is a method proposed by James Polans 
where the phase slopes itself are represented using 
Zernike polynomials (Polans, et al., 2014). Due to the 

condition where the phase map has to be continuously 
differentiable in the Zernike space, implementation of 
this technique is simpler. First, the phase slopes are 
represented in the Zernike orthonormal basis. ߲߶߲ݔ = ௫݂ = ܼܿ௫ (6)

ݕ߲߶߲  = ௬݂ = ܼܿ௬ (7)

cx and cy are the coefficients in the Zernike 
domain while Z is the matrix transforming the slope 
information into the Zernike domain across the entire 
phase map. The amount of phase slope information is 
then compressed by randomly selecting a set 
percentage of the slope data. Then, using this limited 
amount of information, SPARZER reconstructs the 
sparse signal in the Zernike domain using the 
equation ܿᇱ = ݊݅݉݃ݎܽ ൜12 ‖ܼ߰ܿ − ܾ‖ଶଶ + ଵൠ (7)‖ܿ‖ߣ

In equation 7, c is the matrix of coefficients in the 
Zernike domain, b is the phase slope measurements, 
and ߰ is the sparse sampling operator. 

While in his paper, Polans uses randomised 
samples from a set of slope data from high lenslet 
density (HLD) array, this investigation uses samples 
similar to the shape of Shack-Hartmann lenslet arrays 
with lower density to reconstruct the signal.  

3 SIMULATION RESULTS 

Five different lenslet sizes are used in this simulation.  
The number of lenslets for each case are 317, 197, 
149, 113 and 81 respectively. The simulated reference 
focal spot image for the highest and lowest number of 
lenslets are shown in Figure 1. 

 
Figure 1: Reference focal spot images. 
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Figure 2: from left: a) test freeform wavefront b) x-slope of wavefront and c) y-slope of wavefront. 

The simulation is run using a test freeform 
wavefront shown in Figure 2. The test wavefront has 
various peaks and valleys and a region of large phase 
slope. This would be able to test out and compare both 
reconstruction techniques.  

The conventional modal wavefront reconstruction 
reconstructs the test wavefront relatively well for all 
cases. For the case of 317 lenslets, it can be seen that 
the reconstructed wavefront retains the overall profile 
of the test wavefront from Figure 3. The maximum 
error of the reconstructed wavefront is 0.13 microns. 
Figure 4 shows the overall absolute error across the 
entire phase map. 

 
Figure 3: Reconstructed wavefront using conventional 
modal reconstruction (317 lenslet).  

 
Figure 4: Absolute error (in microns). 

It can be seen that the highest amount of error is 
in the peak region near both ends of the wavefront, 
and the lowest valley on the right. The wavefront was 
reconstructed using 36 Zernike polynomials. Due to 
the limited amount of higher order polynomials, and 
the edge being the highest point of the wavefront, the 
peak could not be resolved accurately. This occurs for 
all the different number of lenslet used. This shows 
the limitation in representing phase in the Zernike 
domain. Low order Zernike polynomials are very 
smooth and are unstable at the outer regions (Dalal, et 
al., 2001). Thus they are not very suitable for 
freeform wavefronts.  
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Figure 5: x and y slopes from the reconstructed wavefront.  

 

Figure 6: Absolute error of x and y slopes.  

The x and y slopes calculated from the 
reconstructed wavefront are shown in Figure 5 and 
their error in Figure 6. Again, it can be seen that the 
edges have a higher error which is caused by the 
inaccuracies in the edges of the reconstructed 
wavefront. Discounting the peak at the edges, the 
mean error for the x and y slopes are 2.575×10-5 and 
2.649×10-3 respectively.  

SPARZER meanwhile reconstructs the slopes of 
the wavefront. The reconstructed slopes using 317 
lenslets are shown in Figure 7 and 8, while the 
absolute error of the reconstructed slopes are in 
Figure 9. Similar to the slope errors from the modal 
reconstruction, the largest errors are at the edges 
where the slopes are larger in value. Discounting the 
peak values at the edges, the mean error for x and y 
slopes reconstructed are 2.6346×10-6 and 2.042×10-4 
respectively.  

Table 1 shows the mean error of x and y slopes 
obtained using compressed sensing and modal 
reconstruction. From the table, it can be seen that 
compressed sensing has a lower mean error when 
compared to modal reconstruction for all cases.   

 
Figure 7: x-slope reconstructed with SPARZER.  

 

Figure 8: y-slope reconstructed with SPARZER.  
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Figure 9: Absolute error of x and y slopes reconstructed with SPARZER. 

Table 1: Mean error of wavefront slopes. 

No. 
lenslets 

mean error for compressed 
sensing 

mean error for modal 
reconstruction 

x-slope y-slope x-slope y-slope 
317 2.63×10-6 2.04×10-6 4.12×10-5 5.21×10-3 

197 8.59×10-6 3.53×10-6 4.18×10-5 5.24×10-3 

149 9.84×10-6 1.09×10-5 4.21×10-5 5.26×10-3 

113 1.31×10-5 1.30×10-4 4.21×10-5 5.26×10-3 

81 2.43×10-5 5.68×10-4 4.20×10-5 5.25×10-3 

Besides that, the mean error for compressed 
sensing when using the lowest number of lenslet is 
lower than the mean error for all cases using modal 
reconstruction. The error from compressed sensing 
follows the trend where the higher the number of 
samples, the lower the error. Meanwhile for modal 
reconstruction, the error stays relatively constant.   

However, while the mean errors are lower, the 
slopes reconstructed using 81 lenslets do not match 
well with the original slopes visually. Shown in 
Figure 10 are the slopes reconstructed using 81 
lenslets.  

 
Figure 10: x-slope reconstructed with SPARZER. 

 
Figure 11: y-slope reconstructed with SPARZER. 

The profile at the edges deviate the most when 
compared to the original slopes of the wavefront. This 
is again due to the limitations of Zernike polynomials 
in freeform surface measurements.   

4 CONCLUSIONS 

It can be seen that at lower lenslet resolutions, there 
are large deviations in the edges of the slopes 
reconstructed by compressed sensing. This is caused 
by the inability of Zernike polynomials to accurately 
represent freeform surface profiles. Similarly, for 
modal wavefront reconstruction, the error is also 
highest at the edges of the wavefront. However, it is 
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clear that compressed sensing yields a lower error 
when compared to modal reconstruction for all lenslet 
resolutions.  

ACKNOWLEDGEMENT 

The authors gratefully acknowledge the support and 
funding from Monash University Malaysia and 
Ministry of Higher Education, Malaysia under the 
Grant No: FRGS/1/2013/SG02/MUSM/02/1. 

REFERENCES 

Basden, A. G., Morris, T. J., Gratadour, D. & Gendron, E., 
2015. Sensitivity improvements for Shack-Hartmann 
wavefront sensors using total variation minimization. 
Monthly Notices of the Royal Astronomical Society, 
Volume 449, pp. 3537-3542. 

Candes, E. J. & Romberg, J., 2005. Quantitative Robust 
Uncertainty Principles and Optimally Sparse 
Decompositions. Classical Analysis and ODEs, pp. 1-
25. 

Candes, E., Romberg, J. & Tao, T., 2006. Robust 
Uncertaunty Principles: Exact Signal Reconstruction 
from Highly Incomplete Frequency Information. IEEE 
Transactions on Information Theory, 52(2), pp. 489-
509. 

Dai, G.-M., 1994. Modified Hartmann-Shack wavefront 
sensing and iterative wavefront reconstruction. s.l., s.n. 

Dalal, S., Klein, S., Barsky, B. & Corzine, J. C., 2001. 
Limitations to the Zernike representation of cornea and 
wavefront for post-refractive surgery eyes, (ARVO 
avstract). Investigative Ophtalmology and Visual 
Science, 42(4), p. S603. 

Donoho, D. L., 2006. Compressed Sensing. IEEE 
Transactions on Information Theory, 52(4), pp. 1289-
1306. 

Guo, W. et al., 2013. Adaptive centroid-finding algorithm 
for freeform surface emasurements. Applied Optics, 
52(10), pp. D75-D83. 

Hosseini, M. & Michailovich, O. V., 2009. Derivative 
Compressive Sampling with Application ti Phase 
Unwrapping. Glasgow, s.n. 

Lundstrom, L. & Unsbo, P., 2004. Unwrapping Hartmann-
Shack Images from Highly Aberrated Eyes Using and 
Iterative B-Spline Based Extrapolation Method. 
Optometry and Vision Science, 18(5), pp. 383-388. 

Noll, R. J., 1976. Zernike polynomials and atmospheric 
turbulence. Optical Society of America, Volume 66, pp. 
207-211. 

Platt, B. C. & Shack, R., 2001. History and Principles of 
Shack-Hartmann Wavefront Sensing. Joirnal of 
Regractive Surgery, Volume 17, pp. 573-577. 

Polans, J., McNabb, R. P., Izatt, J. A. & Farsiu, S., 2014. 
Compressed Wavefront Sensing. Optics Letters, 39(5), 
pp. 1189-1192. 

Rostami, M., Michailovich, O. & Wang, Z., 2012. Image 
Deblurring Using Derivative Compressed Sensing for 
Optical Imaging Application. IEEE Transactions on 
Image Processing, 21(7), pp. 3139-3149. 

Schwiegerling, J. & Neal, D. R., 2005. Historical 
Development of the Shack-Hartmann Wavefront 
Sensor. Robert Shannon and Roland Shack: Legends in 
Applied Optics, pp. 132-139. 

Yin, X., Li, X., Zhao, L. & Fang, Z., 2009. Automatic 
centroid detection for Shack-Hartmann Wavefront 
sensor. s.l., s.n. 
 

Investigation on Compressed Wavefront Sensing in Freeform Surface Measurements

159


