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Abstract: This paper presents a model-driven approach for the systematic development of tools for checking the 
conformity of models when the domain formalization does not only consist of a meta-model but also on a set 
of constraints enhancing it. The strategy is built on top of the idea of representing the result of the verification 
as a model which gathers all the constraint violations found in the model, formulating them in a way that 
allows their later detailed manifestation, automatic correction or any other potential processing. With that 
aim, a meta-model for supporting those models describing constraints violations has been designed. The 
verification is applied by means of an M2M transformation that takes as input the model to verify and 
generates a model conforming to the designed meta-model. This methodology constitutes the way to 
accomplish the final objective: designing a strategy for the development of a generic tool for verification, 
regardless any particular meta-model or constraints set. This is performed through the duality of a model 
transformation as a processing program but also as a processed artefact (model), by means of the Higher Order 
Transformation (HOT) technique. 

1 INTRODUCTION 

When a domain formalization does not only consist of 
a meta-model but also on a set of constraints defined 
for it, the models conformity encompasses the basic 
compliance to the meta-model as well as the 
satisfaction of every constraint. This work focuses on 
this second aspect, proposing to perform the 
satisfaction verification by means of a completely 
model-driven strategy, whose core idea is to apply an 
M2M transformation to the model to verify. Hence, 
the result of that verification is a new model, idea that 
is in complete agreement with the MDE principle 
(Schmidt, 2006) (Bézivin, 2005). The structure of 
such output model is formalized by a meta-model 
defined as part of the methodology. The approach, 
although being dependent on the domain 
formalization (meta-model and its associated 
constraints), is able to support the systematic 
development of specific verification tools, each one 
suitable for a specific domain formalization. 

The actual objective of this work is to design a 
strategy for the development of a generic tool for 
verification, suitable for any constraints set or even for 
any meta-model. The functional foundation for 
designing such a generic tool is that it will be based on 

a tool generator for the on-the-fly creation of the 
required specific tool. 

Fig. 1 shows an overview of the proposed strategy, 
which provides three assets that are applicable in any 
application domain:  
 The ConstraintViolationDescription (CVD) 

meta-model, which formalizes the structure of the 
models obtained as result of the verification. 

 The ConstraintCharacterization (CC) meta-
model, defining mappings between constraints and 
the way their violations must be formulated. 

 The tool generator that produces the specific 
verification tools. 

 

Figure 1: Proposed strategy overview. 

Using  this  strategy  within  a  specific domain  im-
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plies that its formalization includes the definition of 
constraints enhancing the domain meta-model, using 
OCL clauses. Although OCL distinguishes several 
types of constraints (invariants, pre- and post-
conditions, derivation rules, etc.), only invariants are 
considered in this work. Thus, in the remainder of the 
paper invariant and constraint will be used 
indistinctly. In addition, the domain expert must 
characterize every constraint, decorating its OCL 
implementation with description data, including the 
way in which its violations must be described. This is 
achieved through a model compliant to the second 
meta-model (CC) defined by the strategy. Last, when 
the final user attempts to check a model, the 
automatically generated tool is used. 

Our output models do not only record which 
constraints have been violated but also encapsulate the 
data needed for describing those violations detected in 
the checked model. With this purpose, a preliminary 
and extensible meta-model for describing constraint 
violations has been designed (CVD). Despite the 
extensibility feature, its design aims to achieve a high 
level of generality. 

The rest of the paper is organized as follows. 
Section 2 is devoted to related work that can be found 
in the MDSE literature while Section 3 briefly 
presents the need for specifying constraints for meta-
models. Section 4 describes the proposed approach for 
the systematic development of verification tools, 
ranging from the model-based representation of a 
verification result to the meta-model supporting these 
output models describing constraint violations. This 
section also explains the way in which an M2M 
strategy can support the approach. Section 5 exposes 
the final goal of the work: a strategy for the 
development of a generic tool for model verification. 
Section 6 addresses the tool implementation using the 
ATLAS Transformation Language (ATL). Section 7 
presents an application example on top of the MAST2 
meta-model. Section 8 ends giving some conclusions. 

2 RELATED WORK 

The widespread use of Eclipse/EMF (Steinberg et al., 
2009) as modelling platform demands to start this 
section with Eclipse OCL. It is an implementation of 
the OMG OCL 2.3 specification for use in conjunction 
with EMF, allowing specification of constraints in 
OCL and verification of models using conventional 
EMF tooling. Eclipse OCL is completely trustworthy 
for the detection of constraint violations, presenting in 
an error dialog box the diagnostic messages created 
during the process. However, it presents 

expressiveness limitations since it only reports the 
name of the violated constraint and the model element 
where the violation has been located. Although the 
constraint name could roughly indicate the essence of 
the problem, in some scenarios another model 
checking strategy providing a more verbose and 
elaborated description of the problems including, for 
example, severity information could be necessary. 
Moreover, it could be desirable that the result of the 
checking can participate as input in a number of 
model-driven processes, depending on the specific 
needs that every domain application might present. 
Our proposal targets these requirements.  

Addresing the verification issue through an M2M 
transformation approach is not new. To the best of our 
knowledge, it has already been outlined in (Bézivin 
and Jouault, 2006) and applied in later works, like 
(Diguet, 2009) and (Elaasar et al., 2011). 

In Bézivin’s seminal work, applying M2M 
transformation on the model to verify gives as result a 
so called diagnostic model, compliant to a proposed 
meta-model, called Problems. It is an extremely 
simple meta-model, with a single class that defines 
three attributes, namely severity, location and 
description. The present work extends that core idea, 
developing a much more ambitious strategy built on 
top of a more complete target meta-model (CVD). In 
addition, the authors only outline a pattern for 
implementing manually the transformation 
corresponding to each domain formalization. In 
Diguet’s work, the author proposes a diagnosis meta-
model called VERIF and use ATL to implement an 
M2M transformation for checking syntactic 
correctness constraints on input MARTE models 
(formal/2011-06-02: UML Profile for MARTE: 
Modeling and Analysis of Real-time Embedded 
Systems, v1.1. 2011) as a preleminary step in its main 
transformation MARTE to AADL (Feiler et al., 2006). 
However, although being more elaborated than the 
Problems meta-model of Bezivin, the VERIF meta-
model is still quite simple and, again, the work only 
focuses on a specific transformation for a specific 
case, although it can be taken as a template. Our 
proposal goes beyond these works by aiming at 
providing a generic solution independen of the domain 
formalization. This genericity is also claimed by the 
third work aforementioned, which addresses the 
detection of modeling problems through QVTr 
transformations from input models (conforming to 
any MOF-based meta-model) to result models 
(conforming to the pResults meta-model) where 
problem occurrences are reported in a structured and 
concise manner. 

A  relatively  close  work, although following a dif- 
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ferent approach is (Oriol and Teniente 2014). The 
authors propose a method for efficiently checking 
OCL constraints by means of SQL. The core idea 
consists in reducing the problem to check the 
emptiness of SQL queries. Given an OCL constraint, 
it is possible to build an SQL query that returns all 
instances that violate it. Hence, the OCL constraint is 
satisfied if and only if its corresponding SQL query 
returns the empty set. Such queries are computed in an 
incremental way by a relational DBMS.  

An inspiring work for the design of the CVD meta-
model is (Miliauskaite and Nemuraite, 2005). In this 
work, an exhaustive constraints taxonomy is proposed 
in order to achieve well-formedness and good quality 
of conceptual models. Our CVD meta-model is 
slightly different oriented. It does not aim at revealing 
types of constraints but at providing suitable 
modelling of the data needed for describing 
constraints violations, envisioning their later 
manifestation or automatic treatment. 

It should be remarked that the problem we 
address, i.e. the verification of invariants satisfaction, 
does not deal with the validation of the domain 
formalization (meta-model + constraints) itself. In 
this sense, when considering a set of invariants 
specified on a domain meta-model, we suppose that 
set to be perfectly valid, satisfying the typical 
correctness properties: syntactic correctness, no 
meta-model over-restriction or under-restriction, 
consistency, independence, satisfiability, no 
subsumption, no redundancy, etc. See (Delmas et al., 
2013) for a clear distinction between verification of 
model instances vs. validation of domain 
formalization design. In fact, there exists an important 
amount of published research on the topic of 
validation, like (Anastasakis et al., 2007; Cabot et al., 
2007; Pérez et al., 2012). However, this dimension is 
out of the scope of our work. 

3 LAX META-MODELS & 
CONSTRAINTS DEFINITION 

It is very difficult, almost impossible except for very 
simple cases, that a meta-model formulation describes 
every semantic detail of the target conceptual domain. 
In such an ideal situation, every model instance of the 
meta-model would correspond to a valid scenario 
within the domain. However, meta-models are usually 
formulated by only reflecting the big picture of the 
modelled domain, not covering every detail. It leads to 
laxities in the meta-models. Under this circumstance, 
there can be models that, although compliant to the 
lax-formulated  meta-model,  represent non-valid  sce-

narios according to the semantics of the domain.  
In addition to the practical impossibility of 

describing every semantic detail of the domain, is 
quite common to find meta-models formulated with a 
degree of accuracy regarding the domain lower than 
what could have been reached. This is due to several 
reasons, as for example: 

 Preserving as Simple as Possible the Meta-
model Structure, in order to ease future 
extensions and maintenance. If a meta-model is 
designed to cover the semantics of the target 
domain very deeply, a very complex internal 
structure would be required, featured by a large 
number of primitive types instead of the usual 
ones (int, real, boolean, char, string, etc.) as well 
as a very extend hierarchy of class inheritance, 
aiming at specializing at maximum the possible 
associations and their multiplicities. 

 Using a Single Meta-model to define models 
that, since they participate in different processes, 
must satisfy different sets of rules or constraints 
depending on the concrete process. For instance, 
when different tools in an environment enforce 
specific constraints on the models, it may be better 
to use a single meta-model according to the core 
nature of the described system, enhanced with the 
corresponding sets of constraints, instead of 
defining a specialized meta-model for each tool. 

As an example, Fig. 2 shows an overview of the 
MAST environment for the analysis and design of 
real-time systems, in which the verification methods 
proposed in this work have been applied.  

The environment is based on a meta-model, called 
MAST-2 (Cuevas et al., 2012), used to describe the 
timing behaviour of systems with real-time 
requirements to fulfil. Currently, the meta-model 
contains 126 classes and is lax-formulated. However, 
a set of OCL-formulated constraints ensures that the 
models used to describe the targeted real-time systems 
correspond to valid scenarios. If the meta-model 
would have been defined in order to strictly cover the 
target domain, it would require a much more complex 
structure with possibly a double number of modelling 
classes. 

In addition, the MAST environment is equipped 
with several analysis and design tools that operate on 
the models conforming to the MAST-2 meta-model. 
Some of these tools, like the Simulation Tool shown in 
Fig. 2, work on models that are simply required to 
comply to MAST-2 and to meet its intrinsic 
constraints. Other tools, like the Offset-Based 
Schedulability Analysis Tool, can only work on 
models that satisfy certain additional constraints. 
Under a strategy of strict meta-modelling, the environ-
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ment would have to manage tens of meta-models (very 
similar ones, but different), one for each available 
analysis tool, as well as the corresponding 
transformations between them. In contrast, using a lax 
meta-model only requires to specify an appropriate list 
of constraints for each environment tool. 

 

 

Figure 2: The MAST-2 environment. 

4 M2M-BASED MODEL 
VERIFICATION 

4.1 Verification Result in Model Form 

The result of a verifying constraints satisfaction by a 
model can adopt several different forms. As depicted 
in Fig. 3, this work adopts the approach of 
representing it as another model whose elements 
correspond to violations of constraints occurred in the 
verified model. This output model constitutes the base 
for a possible manifestation of those violations, 
allowing its management by tools in an MDE 
environment. The information provided regarding the 
detected violations can be as rich as set in a 
hypothetical meta-model that the output model must 
conform to. 

The next subsection presents a meta-model for 
these models, output of the verification process. It 
defines the data required for describing, at higher or 
lower level of detail, the detected violations and it 
aims to cover the entire spectrum of constraints 
violations that may appear in MDSE models. 

4.2 The CVD Meta-model 

The CVD (Constraint Violation Description) meta-
model constitutes an initial proposal of meta-model 
for the models through which the result of verifying 
other models is formulated. It provides a class 
hierarchy oriented to the modelling of the data needed 
for the description of constraints violations, the more 
detail the more depth in the hierarchy. 

 

Figure 3: Model representation of verification result. 

The CVD meta-model presents a conventional 
structure, with a main container class (CVD_Model) 
and a root class (CVD) from which the rest of the meta-
model classes inherit. Thus, a model compliant to 
CVD has a single CVD_Model instance, which contains 
through its descriptions association the rest of 
model elements, instances of CVD or of any of its 
subclasses. Fig. 4 shows both the CVD_Model and the 
CVD classes along with the top subclasses of the latter. 
They are briefly exposed below: 

 

Figure 4: CVD meta-model overview. 

 CVD: This class models violations generically, 
since it only has attributes for the constraint 
identifier along with an optional textual 
description and the severity assigned to the risen 
problem. It also references the model element 
where the violation has been located 
(contextualModelElem) along with those others 
that constitute the path from it towards the main 
container of the model (ancestors). 
Actually, this is sufficient for formulating as a 
model the set of violations detected in another 
model, since the described information is suitable 
for any constraint, regardless its nature, semantics 
or OCL formulation. 

 BasedOnPropertiesOfContextClass: This class 
extends CVD by including references to properties 
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of the context class. Hence, it is suitable for 
constraints specified on properties of its context 
class. 

 BasedOnIncompatibility: This class extends 
CVD by including references to model elements 
(either two single ones, a single one and a set of 
them or two sets, cases corresponding to the 
subclasses BoI_BetweenTwoModelElems, 
BoI_BetweenOneAndSet and 
BoI_BetweenTwoSets, not shown in Fig. 4) which 
can be reached from the contextual model element 
through association chains. Hence, it is suitable 
for constraints based on setting incompatibilities 
between subclasses of two classes (typically 
abstract) that are connected to the context class 
through association chains. 

 BasedOnContainmentRelation: This class 
extends CVD by including references to two sets of 
model elements, instances of the same class. It is 
suitable for constraints based on setting a 
containment relation between the populations 
corresponding to endpoints of two association 
chains starting from the context class. 

 ScopeBased: This class extends CVD by indicating 
a scope, i.e. a population of model elements. It is 
suitable for constraints whose satisfaction 
depends not only on the state of a model element 
but also on its siblings within the scope in which 
the first one is immersed. 

Due to space reasons, the CVD meta-model is not 
presented in its entirety. Its complete specification 
and Ecore formulation can be found in 
http://www.istr.unican.es/members/cesarcuevas/phd/ 
constraintsVerification.html. 

Nevertheless, in order to depict the class hierarchy 
more in depth, Fig. 5 shows the subclasses of 
BasedOnPropertiesOfContextClass. The CVD 
meta-model offers options for modelling violations of 
constraints related to restrict the multiplicity of a 
property, the validity range for the value of an 
attribute or the valid types for a reference; or related 
to impose rules about the coexistence of optional 
properties or about the order that the numeric values 
of a set of attributes must hold. 

4.3 Overview as M2M Transformation 

Representing the result of a model verification by 
means of another model leads in a natural way to 
contemplate the process as an M2M transformation, 
defined between the meta-model of the model to be 
verified and the meta-model that the result model must 
conform to (in this case, the CVD meta-model). 

 

Figure 5: BasedOnPropertiesOfContextClass 
subclasses. 

Thus, as depicted in Fig. 6, this checking M2M 
transformation, when applied on a given model 
(Sample model), generates as result the corresponding 
model describing the constraints violations, if any.  

 

Figure 6: Checking M2M transformation in action. 

Like in any other M2M transformation, visibility 
over the source and target meta-models (DomainMM 
and CVD, respectively) is required (dotted arrows). 
However, in this M2M strategy, the source meta-
model is constraints-naked, i.e. it is not required 
neither including nor attaching the constraints to it. It 
is enough that the developer knows them in order to 
incorporate them to the checking transformation. 

4.4 Extension of the Approach 

So far, a methodology has been designed using a 
strategy based on M2M transformations. This M2M-
based solution solves the addressed conformity 
verification problem but without sidestepping the fact 
that the strategy implies the development of a different 
verification tool (implementation of a different 
checking transformation) for every pair domain meta-
model + set of constraints. Fig. 7 shows this drawback. 
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Figure 7: Specific verification tools. 

Therefore, once that methodology for the 
systematic (but manual) development of specific tools 
for model verification has been set, it seems logic to 
envision a step forward, a generic tool that could be 
applied for the verification of models regardless their 
meta-models and corresponding constraints, as shown 
in Fig. 8. Thus, the design of a strategy that enables 
the development of such a generic verification tool has 
been accomplished. It is based on code generation, as 
explained in the next section. 

 

Figure 8: Generic verification tool. 

5 GENERIC TOOL FOR MODEL 
VERIFICATION 

5.1 Foundation: Meta-tool for 
Automating Tools Generation 

Trying to abstract the infinite number of domain meta-
models that the Domain-Specific Language (DSL) 
approach promotes, does not seem a suitable option 
for creating a generic tool for verification. Hence, our 
solution has been the development of a meta-tool for 
the on-the-fly construction of the specific verification 
tool corresponding to each case. Such a strategy, (Fig. 
9), leads to the area of code generation, in this case the 
code of a checking M2M transformation. 

 

Figure 9: Meta-tool for generation of tools. 

To perform this task, the meta-tool receives as 
input the constraints along with the mapping between 
each constraint and a CVD class, i.e. the way selected 
to model their violations. More specifically, not only 
information about what type of violation description 
assigned to a constraint is required, but also 
information relative to which domain meta-model 
elements (typically attributes, associations or 
association chains) are assigned to the properties of 
the CVD instance. All of this information related to a 
constraint (its own data – name, OCL expression and 
context class – as well as mapping data) constitutes the 
constraint characterization.  

Thus, as shown in Fig. 10, our meta-tool for the 
generation of ad-hoc verification tools accepts as input 
the models encapsulating the set of characterizations 
of the specified constraints.  

 

Figure 10: Input models for the meta-tool. 

In order to formalize the structure of these 
characterization models, a meta-model has been 
designed. It is called the ConstraintsCharacterization 
(CC) meta-model and its role in the developed 
scenario is shown in Fig. 11.  

 

Figure 11: CC meta-model role. 

The CC meta-model is exposed in the next 
subsection. Later, in subsection 5.3, the design and 
operational mode of the created meta-tool is analysed. 
Since its purpose is the on-the-fly generation of every 
specific tool for verification, the field of generation of 
M2M transformations is naturally reached.  

The elegance of the model-driven paradigm allows 
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the reutilization of the same transformation-based 
infrastructure. This technique is known as Higher 
Order Transformation (HOT) (Tisi et al., 2009), i.e. a 
transformation that operates on transformations – in 
this work, a transformation that generates a 
transformation –. To achieve this objective, the 
concept of M2M transformation needs to be extended 
with that of transformation model, so that an M2M 
transformation is represented by a model compliant to 
the meta-model of the used model transformation 
language (MTL). 

5.2 The CC Meta-model 

The CC meta-model supports the models through 
which the constraints specified on a domain meta-
model are characterized, in order to feed the meta-tool. 
This meta-model presents a structure closely aligned 
to the one of the CVD meta-model, even maintaining 
name parity between counterpart classes wherever 
possible. As CVD, it has a main container class 
(CC_Model) and a root class (CC) from which the rest 
of the meta-model classes inherit. A model compliant 
to CC has a single CC_Model instance, which contains 
through its constraintCharacterizations 
association the rest of model elements, instances of CC 
or of any of its subclasses. This main container 
instance also references the domain meta-model (an 
EPackage instance in Ecore) enhanced with the set of 
constraints to be characterized.  

Fig. 12 shows the main container and root classes 
of the meta-model along with the top-subclasses of the 
latter. Briefly said, each of them is appropriate to 
characterize constraints whose violations will be 
described by the corresponding CVD counterpart 
class. The mapping could also be established to a 
superclass of the counterpart one, although this option 
will lead to a loss of description information available 
in the characterization. However, what is prohibited is 
to establish a mapping to a subclass of the CVD 
counterpart. In this case, a problem about inexistent 
required information would arise when trying to 
encode the generation of a violation description 
instance during the automatic creation of the checking 
M2M transformation.  

Due to space reasons, the CC meta-model is not 
presented in its entirety. Its complete specification 
and Ecore formulation can be found in 
http://www.istr.unican.es/members/cesarcuevas/phd/
constraintsVerification.html. 

Nevertheless, in order to depict the class hierarchy 
more in depth, Fig. 13 shows the subclasses of the 
BasedOnPropertiesOfContextClass. The meta-
model offers options for characterizing constraints 

whose violations will be described by instances of the 
CVD counterpart classes, hence showing the 
alignment between both meta-models. 

 

Figure 12: CC meta-model overview. 

 

Figure 13: BasedOnPropertiesOfContextClass 
subclasses. 

5.3 HOT as the Core of the Meta-tool 

In an M2M working context in which it is possible to 
represent a transformation as a model – transformation 
model–, a HOT can be defined as an M2M 
transformation such that its input and/or output 
models are themselves M2M transformations 
(transformation models) (Bézivin et al., 2006). Hence, 
HOTs take 0..n transformation models as input, produ-
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ce 0..n as output or both. 
The HOT developed in this work responds to the 

synthesis pattern (Tisi, Jouault et al. 2009). It can be 
defined as the pattern corresponding to HOTs that 
generate a transformation (model) from models that 
do not represent transformations. 

Here, as shown in Fig. 14, there is a single input 
model for the HOT to accept, the constraints 
characterization one, producing as output a model 
compliant to the meta-model of the used MTL. This 
output model is the checking M2M transformation 
corresponding to the input constraints 
characterization, specific to the domain meta-model + 
constraints pair along with the mapping decisions 
regarding how to model their possible violations.  

 

Figure 14: HOT generates checking M2M transformation. 

The final step is the serialization (extraction) of the 
produced model in order to obtain the checking M2M 
transformation encoded in the textual concrete syntax 
of the MTL at hand. 

6 ATL IMPLEMENTATION 

The widespread ATL is the MTL chosen in this work 
for implementing M2M transformations: the HOT and 
consequently every generated M2M checking 
transformation. ATL is the de facto standard for M2M 
purposes, belonging to the AMMA platform (Bézivin 
et al., 2005), a complete modelling infrastructure very 
well integrated with Eclipse/EMF. ATL is very 
suitable for developing HOTs because, although not 
all M2M transformation frameworks provide a meta-
model formalizing the abstract syntax of the 
transformation language, AMMA/ATL indeed does. 
In addition, the meta-model incorporates the whole 
OCL meta-model in order to write expressions for 
filtering and manipulating models. Another interesting 
feature is that the serialization of an ATL model to its 
textual representation is also very well supported 
through the technical projectors of AMMA. 

The ATL code for the HOT at the heart of the 
presented methodology as well as the ATL code of a 
sample M2M checking transformation (the one 

corresponding to the MAST-2 meta-model) can be 
found at http://www.istr.unican.es/members/ 
cesarcuevas/phd/constraintsVerification.html. For 
the M2M checking transformations, an 
implementation style based on helpers and on called 
rules has been selected. One of the main advantages of 
this choice is that the resultant ATL code has a very 
regular structure, following a uniform pattern easy to 
automate. This structure is also properly documented 
http://www.istr.unican.es/members/cesarcuevas/phd/
constraintsVerification.html. 

7 USE CASE EXAMPLE 

In order to illustrate the presented methodology, let’s 
consider an example based on the MAST-2 meta-
model. Subsection 7.1 reflects the lax nature of this 
meta-model formulation by exposing a selection of its 
laxities. Subsection 7.2 addresses the CC model 
corresponding to the characterization of the MAST-2 
integrity constraints, from which the M2M checking 
transformation specific for MAST-2 is generated. In 
particular, it is shown the submodel corresponding to 
the constraints selected in 7.1. Subsection 7.3 
introduces a very tiny MAST-2 model which violates 
those constraints. Finally, subsection 7.4 shows the 
resultant CVD model produced when applying the 
MAST-2 checking transformation to the sample 
incoherent model. 

7.1 The MAST-2 Lax Meta-model 

The MAST-2 meta-model has a non-trivial size (126 
classes) and it is lax-formulated, i.e. it presents 
several tens of laxities of different nature. Hence, a 
set of integrity constraints has been specified for it. 
The complete documentation for these 
laxities/constraints is accessible at 
http://www.istr.unican.es/members/cesarcuevas/phd/
artifactsMAST2.html. Below, there is a reduced but 
representative sample of such identified laxities, 
along with the corresponding preventing constraints. 

As shown in Fig. 15, the Regular_Processor 
class defines two integer-like attributes for describing 
the managed interrupt priorities, namely 
Max_Interrupt_Priority and 
Min_Interrupt_Priority. Any compliant model 
could present the incoherency of assigning a value for 
the minimum greater than the maximum. Thus, an 
integrity constraint (named “i_1_3_a”) has been 
specified to prevent such an error. Its OCL 
formulation is straightforward: 
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context Regular_Processor 
  inv i_1_3_a:  
    Max_Interrupt_Priority >= 
    Min_Interrupt_Priority 

 

Figure 15: The Regular_Processor class formulation. 

Fig. 15 also shows that the Regular_Processor 
class defines two references of Timer type, namely 
Timer_List and System_Timer. The first one 
represents the set of timing objects associated with a 
processor, if any, while the second one specifies the 
main one. Hence, it must be part of the timer list, but 
any MAST-2 compliant model could present the 
incoherency of having processors specifying a system 
timer among those ones in the model not listed by its 
timer list. Thus, an integrity constraint (“i_3_1_a”) 
has been specified to prevent such an incoherency. Its 
OCL formulation is also pretty straightforward: 

context Regular_Processor 
  inv i_3_1_a:  
    if not System_Timer. 

                 oclIsUndefined() then  
  Timer_List ‐> includes(System_Timer) 
    else 
      true 
    endif 

 

Figure 16: Compatibility between policy and parameters. 

Finally, Fig. 16 shows that both the Scheduler 
and Schedulable_Resource classes have their 

Policy and Scheduling_Parameters references 
defined in terms of the abstract classes 
Scheduling_Policy and Scheduling_Parameters. 

This allows the assignment of any concrete type 
of policy or parameters, but an inconsistency may 
arise when associating a scheduler and a schedulable 
resource, since the corresponding policy and 
scheduling parameters objects may be incompatible 
(the compatibilities are shown by green lines in the 
figure). 

Consequently, a preventing constraint (i_3_4_a) 
has been defined, setting the appropriate 
correspondences. Its OCL code appears below: 

context Schedulable_Resource 
  inv i_3_4_a:  
    self.Scheduling_Parameters. 
      oclIsKindOf(Priority_Based_Params)    

       and  
    self.Scheduler.Policy. 
      oclIsTypeOf(Fixed_Priority_Policy) 
    or 
    self.Scheduling_Parameters. 
      oclIsKindOf(Priority_Based_Params)  

       and  
    self.Scheduler.Policy. 
     oclIsTypeOf(FP_Packet_Based_Policy)  
    or  
    self.Scheduling_Parameters. 
     oclIsKindOf(Interrupt_Based_Params)  

       and  
    self.Scheduler.Policy. 
      oclIsTypeOf(Fixed_Priority_Policy)  
    or  
    self.Scheduling_Parameters. 
           oclIsKindOf(EDF_Based_Params)  

       and  
    self.Scheduler.Policy. 
           oclIsTypeOf(EDF_Policy 

7.2 CC Model 

For the generation of the checking M2M 
transformation applicable to MAST-2 models, it is 
necessary to feed the meta-tool with a CC model that 
encapsulates the characterization of the MAST-2 set 
of integrity constraints. The subset of that model for 
the three sample constraints considered above is 
depicted in Fig. 17.  
 The first constraint (“i_1_3_a”) is characterized 

through an instance of the CC class 
RelationalOrderForAttributes‐Value, 
referencing the constraint at hand along with its 
context class as well as the CVD class selected for 
describing any possible violation. The severity to 
be associated and other specific information 
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required by the concrete characterization class are 
also formulated. In this case, it applies for the 
attributes involved in the constraint and the 
relational order to be respected. The second 
constraint (“i_3_1_a”) is characterized through an 
instance of the CC class 
BasedOnContainmentRelation.  

 The second constraint (“i_3_1_a”) is 
characterized through an instance of the CC class 
BasedOnContainmentRelation. 

 The third constraint (“i_3_4_a”) is characterized 
through an instance of the CC class 
BasedOnIncompatibility. The constraint 
characterization specifies association chains 
indicating how to reach the potentially 
incompatible model elements from the contextual 
one. 

It is worth remarking that, when applying the 
strategy, the CC model must be formulated only once, 
just like the domain meta-model itself, to generate the 
corresponding M2M checking transformation, which 
will be later used with any model compliant with the 
domain meta-model. 

7.3 MAST-2 Sample Model 

The MAST-2 sample model for illustration purpose is 
partially shown in Fig. 18. It violates the three 
constraints presented above. 

The model consists of a mono-processor platform 
with fixed-priority scheduling policy. The platform is 
modelled by the processor Proc1 with its hosted 
scheduler (Proc1_Sched) along with its scheduling 
policy object. The platform submodel also 
encompasses the timers associated to the processor. A 
schedulable resource (Thread1), which is part of the 
reactive section of the model (not depicted), along 
with its scheduling parameters object, and scheduled 
by the only existing scheduler, completes this partial 
visualization of the model. Its constraints violations 
can be seen at a glance. 
 

 

Figure 18: A sample MAST-2 model (partially shown). 

 

Figure 17: Subset of the CC model for the MAST-2 constraints. 
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7.4 CVD Model 

When applying the checking M2M transformation for 
MAST-2 (obtained from the CC model partially 
presented in section 7.2) to this MAST-2 sample 
model, a CVD model is produced as result, shown in 
Fig 19. As it can be observed, each constraint 
violation has produced a corresponding description 
object: 

 For the interrupt priorities inconsistency, i.e., the 
violation of the i_1_3_a constraint, an instance of 
the CVD class 
RelationalOrderForAttributesValue is 
generated. As expected, it formulates the ID of the 
violated constraint, the severity assigned to the 
risen problem and the contextual model element 
where the violation is located, as well as the 
properties involved in the constraint (the 
attributes Max_Interrupt_Priority and 
Min_Interrupt_Priority) and the relational 
order that has been broken (max ≥ min). 

 For the timers inconsistency, i.e., the violation of 
the i_3_1_a constraint, an instance of the CVD 
class BasedOnContainmentRelation is 
generated. 

 For the violation of the i_3_4_a constraint, an 
instance of the CVD class 
BoI_BetweenTwoModelElems (subclass of 
BasedOnIncompatibility, not exposed in 
section 4.3) is generated. This subclass basically 
describes the violation of an incompatibility-
based constraint, and in addition to the basic 
features (constraintID and severity attributes 

along with the contextualModelElem reference), 
it points out the two incompatible model elements 
(modelElem1, modelElem2), in this case the 
EDF_Params  and Fixed_Priority_Policy 
instances. 

8 CONCLUSIONS 

This paper has exposed part of the work accomplished 
by our research group in order to develop a complete 
model-driven strategy and infrastructure for the 
development of real-time (RT) applications. The asset 
at the core of this effort is the MAST-2 meta-model 
for modelling RT systems. As a lax meta-model, a set 
of constraints has been specified for it and in addition, 
the different analysis and design tools of the overall 
MAST environment require specific conditions for the 
models to be processed. This paper focuses on the 
development of a mechanism for checking invariants 
satisfaction that can be invoked by these tools to 
alleviate their implementation, since they do not 
require implementing a preliminary verification step 
The approach for the development of such verification 
mechanism is based on the representation of the 
verification result as a model generated by means of 
an M2M transformation. In order to be a generic 
verification tool, regardless the domain meta-model or 
particular set of constraints, a HOT has been 
implemented for the on-the-fly generation of the 
required specific checking transformation. The 
developed meta-models needed to support this model-
driven approach have been presented. 

 

 

Figure 19: Resultant CVD model. 
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