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Abstract: The purpose of this paper is to develop and validate a predictive model of a thermal storage which is charged
by a heat pump and used for domestic hot water supply. The model is used for smart grid control purposes
and requires measurement signals of flow and temperature at the inlet and outlet of the storage to determine
charged and discharged thermal energy, and electrical energy consumption of the heat pump. The paper
reviews possible simulation models and describes a predictive model for the state of charge and for the heat
pump power consumption during charging based on experimental data. Simulations are carried out and results
are compared with experiments. The model is applied in a case of domestic smart energy control for which
results are shown.

1 INTRODUCTION

To reduce carbon dioxide emissions, energy supply
systems around the world increasingly integrate en-
ergy from renewable sources such as solar Photo
Voltaic (PV), wind turbines and biomass conversion.
On a local scale of households and small companies
this concerns mainly rooftop solar PV systems, urban
wind turbines and bio-gas Combined Heat and Power
installations (CHP). Due to the daily solar move-
ment, dependence on weather conditions and people’s
consumption patterns, there is a mismatch between
times of energy production and demand. For existing
low voltage grids this can cause voltage increase be-
yond acceptable bounds at times of overproduction or
voltage decrease at times when the demand is much
higher than the local production.
As pointed out in (Nykamp, 2013), an expensive so-
lution is to strengthen the existing grid. An econom-
ically more attractive alternative is to invest in smart
grids. The purpose of a smart grid for a low voltage
network is to balance local electricity production with
demand. A hybrid smart micro grid combines electric
production and demand with thermal energy produc-
tion and demand. The solution contains smart control
of flexible devices (i.e. washing machines, dishwash-
ers, heat pumps) and may also contain electric and

thermal storage. By controlling flexible devices and
storage chargers, grid overloads either due to overpro-
duction or demand peaks are avoided (Leeuwen et al.,
2015).

As only part of the demand is flexible and due to
increased electrification of household and transporta-
tion energy demand, there is often a high level of si-
multaneous energy demand within an area. Therefore,
electrical and thermal storage systems are gaining im-
portance. To control storage charging and discharg-
ing, algorithms used for smart energy control need
actual information on the state of charge (SoC) of
the storage in order to predict the amount of charg-
ing or discharging which is possible in the near fu-
ture. As most smart control algorithms rely on linear
programming or control heuristics, and our interest is
on application in local embedded systems as part of
the storage, the predictive model should be simple.
On the other hand it is well known that describing
charging and discharging processes for thermal stor-
age systems is rather complex. Therefore the prob-
lem statement of this paper is how to predict the state
of charge of a thermal storage and required charging
power consumption in a simple but sufficiently accu-
rate way. The goal of this paper is to develop mathe-
matical model descriptions for this and to validate the
models with experimental data.
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The main contributions of this paper are:
• provide an overview of thermal storage simulation

models

• develop models for prediction of the state of
charge and charging power consumption

• validate accuracy of model predictions with ex-
perimental data

This paper is structured as follows: Section 2 dis-
cusses related work on mathematical models for pre-
diction of storage state of charge. Section 3 describes
the model and validation experiments. A comparison
of model prediction and experimental results is shown
and discussed in Section 4, in which also results of a
case study are presented which demonstrates applica-
tion of the model. Finally, Section 5 draws conclu-
sions and introduces future work.

2 RELATED WORK

The behavior of a thermal storage during standstill,
charging and discharging is studied by numerous au-
thors. One of most important aspects of a thermal
storage is thermal stratification, as this leads to max-
imum exergy utilization (Rosen, 2001). An overview
of research into thermal stratification is reported by
(Han et al., 2009), while (Fan and Furbo, 2012) re-
ports on the influence of heat loss on thermal stratifi-
cation.
Predictive modeling for the temperature distribution
within a thermal storage in relation to inlet and out-
let flows is a well investigated area. This concerns
mainly one-dimensional models, e.g. the lumped ca-
pacitance multi-node approximation (Kleinbach et al.,
1993) which is implemented in simulation software
like TRNSYS. Good results are obtained by approx-
imating the thermal storage with at least 15 nodes
or uniform temperature layers. An even more de-
tailed approach of temperature distribution and flow
patterns within the storage is possible with a two-
dimensional, finite volume model which includes
natural and mixed convection boundary conditions
(Oliveski et al., 2003). The one and two-dimensional
approaches are computationally expensive mainly be-
cause of the small time intervals, e.g. seconds to min-
utes required for simulation. For smart control of
the storage and heat pump, such a detailed knowl-
edge of the temperature distribution is not required.
Also, time intervals used in smart control are much
larger, e.g. 15 minutes to 1 hour. (Halvgaard et al.,
2012) uses a lumped capacitance single node model
of a thermal storage for model predictions as part of
a smart control system. This model essentially de-

scribes energy content of the storage and is also in-
troduced by others (Kriett and Salani, 2012), (Henze
et al., 2004). This model is straightforward to apply
for model predictions as part of smart control, how-
ever the relation between heat pump performance and
lower temperatures within the bottom part of a ther-
mally stratified storage is lost. Hence, prediction of
electricity consumption in time, one of the most im-
portant goals of the predictions, is less accurate.

A grey-box model with system identification
method is proposed by (De Ridder and Coomans,
2014). The model is the same one-dimensional multi-
node approximation discussed earlier but in this case,
5 nodes are proposed together with a parameter iden-
tification method based on the Markov-chain Monte-
Carlo method. Although the results of this method
are reasonable, we foresee two problems in our ap-
plications: (1) such identification algorithms are dif-
ficult to apply within low cost embedded device con-
trollers with limited available memory and computa-
tional power, (2) even with only 5 nodes, for accuracy
reasons, evaluation of the model prediction involves
time intervals in the order of minutes rather than 15
minutes to 1 hour.

An iterative model which approximates the stor-
age into two layers, one hot layer at the top and one
mixed layer with an average temperature below that
is reported in (Baeten et al., 2015). This approach is
promising and is partly the basis for the present paper.
Our model predicts without iterations both the storage
state of charge and heat pump electric consumption of
a future charging cycle in a one step calculation, based
on available data of the inlet/outlet flows.

3 METHODS

A general and widely applicable model for the supply
from a thermal storage or electric battery is based on
energy conservation which states:

∆St = ∆Ct −∆Dt −∆Lt (1)

In which the term ∆St signifies the change of stored
energy, ∆Ct the charged energy, ∆Dt the demand and
∆Lt the energy loss, all within a time interval ∆t which
in discrete time is the interval (t−1, t). In the follow-
ing, the terms in Equation 1 will be discussed.

3.1 Type of Thermal Storage

A common storage configuration for domestic hot
water supply is shown in Figure 1 for which the
mathematical notations are explained in Table 1.
Cold water flows in at the bottom, hot water is drawn
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Figure 1: Schematic picture of the thermal storage.

from the top of the storage. A heat pump or solar
collector generates heat which is transferred by a
coil heat exchanger within the bottom region of the
storage tank.

Table 1: Mathematical notations used in Figure 1.

Notation signification
Ct charging thermal energy at time t
Et heat pump electrical energy consumption
Lt loss of thermal energy from the storage
Dt thermal energy demand from the storage
HP heat pump
Φ inlet or outlet water flow
Ta ambient temperature
Tc,t charging flow supply temperature
Ts,t heat pump source supply temperature
Tdc outlet or discharge water temperature
Ti inlet water temperature

Tav,t average storage water temperature

The size of the thermal storage is typically 200
liters, sufficient for daily hot water consumption of
households up to 5 persons. The storage may not be
the only hot water system within a house. Hot water
for kitchen use, e.g. to wash dishes, may be supplied
by a separate 10-15 liters electric hot water storage.
The model derived in this section may also be appli-
cable for this type of storage. It is interesting to incor-
porate such storages in a smart energy control system
due to the relatively high power demand, i.e. typi-
cally 2500 W for charging periods ranging from 30
minutes to 2 hours. Figure 1 shows connection of the
storage to a heat meter and smart controller. The heat
meter determines the supplied energy and volume of
hot water. The smart controller determines the actual

Figure 2: Typical daily hot water demand pattern of a
household.

SoC and decides when to start the heat pump (HP) for
charging, based on optimization objectives. We will
discuss this topic further in Section 4.2.
The thermal storage supplies the daily demand for do-
mestic hot water for a single household. The demand
pattern can be learned in time, e.g. as hot water flow
per time interval. For a single house, the uncertainty
on the demand pattern is large if it is evaluated for
small time intervals, but it is smaller if demand is
evaluated for larger time intervals, e.g. as total de-
mand per hour. Figure 2 shows a typical daily demand
pattern of a 4 person household with an annual do-
mestic hot water energy demand of 9 GJ/y (Leeuwen
and Ende, 2016).

The demand pattern is given in liters/hour of 40◦C.
The thermal storage has a size of 200 liters and is
charged to 60◦C. The SoC of the storage which is
explained in Section 3.2 is charged to 1 early in the
night and drops to nearly 0.21 at the end of the day
due to the discharge of hot water. The daily SoC pat-
tern shows that for the evaluation of the SoC, a resolu-
tion of one hour of the demand prediction is sufficient
in this case.

Another aspect to take into account is the com-
fort of domestic hot water supply. Measures for com-
fort are the water temperature and the availability in
time of warm water. People’s expectations of com-
fort may vary throughout the day. For the control sys-
tem, information about warm water demand and ex-
pected comfort is important in order to decide which
amount of water of a certain temperature should be
at least available within the thermal storage at certain
moments during the day. The predictive model for
charging and discharging the storage should be able
to provide this information.

3.2 Discharging Model and
Experiments

If the storage shown in Figure 1 is ideally stratified,
the entire volume of hot water with a uniform tem-
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Figure 3: Alpha-Innotec heat pump storage combination
used for testing.

perature moves upwards, perfectly separated from a
growing volume of cold water from the bottom. How-
ever, the incoming cold water flow induces some mix-
ing of cold and hot water. The result is that less water
volume with a high temperature can be drawn from
the tank than in the perfect stratified case.

To investigate this behavior, experiments are car-
ried out by the energy research lab of Saxion Univer-
sity of Applied Sciences. The experiments involve
charging and discharging cycles for two commer-
cially available, combined heat pump/thermal storage
units. One is a 200 liter combination with a ground
water source heat pump from Alpha-Innotec, refer to
Figure 3. The other is a 50 liter combination with an
air source heat pump from Inventum.

For the hot water storage and for the glycol source
side circuit of the heat pump, the 200 liter combina-
tion is equipped with PT-100 temperature sensors at
the inlets and outlets and flow sensors at the inlets.
The wall socket is equipped with an electric power
sensor. The sensors are connected to a National In-
struments data acquisition system which is connected
to a PC. Labview is used to obtain and log the data.
The 50 liter combination was tested at a user’s site
using a minimum amount of sensors, a PT-100 sen-
sor and a flow sensor on the hot water outlet and an
electric power sensor on the wall socket. A portable
datataker acquisition unit was used which logs the

Figure 4: Outlet water temperature at constant flow rates.

data to memory. On the 50 liter combination, only
a few charge/discharge cycles with constant flow are
carried out to verify the phenomena observed from the
200 liter combination for a combination with a much
smaller storage size.

For the 200 liter combination, in Figure 4 the
discharge temperature (Tdc) is shown for three con-
stant flow rates. When perfectly stratified, the storage
should supply hot water with a constant high temper-
ature for 2400, 1200 and 800 seconds for the respec-
tive flow rates of 5, 10 and 15 l/min. However, figure
4 shows that allready at 2150, 1050 and 650 seconds,
the outlet water temperature has dropped below the
minimum use temperature of 40 ◦C, which demon-
strates the effects of mixing of cold and hot water
within the thermal storage during discharging.
Purpose of the discharging model is to determine:
• the amount of energy supplied from an initial

State of Charge

• the present SoC of the thermal storage

• the amount of useful energy (T ≥ 40◦C) that the
storage is still able to supply

Assuming that energy supply from the storage equals
energy demand, the supplied energy in time interval
∆t is calculated with Equation 2.

∆Dt = ∆t ·φt ·ρ · cp · (Tdc,t −Ti,t) (2)

In which ρ the water density and cp the water spe-
cific heat. In this paper, ρ and cp are assumed constant
although they vary slightly with temperature. When
a heat meter is connected to the thermal storage, the
outlet temperature Tdc,t , inlet temperature Ti,t and flow
φt are registered, which is used to learn the demand in
time. The heat meter calculates the supplied energy
by applying Equation 2. A smart grid algorithm may
use this information to determine the actual SoC of
the thermal storage. The SoC is calculated by Equa-
tion 3.

SoCt =
St

Smax
, 0≤ SoCt ≤ 1 (3)
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Figure 5: Relation between storage State of Charge and dis-
charge temperature.

The stored energy at time interval t, St is determined
by Equation 4. St−1 is the stored energy at the previ-
ous time interval t−1. The maximum charged energy
is determined by Equation 5, which is worked out
from the first law of thermodynamics, relating the re-
quired thermal energy to the change of enthalpy of the
mass of water within the storage (Moran and Shapiro,
2000).

St = St−1 +∆St (4)

Smax =V ·ρ · cp · (Tmax−Ti) (5)

In which V the water volume in the storage, Tmax the
maximum, uniform temperature of the storage, i.e.
determined by the storage thermostat settings. The
inlet cold water temperature Ti is assumed constant
in this Equation. In practice, a certain volume of the
inlet cold water may warm up to room temperature
conditions due to stand-still heat transfer in the inlet
pipes. The cold water temperature also varies with the
seasons.

The amount of useful energy that can be sup-
plied by the storage is determined by a minimum SoC
value. In figure 5 the minimum SoC is determined
from the intersection with a supply temperature of
40◦C.

In figure 6, the minimum SoC is shown as a func-
tion of flow rate. Assuming negligible mixing effects
(or minimum SoC of zero) for a flow rate close to
zero, the minimum SoC appears to increase approxi-
mately linear with flow rate. In practice, flow rates are
not constant but may vary per draw between 5 and 15
l/min. This makes it practicable to use a single value
for the minimum SoC, e.g. the worst case which is
0.18. Together with the calculation of the stored en-
ergy from Equation 4, the minimum SoC value deter-
mines the amount of useful energy that the storage is
still able to supply.

Figure 6: Minimum State of Charge as a function of con-
stant flow rate.

3.3 Charging Model and Experiments

During charging, heat is transferred from the coil at
the bottom to the water in the storage by the principle
of natural convection. From a discharged state, the
water in the storage is cold and during charging the
temperature increases gradually. The heat pump ef-
ficiency decreases with increasing water temperature
during the charging process. The heat pump’s refrig-
erant flows through the coil heat exchanger where it
condensates at constant temperature. The coil is usu-
ally made of thin-walled copper, aluminum or stain-
less steel with an approximately negligible conduc-
tion resistance.
Based on supplier heat pump characteristics (Alpha-
Innotec, 2015) and validation measurements, the
charging energy of the heat pump ∆Ct appears to be
approximately linear with the source temperature Ts,t .
The same characteristics show that the electric energy
∆E is approximately linear with the condenser tem-
perature. Linear equations are developed for Ct and
Et and given in Equation 6.

∆Ct = a ·Ts,t +b
∆Et = c ·Tc,t +d (6)

In which a,b,c,d are constants which are determined
from supplier data. For the 200 liter heat pump, these
constants are given in Table 2. It is common practice
for domestic heat pumps to measure the condenser
and source temperature for safety reasons, hence the
smart control system should be connected to the heat
pump and obtain this data. The source temperature
may vary in time but this depends on the heat source,
e.g. ambient air varies much more dynamic than
ground water.

Neglecting the coil conductive resistance, the coil
temperature approximately equals the condenser tem-
perature. The heat transfer from the coil to the sur-
rounding water in the storage is given by Equation 7
which is based on Newton’s law of cooling (Moran
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Table 2: Heat pump and coil model parameters.

Parameter Value Unit
a 0.172 kW/K
b -42.2 kW
c 0.04 kW/K
d -10.2 kW

h ·A 1.191 kW/K

and Shapiro, 2000).

∆Ct = h ·A · (Tc,t −Tw,t) (7)

In which h the coil heat transfer coefficient, A the coil
outside area and Tw,t the surrounding water tempera-
ture within the storage. The product h ·A is approxi-
mately constant for a complete charging cycle, is ob-
tained from supplier data and given in Table 2. When
the surrounding water temperature is known, equat-
ing ∆Ct from Equations 6 and 7 yields the condenser
temperature Tc,t which determines the electric energy
requirement ∆Et . Hence a suitable prediction of the
water temperature within the thermal storage around
the coil is needed.
When charging from a fully discharged condition, the
water temperature within the storage is approximately
uniform and the left term of Equation 1 is approxi-
mated as:

ρV cp∆Tw,t (8)
Solving Equation 1 yields the average water tempera-
ture which is then substituted into Equation 7.
However, the storage is usually not discharged beyond
the minimum SoC. In that case, we learn from Figure
4 that a temperature distribution must exist within the
storage, consisting of a layer of hot water at the top
of the storage, a cold layer at the bottom and a mixed
layer in between. During charging, the hot layer at
the top remains in place, while the temperature of the
cold and mixed layer increases gradually. In the fol-
lowing, we develop a suitable approximation based on
the SoC.
In figure 7 the decrease of the SoC with the total dis-
charged volume from the storage is shown, which in-
dicates a linear decrease down to the minimum SoC
level. For the slope, Equation 9 applies.

∆SoC
∆V

=
1
V

(9)

The model assumes that during charging, the wa-
ter volume in the storage consists of 2 layers: an
upper layer with a uniform hot temperature and a
lower layer with a colder but increasing temperature.
For a given SoCt (SoCmin ≤ SoCt ≤ 1), the remain-
ing volume of hot water Vh,t within the storage can
be calculated with Equation 9 substituting: ∆SoC =
SoCt −SoCmin, which outputs ∆V which is Vh,t .

Figure 7: State of Charge as a function of discharged vol-
ume.

The average temperature Tw,t in Equation 8, accord-
ing to the model assumption of 2 layers, is the average
temperature of the lower layer of mixed water volume
in the storage, i.e. V −Vh,t . This temperature is cal-
culated from Equation 10 in which the stored energy
St−1 is known from the state of the previous time in-
terval.

St−1 = ρ ·cp · [Vh,t−1 ·(Tmax−Ti)+(V −Vh,t−1) ·(Tw,t−Ti)]
(10)

Figure 8 shows the measured heat pump electric
power during charging from an empty to a full state of
the storage. During charging, the water temperature
is measured at two locations, at a quarter of the
storage height and at the top. These temperatures
also increase approximately linear and differ only
a few degrees during charging, so we conclude that
during charging from an empty state, the storage
temperature is increased isothermal. Hence, electric
power increases approximately linear with the water
temperature within the storage. It follows that when
the charging process starts from an arbitrary SoC
state, the average water temperature of the water
volume that needs a temperature increase determines
the duration and the amount of electric energy.

Figure 8: Measured electric power during charging.
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The total required thermal charging energy is cal-
culated with Equation 12.

Ctot,t = (1−SoCt) ·Smax (11)
SoCmin ≤ SoCt ≤ 1 (12)

The duration of the charging process τt is calculated
with Equation 13

τt =
Ctot,t

∆Ct
(13)

In which ∆Ct is calculated with Equation 6. The elec-
tric power consumption profile Pe,t∗ of a future charg-
ing cycle with discrete time t∗ in the future, from a
given SoCt to fully charged conditions, is predicted as
a linear function in time, Equation 14 which starts at a
value Pe,t∗i and ends with Pe,t∗i +τ. These values are cal-
culated with ∆Et , Equation 6. t∗i is some time in the
future when charging is initiated, which is a control
variable for the smart control system.

Pe,t∗ = Pe,t∗i +
Pe,t∗i +τ−Pe,t∗i

τ
· t∗

0≤ t∗ ≤ τ (14)

The electric energy consumption of the future charg-
ing cycle is calculated with Equation 15, which is the
integral of Equation 14.

Etot,τ =
τ
2
· (Pe,t∗i +Pe,t∗i +τ) (15)

With the parameters given in Table 2 the values shown
in Table 3 are calculated for the charging cycle of Fig-
ure 8. In this figure, the resulting prediction profile is
also shown for comparison and this demonstrates the
excellent accuracy of the approach.

Table 3: Comparison between prediction and measurements
of electric energy consumption.

Result Measured Predicted Unit
τ 6763 6677 sec

Pe,t∗i 1.45 1.56 kW
Pe,t∗i +τ 3.21 3.16 kW
Etot,τ 15564 15759 kJ

3.4 Energy Loss

When the storage is charged and discharged daily, en-
ergy losses from the storage to the surrounding air are
insignificant due to good insulation of modern ther-
mal storage tanks. However, when the storage is not
discharged for many days and placed in a relatively
cold environment, losses may be more significant.
The heat loss ∆Lt is calculated by the general heat
transfer relation (Moran and Shapiro, 2000), Equation
16.

∆Lt =UA · (Tav,t −Ta,t) (16)

In which UA the storage heat loss coefficient, Tav,t the
average storage temperature and Ta,t the ambient air
temperature which may be assumed constant in time,
depending on the situation. Assuming constant wa-
ter density and specific heat, Tav,t is calculated with
Equation 17.

V ·Tav,t =Vh,t ·Tmax +(V −Vh,t) ·Tw,t (17)

3.5 Validation Experiments

Validation of the model is performed by discharging
the storage with constant flow φ starting at SoC=1 to
SoCend , followed by charging to SoC=1. Values for φ
and SoCend are given in Table 4.

Table 4: Validation experiment settings.

Experiment φ (l/min) SoCend
1 5 0.6
2 10 0.6
3 15 0.6
4 10 0.4
5 10 0.2

During discharging, flow and temperature are
measured of the inlet and outlet water. During charg-
ing, electric energy consumption is measured. The
model prediction algorithm involves:

1. determine actual SoC from measured flow and
temperatures, Equations 1, 2 and 3

2. determine required charging energy Ctot , Equation
12

3. calculate duration τ of future charging cycle,
Equation 13

4. calculate average water temperature of cold and
mixed water layer in thermal storage, Equation 10
and condenser temperature at the beginning and
end of a future charging cycle, Equation 7

5. determine minimum and maximum electric power
of charging cycle Pe,t∗i and Pe,t∗i +τ, Equation 6

6. determine total electric energy consumption dur-
ing charging cycle Etot , Equation 15

The validation compares model predictions of dura-
tion τ, minimum and maximum electric power Pe,t∗i
and Pe,t∗i +τ and total electric energy consumption Etot
which characterize the future charging cycle with the
measured charging cycle.
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Table 5: Validation results.

Experiment τmeas % error Pe,t∗i Pe,t∗i +τ MAX % error Tw,pred Etot,meas % error
(sec) τ (kW) (kW) ∆Pe

◦C (kJ) Etot
1 2911 -7.2 2.17 3.20 6.2 31.2 14872 0.3
2 2637 2.5 2.10 3.22 5.6 29.9 14465 3.1
3 2973 -9.1 2.16 3.22 5.4 31.6 15018 -0.7
4 4050 -1.6 1.86 3.22 8.7 27.6 22352 0.1
5 5229 1.1 1.85 3.23 5.2 25.4 29662 0.1

4 RESULTS AND DISCUSSION

4.1 Validation Results

The validation results are shown in Table 5. The mea-
sured duration τmeas, measured minimum and maxi-
mum electric power consumption Pe,t∗i and Pe,t∗i +τ and
measured total electric energy consumption Etot,meas
are listed for each experiment. The error of the predic-
tions is given as a percentage of the measured values.
For the predictions, the average water temperature of
the cold and mixed water layer Tw,pred calculated from
Equation 10 is shown, from which the electric power
at the start of the charging cycle is predicted.

For the future charging cycle, accurate prediction
of the total electric consumption and duration are the
most important aspects for smart energy control pur-
poses. Table 5 indicates an excellent prediction accu-
racy of the total electric consumption, while in most
cases the percentage error is smaller than 1%. Al-
though the prediction of duration seems less accurate
in some cases, the maximum error of 9.1% is only a
difference of 4.5 minutes. Smart energy control algo-
rithms usually evaluate predictions in time intervals
of 15 minutes, hence this maximum error is accept-
able.

For the prediction of the energy consumption pro-
file, the maximum error (8.7%) is 280 W, which ap-
pears at the end of the charging cycle. This error is
mainly due to differences in the same order of mag-
nitude between supplier data of electric power con-
sumption which is used for the model and actual mea-
surements of electric power consumption. We verified
that if the constants c,d in Equation 6 are based partly
on supplier data and partly on the measured power
consumption at the end of charging, the prediction
profile is more accurate. This information could be
made available to the control system by a connected
smart electricity meter.

It also has to be taken into account that the errors
are in the same order of magnitude as the propagated
measurement errors of the used sensors. Therefore
we conclude that the predictive model is very well ca-

pable to accurately predict the duration, power con-
sumption and power consumption profile for future
charging cycles of the thermal storage.

4.2 Case Application

Application of the model is investigated with a case
for increased self-consumption of domestic solar PV
electricity. Figure 9 shows a reference profile of a
day in the spring season. The profile is constructed
specifically as a case for this paper and based on
measured data on electricity consumption of a four
person household and weather data. The figure
shows electric power consumption and solar PV
generation without smart control. The yearly sum
of daily base loads totals 2600 kWh/y and includes
electricity consumption of lights, dishwasher, wash-
ing machine, washing dryer, television, computer and
small electronic devices. The base load is considered
non-flexible in this case. The heat pump which
charges the thermal storage is a flexible device which
can be controlled by a smart controller, as indicated
in Figure 1. The reference case shows that solar PV
energy generation during the day is mostly exported
to the grid, while the occupants are mostly out of
the house during the day and come home around
17.00 hours. Financially, this may be unfavorable,
depending on the feed-in tariff. Besides this, charging
energy of the heat pump and SoC of the thermal
storage are shown. The total profile illustrates the
load on the power grid, ranging from a feed-in peak
of -1380 Wh during the day to a demand peak of
3020 Wh during the night.

Figure 9: Reference electricity consumption and solar PV
generation profile.
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Figure 10: Variant 1: electricity profile with optimized elec-
tric battery storage.

m

Figure 10 shows results for variant 1 which in-
cludes an electric battery which is able to charge when
there is a surplus of electricity generation and to dis-
charge when there is insufficient generation. The
hourly amounts of charged and discharged energy are
determined by an optimization algorithm which min-
imizes peaks of the total profile. The optimization
algorithm used is explained in detail in (Fink et al.,
2015). The required battery capacity for this profile is
calculated at 7.34 kWh. The electricity consumption
peak is reduced to 293 Wh during the night.

Figure 11 shows results for variant 2 which in-
cludes an electric battery and smart control of the heat
pump. Besides minimizing peaks of the total profile,
the control algorithm minimizes capacity of the elec-
tric battery. The thermal storage and heat pump charg-
ing model developed in this paper are included in the
control algorithm to predict SoC and electricity con-
sumption. As result, the required battery capacity is
decreased to 4.58 kWh and the electricity consump-
tion peak is now 256 Wh which occurs during day-
time hours.

Figure 11: Variant 2: electricity profile with optimized heat
pump control and electric battery storage.

The results of variant 2 have several positive effects:
• decreased battery capacity and lower investments

compared to variant 1

• lower electricity peak values compared to variant
1

• shift of electricity shortage towards daytime
hours, allowing more local consumption of other
renewable energy generation in the district

Main purpose of the case study is to show the signifi-
cance of model prediction of energy for charging the
thermal storage. A more elaborate case study involv-
ing different households, more days throughout the
year and comparisons with thermostat thermal stor-
age control is required to study the effects of smart
control more thoroughly.

5 CONCLUSIONS

In this paper a predictive model is developed for a do-
mestic hot water thermal storage which is charged by
a heat pump. The model is derived from heat bal-
ance equations combined with insights from experi-
mental data. The model involves a set of relatively
simple algebraic equations which are easy to evalu-
ate by smart energy control algorithms without itera-
tions. Required inputs are: recordings of measured in-
let and outlet water temperature and water flow, which
can be performed by low cost heat meters in practice.
Outputs of the predictive model are: duration, elec-
tric consumption profile and total electric energy con-
sumption of a future charging cycle by the heat pump
from the present state of charge to fully charged con-
ditions.

Accuracy of the model is validated by comparing
results of model predictions with experimental find-
ings. The percentage error on the predicted duration
of the charging cycle is between 1% and 9%, on the
electric power consumption between 5% and 9% and
on the total electrical energy consumption lower than
3%.

Hence the model can be applied for similar do-
mestic hot water storage configurations, although the
relations introduced which describe heat pump elec-
tric power consumption, may be different for differ-
ent types of heat pumps and different heat pump con-
trol systems. Changing these relations is however a
relatively simple task which involves analysis of the
heat pump characteristics, either from supplier data
or by executing a few discharging/charging cycle ex-
periments.

Application of the model is investigated with a
case of increased self consumption. The developed
predictive model is relatively easy to implement into
an optimization control algorithm which minimizes
peak electricity consumption of a household and elec-
tric battery capacity. The results for this type of con-
trol show decreased battery capacity, lower electricity
peak values and a shift of hours of electricity shortage
from nighttime to daytime hours, which is favorable
for local consumption of renewable energy generation
in a district. Future work is aimed at integration of
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the model into the Triana smart grid simulator which
is used for simulation studies and as base for embed-
ded smart control systems. We will also investigate
suitable methods for domestic hot water demand pre-
diction as part of smart energy control of the thermal
storage and heat pump.
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