
Study of the Parallel Techniques for Dimensionality Reduction and Its
Impact on Performance of the Text Processing Algorithms

Marcin Pietron1,2, Maciej Wielgosz1,2, Pawel Russek1,2 and Kazimierz Wiatr1,2

1AGH University of Science and Technology, Mickiewicza 30, 30-059 Cracow, Poland
2ACK Cyfronet AGH, Nawojki 11, 30-950 Cracow, Poland

Keywords: Latent Semantic Indexing, Random Projection, Singular Value Decomposition, Vector Space Model, TFIDF.

Abstract: The presented algorithms employ the Vector Space Model (VSM) and its enhancements such as TFIDF (Term
Frequency Inverse Document Frequency). Vector space model suffers from curse of dimensionality. Therefore
various dimensionality reduction algorithms are utilized. This paper deals with two of the most common ones
i.e. Latent Semantic Indexing (LSI) and Random Projection (RP). It turns out that the size of a document
corpus has a substantial impact on the processing time. Thus the authors introduce GPU based on acceleration
of these techniques. A dedicated test set-up was created and a series of experiments were conducted which
revealed important properties of the algorithms and their accuracy. They show that the random projection
outperforms LSI in terms of computing speed at the expanse of results quality.

1 INTRODUCTION

With the rapid growth of the Internet and other elec-
tronic media, the on-line availability of text infor-
mation has significantly increased. As a result, the
problem of automatic text classification turns out to
be very important because text categorization has be-
come one of the key techniques for handling and or-
ganizing data in many applications for industry, enter-
tainment, and digital libraries, which require access
and execution of text-based queries. For this purpose,
it is often necessary to automatically classify all given
texts into predefined classes. Text classification can
be used for clustering (creating clusters of texts with-
out any external information or database), informa-
tion retrieval (retrieving a set of documents that are
related to the query), information filtering (rejecting
irrelevant documents) and information extraction (ex-
tracting the fragments of information, e.g. email ad-
dresses, phone numbers, etc.). Possible applications
include such tasks as: email spam filtering, organiza-
tion of web-pages into hierarchical structures, product
review analysis, text sentiment mining, organization
of papers according to subject class, and categoriza-
tion of newspaper articles into topics. Text classifi-
cation and categorization is considered to be the most
popular and the most often performed operation. It al-
ways involves documents comparison as an atom step.
This in turn requires building a corpus and its reduc-

tion to the computationally comprehensible size.

2 SYSTEM DESCRIPTION

The system consists of the Internet data retrieval mod-
ule, text extraction module, text preprocessing, and
the set of methods based on TFIDF, SVD or Random
Projection and similarity text metrics for the text clas-
sification and clustering (Jamro et al., 2013)(Pietron
et al., 2013)(Wielgosz et al., 2013)(Ko and Seo,
2000). The key for successful implementation of the
proposed methods is the construction of the reliable
corpus for the area and topic of interest detection.
At the moment, the topic of interest detection cor-
pus is being built automatically. The news articles
are retrieved from news portal (Interia.pl, 2015). The
downloaded articles are already classified by journal-
ists which makes it possible to use them as a reference
in selected topic and area of interest. The adopted
methods are applied to all texts stored in the reposi-
tory. The first step involves preprocessing activities
which are performed in the following order: removal
of all special and redundant characters (e. g. colons,
brackets, numbers, etc.), lemmatization, and filtering
all stop-words. We use the Vector Space Model which
requires conversion of each text into a numerical rep-
resentation. Thus, the second step consists of sym-
bols (words) converting into numerical values that can

Pietron, M., Wielgosz, M., Russek, P. and Wiatr, K.
Study of the Parallel Techniques for Dimensionality Reduction and Its Impact on Performance of the Text Processing Algorithms.
DOI: 10.5220/0005756903150322
In Proceedings of the 8th International Conference on Agents and Artificial Intelligence (ICAART 2016) - Volume 1, pages 315-322
ISBN: 978-989-758-172-4
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

315

be used in the subsequent processing stages. In the
next step, a selection of the appropriate classification
method is performed. The choice depends on which
hypothesis is to be verified. For verification of the first
hypothesis unsupervised learning model is adopted
and for the second one supervised learning is use. In
the case of supervised classification, a model (corpus)
is built based on all texts in the repository. For unsu-
pervised procedure, the VSM and TFIDF vectors are
mapped to the reduced space, which is built with the
SVD and RP algorithms.

Figure 1 shows the generic processing flow of the
system.

set of documents

preprocessing
stop-words, stemming or lemmatization

features extraction
VSM and TF-IDF

dimensionality reduction
LSI, RP

corpus retrieval

documents comparison

Figure 1: The generic processing flow of the system.

3 TEXT REPRESENTATION

One of the major challenges in the automatic text pro-
cessing is high dimension of obtained feature vec-
tors. To overcome this problem, both dimensionality
and the size of the input text documents can be re-
duced significantly. The procedure usually consists
of methods as removal of all unnecessary characters
(e.g. dots, colons etc.), sentence boundary detection,
natural language stop-words elimination (Kim et al.,
2006) (Lili and Lizhu, 2008), and stemming (Porter,
1980) or lemmatization. Then text documents can be
transformed to numerical representation. In our sys-
tem vectors space model is used.

3.1 Vector Space Model

A text categorization task requires that all symbols
(words or n-grams) are converted into a numerical
representation, i.e. vector. In the case of this imple-
mentation, single words are used as terms. The vector
space model has been successfully used as a conven-
tional method for a text representation. This model
represents a document as a vector of features (Salton
et al., 1975).

A set of documents in this scheme may be pre-
sented as a two dimensional term/document matrix.
The matrix example is given in table 1. Documents
are represented as vectors in an N-dimensional vec-
tor space that is built upon all the different terms
which occur in the considered text corpus (i.e. docu-
ment set). Comparison and matching of the texts can
be performed by the cosine similarity measure in the
VSM. The cosine measure can be calculated accord-
ing to equation 1.

cosine similarity(u,v) = ∑N
i=0(ui · vi)

‖u‖ · ‖v‖ (1)

Table 1 and figure 2 present a simple example of
three different documents mapped to the two dimen-
sional vector space which means that they are built of
two different words.

Table 1: Vector Space Model - sample term/document ma-
trix.

doc0 doc1 doc2
term0 2 3 1
term1 1 3 2

term0

term1

doc0

doc1

doc2

1 2 3

1

2

3

Figure 2: Vector Space Model - sample document visual-
ization.

3.2 TFIDF Representation

The most common algorithm for weighing words in
VSM, is the computation of so-called Term Frequency

PUaNLP 2016 - Special Session on Partiality, Underspecification, and Natural Language Processing

316

(TF) and Inverted Document Frequency (IDF) coeffi-
cients. TFIDF is a numerical statistic that is intended
to reflect how important is a word to the document in
the context of the whole collection. It is often used
as a weighting factor in information retrieval and text
mining. TF is the number of times a word appears in
a given document. This number is normalized, i.e. di-
viding by the total number of words in a document
under consideration. IDF measures how a word is
common among all the documents in consideration.
The more common a word is, the lower its IDF is.
The IDF is computed as the ratio of the total number
of documents to the number of documents contain-
ing a given word. The TFIDF value increases pro-
portionally to the number of times a word appears in
the document, but it is scaled down by the frequency
of the word in the corpus. Therefore, common words
which appear in many documents, will be almost ig-
nored. Words that appear frequently in a single doc-
ument will be scaled up. The mathematical formula
for TFIDF computation is as follows:

(t f id f)i, j = (t f)i, j× (id f)i, j (2)

where (t f)i, j is the term frequency and it is computed
as follows:

(t f)i, j =
ni, j

∑k nk, j
(3)

ni, j is the number of occurrences of term ti in a doc-
ument d j. (id f)i is the inverse document frequency
and it is given as:

(id f)i = log
|D|

|{d : ti ∈ D}| (4)

|D| is the number of documents in the corpus, |{d : ti ∈
D}| is the number of documents containing at least
one occurrence of the term ti.

4 DATA DIMENSIONALITY
REDUCTION

The data dimensionality reduction process is crucial
in many data and text mining algorithms and systems.
It can tremendously reduce efficiency of data analy-
sis. The most popular methods are: SVD and Random
Projection.

4.1 Latent Semantic Indexing

LSI is a popular method of data dimensionality reduc-
tion. It is based on SVD (Singular Value Decomposi-
tion (Abidin et al., 2010). The singular value decom-
position is a factorization of a real or complex matrix.
It expresses a matrix A of M×N size as a product of

three matrices, which is given by equation 5. Matrix A
may contain word/document co-occurrences in a case
of VSM or TFIDF coefficients.

A =U×Σ×V T (5)
where: U , V are orthogonal matrices and Σ is a

diagonal matrix of singular values (figure 3).

A
(sparse matrix)

U
(dense)

Σ
(diagonal)

Vt
(dense)

documents

words

n

n

n

n

Figure 3: SVD factorization.

SVD transformation is considered to be the best
possible approximation of the matrix A. Components
(Eq. 5) in the diagonal matrix Σ are located in a
decreasing order which is a very convenient feature
from data processing perspective since it allows for
the elimination of the least important ones (Abidin
et al., 2010). The process of dimensionality reduction
as applied in SVD makes similar components more
similar and different components even more different
ones. However, the challenge is the choice of the right
number of singular values to be used for matrix reduc-
tion. More values do not always mean the better. The
SVD factorization is strictly related to Principal Com-
ponent Analysis (PCA) algorithm with finding itera-
tively components with maximal variance.

The SVD algorithm is available in many numeri-
cal libraries for CPU (e.g. LAPACK) as well as GPU
hardware accelerators (e.g. CUDA Toolkit 7.0). SVD
and PCA can be computed in three different ways.
• compute SVD and extract components with max-

imal variance
• compute SVD approximation (e.g. Quic-SVD)
• find iteratively components which carry most in-

formation about input data variance and correla-
tion
The first method is accurate but time consuming,

the second one has lower computational complexity
with worse accuracy, the third one can be flexible i.e.
it can be parameterized in terms of a number of com-
puting orthogonal components and accuracy. In this
work NIPALS algorithm based on nonlinear regres-
sion to find an orthogonal base was employed. It is
an iterative algorithm and the sequence of iterations
must be preserved. Each iteration of the main loop
is a good candidate for hardware parallelization. It is
worth noting that there are several linear algebra oper-
ations (e.g. vector and matrices multiplication) inside
iteration. In our implementation CUBLAS library is
used for parallelization of these sections of the code.

Study of the Parallel Techniques for Dimensionality Reduction and Its Impact on Performance of the Text Processing Algorithms

317

4.2 Random Projection

Random projection is a powerful method for dimen-
sionality reduction (Keogh and Pazzani, 2000). In
random projection, the original d-dimensional data
is projected to a k-dimensional (k << d) subspace
through the origin, using a random k × d matrix R
whose columns have unit lengths. Using matrix no-
tation where X is the original set of N d-dimensional
observations, the algorithm is a projection of the data
onto lower k-dimensional subspace. The idea of ran-
dom mapping arises from the Johnson-Lindenstrauss
lemma (Dasgupta and Gupta, 1999)(Dasgupta, 2000),
if points in a vector space are projected onto a ran-
domly selected subspace of suitable high dimension,
then the distances between the points are approxi-
mately preserved (Bingham et al., 2001). Random
projection has low computational complexity. It con-
sists of forming the random matrix R and projecting
the d×N data matrix X into k dimensions with com-
plexity O(dkN) and if the data matrix X is sparse with
about c nonzero entries per column, the complexity
is of order O(ckN). Our implementation of Random
Projection is based on (Bingham et al., 2001).

5 DIMENSIONALITY
REDUCTION AND COSINE
METRIC IMPLEMENTATIONS
IN GPU

This section describes implementations of both men-
tioned dimensionality reduction algorithm and cosine
metric for sparse and dense vectors.

5.1 GPGPU Hardware Platform

GPGPU is constructed as group of multiprocessors
with multiple cores each. The cores share an In-
struction Unit with other cores in a multiprocessor.
Multiprocessors have dedicated memory chips which
are much faster than global memory, shared for all
multiprocessors. These memories are: read-only
constant/texture memory and shared memory. The
GPGPU cards are constructed as massive parallel de-
vices, enabling thousands of parallel threads to run
which are grouped in blocks with shared memory.
This technology provides three key mechanisms to
parallelize programs: thread group hierarchy, shared
memories, and barrier synchronization. These mech-
anisms provide fine-grained parallelism nested within
coarse-grained task parallelism. Creating the opti-
mized code is not trivial and thorough knowledge

of GPGPUs architecture is necessary to do it effec-
tively. The main aspects to consider are the usage
of the memories, efficient division of code into paral-
lel threads and thread communications. Another im-
portant thing is to optimize synchronization and the
communication of the threads. The synchronization
of the threads between blocks is much slower than in
a block. If it is not necessary it should be avoided, if
necessary, it should be solved by the sequential run-
ning of multiple kernels.

5.2 PCA NIPALS and Random
Projection implementation

The PCA/SVD Nipals algorithm is based on non-
linear regression. SVD factorization can also be asso-
ciated with another matrix transformation - Principal
Component Analysis. The left singular vectors of in-
put matrix X multiplied by the corresponding singular
value equal single score vector in PCA method. The
non-linear iterative partial least squares (NIPALS) al-
gorithm calculates score vectors (T) and load vectors
(P) from input data (X). The outer product of these
vectors can then be subtracted from input data (X)
leaving the residual matrix (R). Residual matrix can
be then used to calculate subsequent principal compo-
nents. The NIPALS algorithm consists of sequential
iterations responsible for computing single orthogo-
nal component. The outer iterations find iteratively
projections of input data to the principal components
which inherit the maximum possible variance from
the input (using non- linear regression). Each itera-
tion consists of few matrix-vector operations (multi-
plication). These operations are main parts of the al-
gorithm which can be parallelized. Our parallel GPU
implementation is based on running highly optimized
matrix-vector instruction from CuBLAS library. The
core of the algorithm is as follows:

// PCA model: X = TP + R
// input: X, MxN matrix (data)
// M = number of rows in X
// N = number of columns in X
// K = number of components (K<=N)
// output: T, MxK scores matrix
// output: P, NxK loads matrix
// output: R, MxN residual matrix

for(k=0; k<K; k++)
{

cublasScopy (M, &dR[k*M], 1, &dT[k*M], 1);

a = 0.0;
for(j=0; j<J; j++)
{

cublasSgemv(’T’, M, N, 1.0, dR, M, \
&dT[k*M], 1, 0.0, &dP[k*N], 1);

PUaNLP 2016 - Special Session on Partiality, Underspecification, and Natural Language Processing

318

if(k>0)
{
cublasSgemv(’T’, N, k, 1.0, dP, N, \
&dP[k*N], 1, 0.0, dU, 1);
cublasSgemv(’N’, N, k, -1.0, dP, N, \
dU, 1, 1.0, &dP[k*N], 1);

}
cublasSscal(N, 1.0/cublasSnrm2(N, \
&dP[k*N], 1), &dP[k*N], 1);
cublasSgemv (’N’, M, N, 1.0, dR, M, \
&dP[k*N], 1, 0.0, &dT[k*M], 1);
if(k>0)
{
cublasSgemv(’T’, M, k, 1.0, dT, M, \
&dT[k*M], 1, 0.0, dU, 1);
cublasSgemv(’N’, M, k, -1.0, dT, M, \
dU, 1, 1.0, &dT[k*M], 1);

}
L[k] = cublasSnrm2(M, &dT[k*M], 1);
cublasSscal(M, 1.0/L[k], &dT[k*M], 1);
if (fabs(a - L[k]) < er*L[k])
break;

a = L[k];
}
cublasSger(M, N, - L[k], &dT[k*M], 1,\
&dP[k*N], 1, dR, M);

}

In case of large data matrices, or matrices with
high degree of column collinearity, NIPALS suffers
from loss of orthogonality (machine precision limita-
tions accumulated in each iteration step). A Gram-
Schmidt (Andrecut, 2009) re-orthogonalization algo-
rithm is applied to both the scores and the loadings at
each iteration step to eliminate this problem.

The same method can be adapted for Random Pro-
jection algorithm which is based on single matrix-
matrix multiplication. In this case two operands are
sparse matrices. The complexity when using Achliop-
tas (Achlioptas, 2001) matrix is: O(ckN/3). The im-
plementation is based on cuBlas matrix multiplication
functionality. The efficiency is compared with MKL
BLAS matrix operations.

Figure 4: Reduction process on shared memory (Tn - block
thread).

Global memory

Shared memory

 reading reference document and document
 from database in coalesced manner Single block

Thread 2 Thread N

Reduction (sum)

Thread 1

Thread 1 Thread 2 Thread N

Vector 1 Vector 2

 Multiplication

Figure 5: Cosine metric architecture on sparse data.

5.3 Cosine Metric Implementation

One of the algorithm in our classification module is
cosine metric computation. Each document is com-
pared with each other by cosine metric computation.
The cosine metric was implemented in two formats:
original uncompressed (e.g. for reduced data) and
compressed for input data (not reduced, sparse data).
Uncompressed cosine metric is implemented in such
a way that each thread is responsible for reading from
global memory and multiplication of single elements
from two multiplied vectors (figure 5). The sum of
the results of these multiplications is computed by
well known GPU reduction operation (scheme on fig-
ure 4). In our implementation each block is responsi-
ble for single cosine metric computation between two
vectors.

In case of compressed format the additional step is
done to above algorithm. The binary search is run by
each thread to find if read element from first vector ex-
ists in the second one (figure 6). If it is true multipli-
cation of their values is run. The final step is a reduc-
tion. The compressed vectors are written to memory
in such manner that keys and values are stored seper-
ately to avoid bank conflicts. The drawback of this
algorithm is that random bank conflicts could happen
while executing binary search procedure.

6 EXPERIMENTS

In order to verify the adopted hypothesis several ex-
periments were conducted. All subsequent experi-
ments use the same repository which contains 4200
texts divided into five categories: business, culture,
automotive, science and sport. The texts were down-
loaded from Polish language news website.

Study of the Parallel Techniques for Dimensionality Reduction and Its Impact on Performance of the Text Processing Algorithms

319

Global memory

Shared memory

 reading reference document and document
 from database in coalesced manner Single block

Thread 2 Thread N

Reduction (sum)

Thread 1

Thread 1 Thread 2 Thread N

 Binary search on Vector 1 Vector 2

Multiplication

Figure 6: Cosine metric architecture on dense data.

6.1 Experimental Setup

In order to facilitate the design process, the dedicated
open-source vector space modeling library - Gensim
(Rehurek and Sojka, 2010) was used. The library
contains a set of text processing procedures such as
TFIDF, LSA (Latent Semantic Analysis) which uses
SVD, which were optimized by employing NumPy,
and SciPy libraries.

6.1.1 Efficiency of Data Dimensionality
Reduction

In order to examine properties of Random Projection
and Latent Semantic Indexing an experiment was de-
signed and performed. It involved comparing all the
reduced vectors against not unreduced ones which re-
sulted in 363×(363 - 1) = 131406 comparisons. Con-
sequently, the mean square error was computed for
all the comparisons for each iteration (dimensional-
ity reduced step) (figures 7 and 8). The experiment
was conducted for both random projection and latent
semantic analysis with the corpus of 363 documents
(12394 unique tokens and 63994 corpus positions).

The experiments revealed the statistical properties
of the random projection (Bingham et al., 2001) based
on Achlioptas approach. Consequently, Random Pro-
jection is superior to Latent Semantic Indexing for a
low number of dimensions but as the number of di-
mensions grows LSI supersedes RP. This is the case
because LSI (SVD) reduction model is created from
the data which means that it reflects the profile of the
documents being processed.

The results of SVD/PCA NIPALS algorithm im-
plementation (see pseudocode) is described in table
2. It shows scalability of the algorithm on single
core CPU and GPGPU. The GPGPU is about five

0 20 40 60 80 100
Number of dimensions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ro
ot
-m

ea
n-
sq

ua
re
 e
rro

r

lsi
rp

Figure 7: Root mean square error of the dimensionality re-
duction performed by Latent Semantic Indexing and Ran-
dom Projection (reduction from 5 to 100).

100 200 300 400 500 600 700 800 900
Number of dimensions

0.00

0.02

0.04

0.06

0.08

0.10
Ro

ot
-m

ea
n-
sq

ua
re
 e
rro

r
lsi
rp

Figure 8: Root mean square error of the dimensionality re-
duction performed by Latent Semantic Indexing and Ran-
dom Projection (reduction from 100 to 1000).

times faster than CPU with SIMD instruction imple-
mentation. The table 3 presents Random Projection
algorithm run by CUBLAS matrix-matrix operation
and MKL BLAS on CPU. Tables 4 and 5 describe
speed-up gained by cosine metric GPGPU implemen-
tations. The version with uncompressed format (fro-
mat used for comparison after reduction) is about 15
times faster in GPGPU then its counterpart in CPU.
It is worth noting that compressed format should be
used. Therefore table 6 presents results of computing
compressed cosine metric of 360 documents corpus in
original and not in reduced form. The tests where run
on Intel Xeon E5645 2.4GHz CPU single core and
NVIDA Tesla m2090. The input matrices were de-
fined by single precision floating point format. All re-
sults presented in tables are average values collected
in five measure probes (standard deviation less than
10% of average values).

PUaNLP 2016 - Special Session on Partiality, Underspecification, and Natural Language Processing

320

Table 2: Results (in miliseconds) of SVD/PCA algorithm
implementation in CPU (1 core) and GPU (corpus of 360
documents with 29000 term space).

Reduction size GPGPU CPU
10 33 80
20 77 305
30 107 420
40 161 624
60 219 1050

100 369 1789

Table 3: Results (in miliseconds) of RP algorithm imple-
mentation in CPU and GPU (corpus of 360 documents with
29000 term space).

Reduction size GPGPU CPU (1 core)
10 1 2.5
20 2 5
30 2.7 6
40 3 9
60 4 13
100 9 20

Table 4: Results (in miliseconds) of cosine metric computa-
tion (compressed format) in GPU and CPU for different size
of corpuses (with constant size of each document equals
512).

Size of corpus GPGPU CPU (1 core)
360 55 346
500 117 512

1000 451 1876
2000 1797 7551

10000 44631 197695

Table 5: Results (in miliseconds) of cosine metric compu-
tation (original uncompressed format) in GPU and CPU for
different size of corpuses (with constant size of each docu-
ment equals 512).

Size of corpus GPGPU CPU (1 core)
360 7 126
500 11 236

1000 40 705
2000 152 2477

10000 3639 65046

7 CONCLUSIONS AND FUTURE
WORK

Our work shows that dimensionality reduction in text
mining can significantly improve computational com-

Table 6: Time of execution of compressed cosine metric of
29000 element vectors in corpus of 360 documents (ms).

max number of non zero elements CPU time
2000 1060
4000 2120
6000 3200
8000 4220
10000 5259

plexity of algorithms by maintaining accuracy level.
Additionally presented methods are scalable and can
be speeded up on parallel hardware platforms like
GPGPU. The Random Projection algorithm outper-
forms effectiveness of PCA/SVD by preserving quite
good accuracy. The Random projection is a good can-
didate for data reduction in real time text processing
systems. Future work will concentrate on implement-
ing and speeding up other similarity metrics and ad-
justing them to Random Projection algorithm.

ACKNOWLEDGEMENTS

This research is supported by the European Regional
Development Program no. POIG.02.03.00-12-137/13
PL-Grid Core.

REFERENCES

Abidin, T., Yusuf, B., and Umran, M. (2010). Singular
value decomposition for dimensionality reduction in
unsupervised text learning problems. In Education
Technology and Computer (ICETC), 2010 2nd Inter-
national Conference on, volume 4, pages 422–426.

Achlioptas, D. (2001). Database friendly random projec-
tions. ACM Symposium on the Principles of Database
Systems, pages 274–281.

Andrecut, M. (2009). Parallel gpu implementation of iter-
ative pca algorithms. Journal of Computational Biol-
ogy, 11:15931599.

Bingham, Ella, Mannila, and Heikki (2001). Random pro-
jection in dimensionality reduction: Applications to
image and text data. In Proceedings of the Seventh
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 245–250,
New York, NY, USA. ACM.

Dasgupta, S. (2000). Experiments with random projection.
Uncertainty in Artifficial Intelligence.

Dasgupta, S. and Gupta, J. (1999). An elementary proof of
the johnson-lindenstrauss lemma. International Com-
puter Science Institute, Technical Report TR-99-006,
Berkeley, California, USA.

Interia.pl (2015). http://interia.pl.

Study of the Parallel Techniques for Dimensionality Reduction and Its Impact on Performance of the Text Processing Algorithms

321

Jamro, E., Wielgosz, M., Russek, P., Pietron, M., Zurek,
D., Janiszewski, M., and Wiatr, K. (2013). Imple-
mentation of algorithms for fast text search and files
comparison. In Proceedings of the High Performance
Computer Users Conference KU KDM 2013, pages
83–84. Academic Computer Centre Cyfronet AGH,
Academic Computer Centre Cyfronet AGH.

Keogh, E. and Pazzani, M. (2000). A simple dimension-
ality reduction technique for fast similarity search in
large time series databases. Pacific-Asia Conference
on Knowledge Discovery and Data Mining.

Kim, S., Han, K., Rim, H., and Myaeng, S. H. (2006). Some
effective techniques for naive bayes text classification.
IEEE Transactions on Knowledge and Data Engineer-
ing, 18(11):1457–1466.

Ko, Y. and Seo, J. (2000). Automatic text categorization
by unsupervised learning. In Proceedings of the 18th
international conference on computational linguistics,
pages 453–459.

Lili, H. and Lizhu, H. (2008). Automatic identification of
stopwords in chinese text classification. In Proceed-
ings of the IEEE international conference on Com-
puter Science and Software Engineering, pages 718–
722.

Pietron, M., Zurek, D., Russek, P., Wielgosz, M., Jamro,
E., and Wiatr, K. (2013). Accelerating aggregation
and complex sql queries on a gpu. In Proceedings
of the High Performance Computer Users Conference
KU KDM 2013, pages 21–22, Krakw. Academic Com-
puter Centre Cyfronet AGH.

Porter, M. F. (1980). An algorithm for suffix stripping. Pro-
gram, 14(3):130–137.

Rehurek, R. and Sojka, P. (2010). Software framework for
topic modelling with large corpora. In Proceedings of
the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pages 45–50, Valletta, Malta. ELRA.

Salton, G., Wong, A., and Yang, C. S. (1975). A vector
space model for automatic indexing. Commun. ACM,
18(11):613–620.

Wielgosz, M., Koryciak, S., Janiszewski, M., Pietroń,
M., Russek, P., Jamro, E., Dabrowska-Boruch, A.,
and Wiatr, K. (2013). Parallel mpi implementa-
tion of n-gram algorithm for document comparison.
ACACES 2013 : the 9th international summer school
on Advanced Computer Architecture and Compilation
for High-performance and Embedded Systems, pages
217–220.

PUaNLP 2016 - Special Session on Partiality, Underspecification, and Natural Language Processing

322

