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Abstract: Model-driven architecture is a well-known approach for the development of complex software systems. The
most famous tool chain is provided by Eclipse with the tools of the Eclipse modeling project. Like Eclipse
itself, these tools are based on Java. However, there are numerous legacy software packages written in C++,
which often use only an implicit meta-model. A real C++ implementation of this meta-model would be
necessary instead to be used at run time. This paper presents a generator for C++ to create the classes,
meta-model packages, and factories to realize modeling, transformation, validation, and comparison of UML
models. It gives an overview of its workflow and major challenges. Moreover, a comparison between Java and
C++ implementations is given, considering different benchmarks.

1 INTRODUCTION

The Model Driven Architecture (MDA) approach as
defined by the Object Management Group (OMG)
is a well-known family of standards which unifies
every step of the development of an application
from Platform-Independent Model (PIM) through
Platform-Specific Models (PSM) to generated code
and a deployable application (OMG, 2014). The
common Eclipse Modeling Project (EMP) supports
this approach by providing a unified set of model-
ing frameworks, tool support, and standard imple-
mentations based on the Eclipse Modeling Frame-
work (EMF) (Steinberg et al., 2009; Gronback, 2009).
It uses Ecore, a meta meta-model which is similar
to the essential meta object facility (EMOF) for de-
scribing a meta-model. The EMF framework with its
code generation facility can be used to build tools and
other applications based on a structured data model,
like complete editors for Ecore-based domain specific
meta-models. It produces Java classes for the model
and other necessary utilities to create and edit such
a model. Therefore, the MDA approach is well inte-
grated with the Java programming language, but it is
weakly supported for other programming languages
such as C++.

C++ is one of the most commonly used program-
ming languages (TIOBE Software BV, 2015). Nu-
merous legacy software packages are written in C++
and use often only an implicit meta-model. To use a
real meta-model at runtime, an implementation of the
meta-model in C++ would be necessary (Jungebloud

et al., 2013). Such a C++ meta-model could be
used, for instance, to configure dialog properties at
runtime, to realize a runtime Object Constraint Lan-
guage (OCL) (OMG, 2012) for the checking of model
elements, or to execute a behavior which is described
by activity diagrams.

There are mainly two possibilities to create such
meta-model representations. The obvious one is
to write code and implement every class manually.
When the number of elements in a model increases,
however, the best way to overcome the implementa-
tion is to use a generator. A big advantage of a gen-
erator (besides saving implementation time) is the de-
terministic result of the transformation. Each model
element is transformed in the same way and produces
similar code blocks. By using guidelines like the
MISRA C++ (MISRA, 2008) for the generator, the
resulting code can be used in safety-critical software.

EMF4CPP (González et al., 2010) is an avail-
able implementation of a C++ Ecore meta-model and
comes with a generator for Ecore to C++ transfor-
mation. Preliminary results show that “. . . memory
consumption and efficiency is usually better in
EMF4CPP than in Java. . . ” (EMF4Cpp, 2015). Un-
fortunately, the last visible development activities in
this project date back to the year 2011.

Moreover, this generator only provides the possi-
bility to transform Ecore models to C++ code. The
transformation of the more expressive UML (unified
modeling language) (OMG, 2015b) is not considered.

A native generator for C++ is necessary to use all
capabilities of UML in describing the structure and
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Figure 1: Structure of the generator environment.

behavior of a system, and to use the extension mecha-
nism of UML by defining profiles with custom stereo-
types. Such a C++ generator has to create the classes,
meta-model packages, and factories to realize mod-
eling, transformation, validation, and comparison of
UML models.

This paper presents an EMF-like UML Genera-
tor for C++ (UML4CPP) aiming at a workflow and
structure similar to the EMF for C++ targets. Like
the EMF4CPP generator we use the Eclipse Modeling
Project to formally describe the transformation with
Acceleo (Eclipse, 2014). Acceleo is a generator tool
which uses OMG’s model-to-text transformation lan-
guage (OMG, 2008). Section 2 presents the workflow
and the structure of the UML4CPP Generator. Se-
lected challenges and implementation details are pre-
sented in Section 3. The results of a comparison be-
tween the Java and C++ implementation is given and
discussed in Section 4. Finally, ongoing and further
work is summarized in the conclusion.

2 WORKFLOW

This section sketches the different steps which are
necessary to achieve a UML-compliant C++ repre-
sentation of a model. It is not enough to just convert
the classes to C++ code. For a full-featured imple-
mentation, the upper levels of the model hierarchy are
needed as well.

Figure 1 depicts the structure and dependencies of
the elements which are necessary.

It shows the four-layered meta-model architecture
of the UML. Starting with the topmost level, the meta
meta-model is in our case the Ecore model. The Ecore

model is transformed to C++ source code with the
help of an Ecore-to-C++ generator written in Acceleo.

Ecore’s expressiveness is much lower than UML.
Therefore, it only can describe the structure of a
software system but not the behavior. The genera-
tor needs additional information concerning the se-
mantics of the model to generate proper source code.
Therefore, both the ecore.ecore and uml.ecore models
are enhanced with annotations. This is a usual method
for extending Ecore models with additional informa-
tions.

Annotations are used to specify the following as-
pects:

• Method implementation

• Visibility of methods

• Getter/setter renaming

• Union

• Subsets

• Ignore

• C++ includes

By using the same meta meta-model and meta-
model as the Eclipse modeling project, the EMP tools
can be used to model, transform, and validate the in-
put for our generator.

The Ecore-to-C++ generator creates C++ classes,
the model factory, as well as the model package. This
code is compiled to a library and can be used by the
lower model levels (see Figure 1).

To create source code out of UML models, a sec-
ond generator is needed. It is loosely based on the
Acceleo generator for Ecore, but does not need addi-
tional information except for the includes.
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Figure 2: Excerpt of the OMG layer model, with meta meta-model, meta-model, and model layer.

Until now, the supported features of our
UML4CPP generator are:

• Class creation + Attributes

• Operation implementation by using UML
OpaqueBehavior

• Reflection Package + Factory

• Profiles with Stereotypes

• Constraints

• Activities and Actions

With these generated libraries an application now
can load an xmi representation of a model. This is
used to create M0 instances of the model elements,
which can be queried for properties of the upper lay-
ers depicted in Figure 2.

The UML meta-model in the M2 layer has a spe-
cial property: Because it was described with the
Ecore meta meta-model on the one hand, and pro-
vides MOF-based reflection for the lower levels on
the other hand, the UML library has elements for the
reflection of both meta meta-models. Because each
model element includes the methods of the reflection
from the upper layer, they can access the description
of their own type. In the M1 layer of Figure 2 the
Model Class can access the M2 layer by using the
method getMetaclass(). In the M2 layer Class has to
use the ecore reflection by using the method eClass()
to access the M3 layer and gain the type information
of itself. The mechanism of reflection is an essential
aspect when using generated code of meta models in

generic software. By using reflection, the program do
not need to know the structure of an object. Instead
the parts can be queried via the meta layer during run-
time.

Figure 3 depicts the reflection as it is defined in
OMGs MOF standard (OMG, 2015a). It consists of
tree classes, Object, Element and Factory. The Ob-
ject is the base Class for every Element in the Meta-
model. It provides the methods to access features of
an object like properties or methods. The Element
extends the Element metaclass of the UML. It pro-
vides the capability to access the upper meta level
of an meta model. That means, when we create an
instance of a class we can access the description of
the Class via the getmetaclass method of the instance.
Therefore we can query the description to gain ac-
cess, discover and manipulate properties and methods
of the instance. The Factory is the creator class for
the metamodel. By merging the UML package to the
MOF reflection package, the new elements are inte-
grated into the resulting package and the exiting once
are combined with the new elements. In the end ex-
cerpt of the UML is extend by the aspect of reflection.

Why is it necessary to have an additional gener-
ator, when it is also possible to use a transformation
from UML to ecore and then use the emf4cpp genera-
tor, like eclipse does in their workflow?

Our goal is to describe the structure and the be-
havior of a software system with a domain specific
language. When converting a model from UML to
ecore or MOF the model is mapped to the elements
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Figure 3: Overview of the elements which provides the reflection capability of the MOF.

of the meta meta model. Because there are no equiv-
alent elements in the meta meta models for each ele-
ment of the UML the amount of elements is cut. Our
generator does not map the elmenets to the meta meta
model. Instead it uses the whole UML meta model
for the generation. The output of the C++ model rep-
resentation is equal to an output of the emf4cpp gen-
erator when converting the UML model to ecore be-
fore the generation. The difference lies in the meta
model package, which in addition to the ecore model,
also has the description of behaviors, constraints and
stereotypes.

3 CHALLENGES

The UML meta-model uses multiple inheritance ex-
tensively. To reduce the amount of duplicated code,
which accrues when implementing multiple inheri-
tance with single inheritance, it is advantageous to
use a programming language which supports the use
of multiple inheritance such as C++ instead of Java.
Figure 4 depicts an excerpt of our inheritance hierar-
chy.

The Figure shows the strict separation between in-
terface definition and specific implementation of the
meta-model elements. This has the main advantage
to provide a public API to be used easily in other
projects. It provides an encapsulation and increases
the loose coupling. Otherwise, a compilation of the
whole meta-model would be necessary, which may
take significant time.

The separation of interfaces and implementation
leads to a double diamond structure of the inheritance
hierarchy. The virtual inheritance has to be used in
C++ for this reason. This requires the use of dy-
namic casts to go up and down in the hierarchy. Other
casts like static or reinterpret casts are illegal or lead
to an invalid behavior caused by different pointer ad-
dresses. As a result, the computation time for nec-
essary dynamic casts is much higher in a multilevel
inheritance hierarchy (Didriksen, 2010).

Element

Releationship

Association

Public API (Interfaces)

Classifier

ElementImpl

ReleationshipI
mpl

AssociationIm
pl

ClassifierImpl

Impl

Figure 4: Double diamond model structure in the inheri-
tance hierarchy.

The C++ 11 standard provides many new syntax
features to simplify programming. One of the main
features is the lambda expression. These expressions
are type-safe nameless functors used to simplify the
implementation of Factories, Feature getters, and set-
ters (see Listing 1). Moreover, they allow to use a
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similar syntax as the OMG specification.
Figure 5 presents an example UML model, repre-

senting an overview model of a so-called simulation-
based application for planning and simulating wire-
less sensor networks in aircrafts ( (Jäger et al., 2014),
(Jäger et al., 2015) ) as an example.

Figure 5: Excerpt of the model of a simulation based appli-
cation for planning and simulating wireless sensor networks
in aircrafts.

The corresponding factory source code, which
was generated by the UML4CPP generator, is shown
in Listing 1.

A similar method was used to implement the get(),
set(), and invoke() functions for the class Object of
the MOF::Reflection package. Because C++ does not
have a base type like the Object in Java, these op-
erations need a special return or parameter type for
allowing both values or pointers as arguments. For
this task the boost library provides an any data type,
which can store any kind of type. The main disadvan-
tage is the obvious lack of built-in polymorphism for
this type.

Due to the lack of polymorphic containers, a spe-
cial list container is needed, which allows the cast of
its contents. Until now it is necessary to know the
exact datatype. This issue will be changed in further
progress of the development by introducing a poly-
morphic container.

Memory management is a considerable con-
cern for large models. To avoid memory leaks,
std::shared ptr are a good solution because they auto-
matically free memory when nobody is using an ob-
ject any more. A special case is the return of a self
reference, which is not applicable in every situation
where self references are needed and thus could cause
failures. Moreover, the overhead of reference count-
ing leads to an increasing computation time compared
to raw pointers. Thus the UML model provides the
needed information for the responsibility of the in-
stantiated elements, making it is easy to generate a
safe memory management (González et al., 2010).

The UML4CPP generator thus only creates source
code with raw pointer. By considering the composite
feature of a property, the generator creates a correct
memory management as it is modeled.

4 BENCHMARK

This section presents results of a comparison between
Java and C++ meta-models generated by EMF and
UML4CPP. Several important properties influencing
the performance of practical application are com-
pared, including

• Creation time of model elements

• Time effort to move model elements

• Comparison of model elements

• Amount of memory used

4.1 General Settings

A standard windows PC (Intel Core i5-2520M,
2.50GHz, 8 GB RAM) is used to run the benchmarks.
The Java benchmark is running on a separate Java vir-
tual machine. It is configured in a way that only one
kernel is used, because current C++ implementation
dont use multi-kernel functionality. The added start-
up time and size of the virtual machine itself is not
considered in the following benchmarks.

Benchmark

-a1

Class1

-a2

Class2

-a

Class...

-aN

ClassN

<<metaclass>>
uml::Class

<<metaclass>>
uml::Property

<<metaclass>>
uml::Package

<<instance of>>
<<instance of>><<instance of>>

Figure 6: Simple model for the benchmarks.

The benchmarks use instances of a UML test class
which includes one attribute (see Figure 6). The name
of the class and attribute is set. Different benchmarks
use different amounts of instances of this test class.

4.2 Creation Benchmark

The first benchmark compares the creation time and
the memory use of Java and C++ meta-model imple-
mentations. Therefore, instances of the described test
class are created in a loop, varying between 10.000
and 100.000 instances. To analyze the influence of
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Mode lFac to ry Impl : : Mode lFac to ry Impl ( )
{

m crea torMap . i n s e r t ( ” model : : MAC Hybrid ” , [ t h i s ] ( ) { re turn t h i s−>createMAC Hybrid ( ) ; } ) ;
m crea torMap . i n s e r t ( ” model : : C o n f i g u r a t i o n ” , [ t h i s ] ( ) { re turn t h i s−>c r e a t e C o n f i g u r a t i o n ( ) ; } ) ;
m crea torMap . i n s e r t ( ” model : : Component ” , [ t h i s ] ( ) { re turn t h i s−>c rea t eComponen t ( ) ; } ) ;
m crea torMap . i n s e r t ( ” model : : Expe r imen t ” , [ t h i s ] ( ) { re turn t h i s−>c r e a t e E x p e r i m e n t ( ) ; } ) ;
m crea torMap . i n s e r t ( ” model : : MAC TDMA” , [ t h i s ] ( ) { re turn t h i s−>createMAC TDMA ( ) ; } ) ;
m crea torMap . i n s e r t ( ” model : :MAC” , [ t h i s ] ( ) { re turn t h i s−>createMAC ( ) ; } ) ;

}

Listing 1: Generated factory code with lambda expressions for the model in Figure 5.

the Java garbage collection, the results of Java stan-
dard behavior and the results of a forced garbage col-
lection are compared additionally. The calculation is
averaged over ten runs, to average over the huge vari-
ation of computation times for the Java meta-model
implementation. Figure 7 depicts the results of the
first benchmark.
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Figure 7: The graph depicts the results of the creation
benchmark for C++, Java, and Java with forced garbage col-
lection. The error bars displays standard deviation values
and the markers (diamond-shape) represents median values.

The Java implementation (green and blue lines in
Figure 7) need more creation time than the C++ im-
plementation (red line). Moreover, the standard devi-
ation of the creation time for the Java implementation
is significantly greater than for the C++ implementa-
tion. Especially the first result of the first run is sig-
nificant greater than the other creation times, which
could be seen in the huge standard deviation of the
first creation time. This is caused by the first mem-
ory allocation of the Java virtual machine and the fact
that it reuses the already allocated, but not needed
memory for the next runs. The influence of a forced
garbage collection (blue line) is less significant than
expected. The creation time of the C++ implementa-
tion is nearly linear and has a small standard devia-
tion.

The memory clean-up of the Java implementa-
tion is faster than the C++ implementation for a huge
amount of elements, because C++ deallocates the
memory completely in contrast to Java.

4.3 Model Change and Undo
Benchmark

To compare the performance of Java and C++ meta-
model implementation regarding model changes, the
movement of model elements are analyzed. There-
fore, 100.000 instances of the described test class are
created. All attributes are moved to one class. These
operations are repeated ten times again to calculate an
average effort for the movement and undo operation.

The time effort for traversing the model are ana-
lyzed by using a model comparison as well. For this
purpose, 1.000 instances of the test class are created
in two packages. All instances of the test class of one
package are searched in the other package. This oper-
ation is also repeated ten times to calculate the mean
time effort.

Table 1 shows the results of these benchmarks. It
becomes clear that the Java implementation is much
faster than the C++ implementation. The movement
operation is almost four times faster and the model
comparison is up to 100 times faster than the actual
C++ implementation. The standard deviation of the
Java implementation, however, is relatively high.

This unexpected result can be explained by the
above-mentioned need of dynamic casts by using
this multilevel inheritance hierarchy. The profiler
confirmed the already known behavior of dynamic
casts (Didriksen, 2010). With a higher inheritance hi-
erarchy, more time is needed for dynamic cast opera-
tions. Possible changes of the C++ implementation to
improve this situation are discussed in Section 5.

4.4 Memory Footprint

The hard disk memory use of the implementations are
compared in Table 1. The C++ implementation needs
nearly three times more hard disk memory than the
Java implementation. The reason for this behavior is
probably the linking with several libraries including
qt and boost. On the other hand, the value of the Java
implementation does not contain the memory which
is needed by the Java virtual machine.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

314



Table 1: Results of benchmarks; ∗ - without Java virtual machine (152 MB).

Benchmark Java C++
Mean Std Mean Std

Move 375.2 ms 130.2 1405.7 ms 107.2
Compare 64.2 ms 62.5 6644.3 ms 58.9

Memory HDD 5.06 MB∗ 14.6 MB
Memory RAM 201.5 MB 115.3 MB

The RAM use is measured by executing the
benchmark of Section 4.2. The maximum required
memory is captured. As a result, the Java implemen-
tation requires approximately twice as much RAM as
the C++ implementation.

5 DISCUSSION

In summary, the comparison of the generated Java and
C++ implementation of the test class by using several
benchmarks has shown divergent results: On the one
hand, the C++ implementation requires less memory
than the Java implementation and is slightly faster in
creating new instances. On the other hand, the current
C++ implementation needs up to 100 times more time
by using the model. This is caused by the need of dy-
namic casts in the multilevel inheritance hierarchy. To
solve this issue, the dynamic cast should be avoided
by using interface realizations instead of multiple in-
heritance. The implementation of base classes has to
be generated several times into the implementation of
the derived classes then. This could be realized by
changing the UML4CPP generator accordingly. This
demonstrates one of the advantages of a model-based
generative software development.

After additional optimization steps to reduce time
and memory consumption of the generated imple-
mentation, model-based applications for systems with
reduced computing and storage capacities such as em-
bedded systems could be realized.

6 APPLICATION

As already mentioned in Section 1, the generated C++
UML meta-model could be used in several use cases.
It is the base for the development of an C++ based
meta modeling tool family.

By using our approach it is possible to define do-
main specific languages for legacy software systems
which do not have a explicit meta model right now.
After adapting the legacy software to generated meta
model it is now easy to optimize and extend the lan-
guage. Moreover, because the meta models are based

on a standard meta metamodel it is easy to transform
it to another metamodel. In addition it is possibile to
read and write models using XMI which is the stan-
dard description of UML.

Theoretically, it is possible to build a modeling
toolchain based on C++ similar to the Eclipse Model-
ing Project which has components for transformation,
generation and visualization.

As an example we use the generation of a UML
model to define visualization properties for attributes
of a software system shown in Figure 5 (Mambally
Das, 2015). The stereotypes for visualization prop-
erties are defined via a profile diagram and are gen-
erated with the generator as well as the metamodel
where the stereotypes are applied to the classes. Dur-
ing runtime a component analyse the classes and vi-
sualize the attribute values in a proper way. More
over, it is possible to define constraints by using the
standard Object Constraint Language (OCL). By us-
ing the generated information of the constraints in the
meta model package, it is possible to check the values
of the attributes against the defined constraints during
runtime.

Another use case of C++ UML meta model is the
model based definiton and execution of behavior, for
instance by using activity diagrams (Chandrasekaran,
2015). The OMG specify a subset of the UML for exe-
cuting activity diagrams which is called fUML (OMG,
2013). It also contains a model based description of
the execution engine. Based on these model the gen-
erator can create the execution engine (Ramyashree,
2015). During runtime the execution engine use the
meta model package to retrive the behavior elements
and runs the activities.

7 CONCLUSIONS

This paper presented an EMF-like UML Generator
for C++ (UML4CPP). The workflow, structure and
some implementation challenges of the UML4CPP
generator are presented. Examples have proven the
practical usability of the resulting C++ implementa-
tions. The comparison of generated Java and C++ im-
plementations of models by using several benchmarks

An EMF-like UML Generator for C++

315



w.r.t. resource use has shown diverging results.
The presented UML4CPP generator can be used

to create C++ code representations of the Ecore meta
meta-model, the UML meta-model, and models based
on these meta-models. This provides the basis for
creating C++-based execution engines, transforma-
tion engines, OCL validation tools, and other model-
based applications which are subject of future devel-
opments.

Because the generator is a frist prototype, it
still needs some further development. Features like
the notification framework, proxies and references
to other metamodels are partly implemented or still
missing.
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