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Abstract: MDE is nowadays applied in the context of software engineering for complex or cyber-physical systems, to 
build models of physical systems that can then be verified and simulated before they are built and deployed. 
This article focuses on DSMLs direct formal verification and simulation of their dynamic semantics. By 
“direct”, we mean without transforming the DSML description into an automata-like one. This paper 
presents xviCore, a metamdeling language to create DSMLs equipped with an abstract syntax, a concrete 
syntax and a dynamic semantics. We exemplify xviCore by an integration of a metamodeling language and 
a formal behavioral modeling language, based on the blackboard design pattern. Formal verification 
techniques based on the Linear Temporal Logic (LTL) and the Temporal Boolean Difference can be then 
applied as demonstrated by the proposed approach. 

1 INTRODUCTION 

The development of software engineering for 
complex or cyber-physical systems currently 
deflects a key issue. Within this context, the Model-
Driven Engineering (MDE) provides means for 
systems modeling through creation, checking and 
manipulation of various models. Models are 
nowadays created using Domain Specific Modeling 
Languages (DSML). A DSML basic components are 
its syntax and semantics (Kleppe, 2007) but current 
DSMLs have been more studied from the syntactical 
point (syntactical DSMLs) than from the semantical 
one that is often neglected or, when needed, 
provided by means of translating the DSML into a 
third-party formalism. This is a key limitation for 
formal verification and simulation (Chapurlat, 
2013). According to (Combemale et al., 2009), the 
DSML semantical part can be divided into a static 
part, representing concept meaning (abstract and 
concrete syntaxes) and behavior independent 
structural constraints (pre and post conditions, 
invariants, etc.) and a dynamic part, dealing with the 
way models behave. We focus hereafter on this 
dynamic part, usually named “dynamic semantics” 
or “behavior”. It can be defined either by using 
action languages (e.g., Java) or behavioral modeling 
languages (e.g., Statechart), providing respectively 
an implementation or an explicit specification. 

Nevertheless, to follow the basic MDE 
“everything is a model” principle (Bézivin, 2005) 
requires a model-based way of specifying behavior. 
Languages to model dynamic semantics in this 
context and/or dedicated virtual machines for 
simulation have already been studied in various 
works: Statechart in (Douglass, 2002) or UML 
activities in (Scheidgen and Fischer, 2007). 
However, using different tools to design syntax and 
an automata-like behavior of a language creates a 
gap that requires transformation rules between them. 
In some works, e.g., (Mayerhofer et al., 2013), the 
behavioral modeling language fUML is integrated 
into the M3 metamodeling layer. This overcomes 
transformation related problems, but formal-
verification related problems remain still a subject of 
a debate. 

Our global contribution presented in this paper is 
a new meta-modeling language, called xviCore, 
allowing meta-modelers to build DSMLs (called 
xviDSMLs), that along with their syntax and static 
semantics part also integrates a dynamic semantics 
part and providing solution for direct (without 
transformation) models verification and simulation. 
Our solution combines, two meta-languages, EMOF 
for the specification of the static part, and an original 
extension of the behavioral modeling formal 
language “Interpreted Sequential Machine” (ISM) 
called extended ISM (eISM) for the dynamic part. 
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Thanks to this key extension (that includes a 
blackboard-based communication model), dynamic 
semantics of an xviDSMLs can be designed, 
statically verified and used to simulate models 
written using them (called xviModels). xviCore is a 
tooled meta-language implemented as an Eclipse-
EMF deployable plug-in. 

The remainder of this paper is structured as 
follows. Sections 2-3-4 describe our xviCore 
solution. Section 2 proposes an overview of the 
approach and the rationale for eISM and for its 
combination with EMOF.  Section 3 presents eISM. 
Section 4 explains how the dynamic semantics of an 
xviDSML can be verified. A case study example 
demonstrating the approach’s applicability is 
illustrated in Section 5. Section 6 presents related 
works on DSML dynamic semantics. Section 7 
concludes and highlights our perspectives. 

2 GLOBAL VIEW OF THE 
CONTRIBUTION (xviCore) 

Our integrated meta-language xviCore (executable 
verifiable and interoperable core concepts and 
mechanisms) for creating verifiable DSML is 
illustrated in Fig. 1. XviCore combines two 
metalanguages, EMOF and our extension of the 
formal behavioral modeling language “Interpreted 
Sequential Machine” (ISM) (Vandermeulen, 1996) 
called extended ISM (eISM). Assuming other 
metalanguages could have been used, we thereafter 
justify this choice. An xviModel is created by an 
xviDSML itself created by EMOF for the static part 
and eISM for its dynamic semantics. 

 

Figure 1: An overview of xviCore. 

The static part description of xviDSMLs is based 
on EMOF and does not require additional efforts 
(Steinberg et al., 2008). For what concerns the 
dynamic semantics, each domain concept has its 

own behavior, specified by a behavioral model. The 
means for interoperation between different 
behavioral models should then be established, 
including at least centralized data and event 
exchanges between behavioral models assuming 
temporal synchronization rules. However, 
behavioral modeling languages are not tailored for 
such use. We propose hereafter a solution for this 
problem based on the blackboard design pattern 
integrated to the extension of ISM. 

The blackboard design pattern (Engelmore and 
Morgan, 1988) is a behavioral pattern “affecting 
when and how programs react and perform”. A 
“blackboard” is a shared and structured memory that 
establishes relationships between independent 
modules called “autonomous processes” where each 
process is individually able to solve a sub-problem. 
Processes can solve a “global problem” when they 
are put together, reading and writing data in the 
blackboard that is iteratively updated. Each process 
has a set of triggering conditions that have to be 
satisfied by particular kinds of events, sent by a 
controller. The processes synchronization is handled 
by a controller that monitors the data stored into the 
blackboard and decides which autonomous 
processes to prioritize. The controller reacts to 
global changes in the blackboard resulting from 
external inputs or previously executed processes. 
Processes can be simultaneously executed, having a 
concurrent access to the relevant blackboard data. 
This may produce a situation of deadlock (if two or 
more processes are each waiting for the other to 
finish, and thus neither ever does) (Lalanda, 1997). 

The Fig. 2 shows xviCore that introduces four 
main concepts: 
1) Controller (C) is used to schedule the execution 

of behavioral models (described hereafter) from 
an xviDSML according to a logical and periodical 
clock taking into account multiscale time and 
stability management rules. We propose an 
execution algorithm in (Nastov et al., 2015). It 
corresponds to the “controller” module of the 
blackboard pattern. 

2) Blackboard (BB) is a common base of 
information where behavioral models write their 
output data (O) and read their input data (I), 
enabling information exchange. The BB 
corresponds to the “blackboard” module on the 
blackboard pattern and is formally defined as 5-
uplet ܤܤ	 ≝ ,ܶܣ〉 ,ܶܮ ,ܥ ܵ, ܴ〉 where: AT is a set 
of “time indication” variables, specifying the 
time of adding. 
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Figure 2: xviCore - in red (a part of) EMOF, in white eISM and in gray the design blackboard pattern. 

LT is a set of “lifetime” variables, indicating the 
remaining time before updating messages. C is a set 
of “content” variables carried out by the messages. S 
is a set of “sender” variables specifying the 
behavioral model that sent the message and ܴ ൌ
ሼܴଵ, . . , ܴሽ is a set of “receivers” variables 
indicating the behavioral models that read the 
message: ∀ܴ ∈ ܴ, ܴ ൌ ሼݎଵ, . . ,  .ሽݎ
3) Concept is the core component of xviCore 

represented using the EMOF’s EClass. It is used 
to model domain concepts for which a behavioral 
model might be specified. It does not correspond 
to any component of the blackboard design 
pattern. We have chosen EMOF’s EClass mainly 
for two reasons: (1) EMOF and its realization 
Ecore are standardized by the OMG and (2) it is 
supported by tools such as Eclipse-EMF under 
the Eclipse Public License. 

4) Behavioral model represents the behavior of a 
domain concept instance of EClass. It 
corresponds to the “autonomous processes” 
module of the blackboard design pattern. 
Behavioral models are designed using a 
behavioral modeling language based on 
continuous or discrete events hypotheses. In this 
article, we focus on discrete behavioral 
description, for which we hereafter introduce 
eISM an extended version of the Interpreted 
Sequential Machine (Vandermeulen, 1996). 
eISM behavioral models operate with typed data 

and expressions, separating the states/transitions 
description from the data specification. This 
allows specifying some states using data 
variables, reducing consequently their number. 
The underlying structure of an eISM behavioral 
model is based on the Linear Temporal Logic 
(LTL) which is beneficial for formal verification. 

3 EXTENDED ISM – eISM 

An eISM is composed of four interconnected parts 
called: Input Interpreter (II), Output Interpreter (OI), 
Control Part (CP) and Data Part (DP) as modeled in 
Fig. 2 and illustrated in Fig. 3.  

 

Figure 3: The components (modules) of an eISM model. 

The CP is a graph of states and transitions. The 
DP holds the model data. The II interprets input data 
(gathered into the set I) available in the Blackboard 
(BB) and model data from the DP. Interpreted data 
takes part in the firing conditions that are associated 
with each transition of the CP, consequentially 
taking part in the CP’s evolution. The OI is an 
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interface that interprets the evolution of the CP by 
updating the values of the output data (gathered into 
the set O) and the values of the model data from the 
DP.  This model is formalized as a 6-uplet eISM ≝
,ܫ〉 ܱ, ,ܲܥ ,ܲܦ ,ܫܫ ,ܫܱ 〉 where: 
a) I is the set of input data available from the BB. 

Each input ii is defined by a current value 
cvaluei, a domain definition Ii and a type Ii’, such 
as Ii ⊆ Ii’. 

b) O is the set of output data that is sent to the BB 
by the OI. Each output oi is defined by a current 
value cvaluei, a domain definition Oi and a type 
Oi’, such as Oi ⊆ Oi’. 

c) The CP (Control Part), is defined as a graph of 
states related by labeled transitions and formally 
defined as a 5-uplet ܲܥ ≝ 〈ܵ, ,ࡿ ܶ,  :where 〈ࢁ,ࡱ
ܵ ൌ ሼݏଵ, … , ࡿ ,௩ሽ is a set of statesݏ ൌ ሼ࢙ଵ,… ,  ௩ሽ࢙
is a set of state propositional variables, ܶ ൌ
൛ ଵܶ, … , ܶൟ is a set of transitions, ࡱ ൌ ൛ࢋଵ,… ,  ൟࢋ
is a set of firing condition propositional variables 
and ࢁ ൌ ൛࢛ଵ,… ,  ൟ is a set of update࢛
propositional variables. Transitions are given in 
the following form ܶ ൌ ൣ൫࢙, ,൯ࢋ ሺ࢙,  ሻ൧. By࢛
hypothesis, there is a unique state si that is active 
each moment of the evolution. When the state si 
is active (otherwise inactive), the propositional 
variable associated to that state i.e., si = True 
(False otherwise). In addition, firing condition 
propositional variables, ej ∈	E, evaluate to True if 
an only if the corresponding firing condition 
function ej computed by II returns True. A 
transition ܶ can be fired by the transition 
function ߜ: ࡿ ൈ ࡱ →  if and only if, the ࡿ
transition’s firing condition propositional 
variable ei  evaluates to true and the source state 
of the transition ܶ is an active state. Firing a 
transition activates the output function ߣ: ࡿ ൈ
ࡱ →  ,As a consequence to these two functions .ࢁ
the source state of transition ܶ is deactivated, its 
target state is activated and the corresponding 
update propositional variable ࢛ ∈  is set to ࢁ
True. 

d) The DP (Data Part) holds the model data that is 
used to specify transitions’ firing condition 
functions E and update functions U. It is 
formally defined by a 2-uplet ܲܦ ≝ ,ܦܮ〉  〈ܦܫ
where: ܦܮ ൌ ሼ݈݀ଵ,… , ݈݀ሽ is a set of language 
data directly derived from the corresponding 
DSML class and ܦܫ ൌ ሼ݅݀ଵ,… , ݅݀ௗሽ is a set of 
internal (to the eISM model) data, explicitly 
needed for the description of firing condition and 
update functions. DP’s data elements, from both 

LD and ID sets, are defined by a current value 
cvalue, a domain definition DP and a type DP’ 
such that DP	⊆	DP’.  

e) The II (Inputs Interpreter) reads data (input data 
from the BB and model data from the DP) and 
based on it, evaluates the firing condition 
propositional variables that are associated with 
transitions of the CP. It is formally defined as 5-
uplet ܫܫ ≝ ,ܫ〉 ,ܦܮ ,ܦܫ ,ܧ ܧ where 〈ࡱ ൌ
൛݁ଵ,… , ݁௫ൟ is a set of firing condition functions 
and ࡱ ൌ ሼࢋଵ,… ,  ௫ሽ is a set of firing conditionࢋ
propositional variables. Firing condition 
functions are composed of a Boolean expression 
part (evaluated using input and model data) and a 
requested events part (evaluated using only input 
data), formally defined as: ∀݁ ∈ ,ܧ ݁ ൌ
ሼܿ݀݊,  ሽ. The firing condition functionݐ݊݁ݒ݁
evaluates to True, if both parts compute to True, 
False if at least one computes to False. Every 
firing condition propositional variable is 
associated with a firing condition function. This 
is formally defined as ݁: ܫ ∪ ܦܮ ∪ ܦܫ → ሼ0,1ሽ 
and ∀݅ ∈ ሾ1, . . , ሿ, ݁ݔ ൌ 1	 ⇔ ሺࢋ ൌ  .ሻ݁ݑݎܶ

f) The OI (Outputs Interpreter) associates the 
update propositional variables with the 
corresponding update functions. The evaluation 
of update functions impacts on the model data 
from the DP and on the output data that is send 
to the BB. The OI is illustrated on Fig. 7 and is 
formally defined as a 6-uplet ܱܫ ≝
,ܦܮ〉 ,ܦܫ ,ܫ ܱ, ,ࢁ ܷ〉 where ࢁ ൌ ൛࢛ଵ,… ,  ൟ is a࢛
set of update propositional variables and ܷ ൌ
൛ݑଵ,… ,  ൟ is a set of updates. Each updateݑ
might be associated with three types of update 
functions: update functions for output data 
:ݑ ܫ ∪ ܦܮ ∪ ܦܫ → ܱ, update functions for 
language data ݑ: ܫ ∪ ܦܮ ∪ ܦܫ →  and update ܦܮ
functions for internal data ݑ: ܫ ∪ ܦܮ ∪ ܦܫ →
  is࢛ When an update propositional variable .ܦܫ
set to true, the corresponding update is activated, 
executing simultaneously all associated update 
functions.  

4 VERIFICATION 

Verification of the xviDSML static and dynamic part 
must occur, prior to model specification and 
simulation. In general, a verification process is 
composed, at least, of three components: 1) a formal 
specification, on which the verification process is 
conducted, 2) formal properties that are verified on 
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the formal specification during the verification 
process and 3) a model-checking verification tool. 
We cover hereafter each of these components, 
focusing only on verification of the dynamic part.  
1) Formal Specification: The underlying structure 

of an eISM behavioral model is based on the 
Linear Temporal Logic (LTL), defined by a set 
of Elementary Valid Formulas (EVF) (Larnac et 
al., 1997). EVF are inferred from the PC’s 
transitions combined with LTL operators. Let 

ܶ ൌ ൣሺ࢙, ,ሻࢋ ൫࢙,  ൯൧ a transition between࢛
states si and sj, associated to an ej firing condition 
propositional variable and to a ui update 
propositional variable. Ti infers as an EVF of the 
following form:  

ሺܨܸܧ ܶሻ ∶ൌ ൫࢙ ∧ ࢋ ⊃ ࢙ ∧  ൯࢛

Its interpretation stands as follows: “it is always true 
( operator) that if si is the current state (and 
therefore si is true) and ej is true, then the next state 
( operator) will be sj (sj will be true), and the 
current output propositional variable ui becomes 
true”. The list of all the EVFs gives a symbolic and 
equivalent description of the behavior of an eISM 
model. Similarly, a Unified Valid Formula (UVF) is 
computed by taking EVFs into consideration. 
Briefly, the concept of Temporal Event (Et,) 
describes possible effects of an eISM model 
evolution. Et can either be a future state (Et=si), a 
future state within n-time steps (Et=nsi), a future 
output propositional variable (Et=ui), or a future 
output propositional variable within n-future steps 
(Et=nui). A Unified Valid Formula (UVF) defines 
then conditions that must be satisfied for the 
occurrence of a temporal event Et: 

௧ሻܧሺܨܸܷ ∶ൌ ሧ ൫࢙ ∧ ൯ࢋ
ሺ,ሻ/࢙∧ࢋ⊃ா

 

Its interpretation stands as follows: “next temporal 
event Et (respectively state Sj or update function ui) 

is reachable if and only if at least one of the 
proposed conditions is verified”. So the calculation 
of UVFs consists in manipulating the set of EVFs. 
For instance, let’s consider the following EVF 
formulas: 

ሺܨܸܧ - ܶሻ ∶ൌ ൫࢙ ∧ ࢋ ⊃ ࢙ ∧  ൯࢛
ሺܨܸܧ - ܶሻ ∶ൌ ൫࢙ ∧ ࢋ ⊃ ࢙ ∧  ൯࢛

The UVF(Et) when Et = sj is then noted: 

௧ሻܧሺܨܸܷ - ∶ൌ ሺ࢙ ∧ ሻࢋ ∨ ሺ࢙ ∧  ሻࢋ

whose interpretation is: “sj will be active in the next 
step (sj  is true), either if  ሺ࢙ ∧  ሻ is true or ifࢋ

ሺ࢙ ∧  .”ሻ is trueࢋ
2) Formal Properties: coherence between the 

formal specification and the “to be checked” 
formal properties is necessary. Therefore, 
properties should also be specified using the 
LTL. As an example, the state determinism 
hypothesis “at a given time step, there is one and 
only one current state” can be specified as the 
following LTL formula: 

ଵܲ ∶ൌ ൫࢙ ⊃ ࢙൯, ∀݅, ݆ ∈ ሼ1, . . , ,ሽݒ ݅ ് ݆. 

3) Tool: An adequate model checking tool is under 
construction considering the survey of (Rozier, 
2011) on the formal verification technique of 
LTL symbolic model checking. As an example 
of LTL formulas checking mechanisms, let’s 
introduce Temporal Boolean Difference (TBD) 
mechanism (Larnac et al., 1997 – Vandermeulen 
et al., 1995) inspired by (Kohavi, 1978). This 
mechanism is applied on a UVF with respect to a 
current state or a firing condition propositional 
variable, composing them into a Derived Valid 
Formula (DVF): 

,௧ܧሺܨܸܦ ሻݔ ∶ൌ
௧ሻܧሺܨܸܷ߲

ݔ߲
ൌ  ሻݔ௧|ܧሺܨܸܷ⨁ሻݔ|௧ܧሺܨܸܷ

The result of an evaluation of ܨܸܦሺܧ௧,  ሻ can eitherݔ
be: False – UVF(Et) is independent of x. In other 
words, the change of value of x has no influence 
over the occurrence of Et. Not False – in this case, 
we obtain a LTL formula which expresses the 
sensitivity of UVF(Et) with respect to the changes of 
x. 

5 CASE STUDY 

We demonstrate here the construction of a new toy 
xviDSML, called WaterDistrib for modeling water 
storage and distribution systems using our approach 
xviCore. 
 

 

Figure 4: a WaterDistrib model – an example of a water 
storage and distribution system. 
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A model created by WaterDistrib is illustrated in 
Fig. 4 and simulated using the dynamic semantics of 
WaterDistrib allowing experts to observe the 
changing water level. It is composed of a water tank, 
a water-source that is connected to the tank with 
pipes and a control station. A house is supplied with 
water thanks to the tank. There are valves on each of 
the pipes, controlled (opened or closed) by a control 
station, based on the water request and the water 
level inside the tank. 

We propose in Fig. 5 a metamodel for 
WaterDistrib composed of three principle concepts: 
WaterTank, Valve and ControlStation. The red ovals 
represent the eISM behavioral models of each of the 
concepts as discussed hereafter. 

 

Figure 5: WaterDistrib a new DSML for a water storage 
and distribution systems. 

The behavior of the concept Valve is composed 
of four states: Closed, Opening, Opened and Closing 
as illustrated in Fig. 6.  

 

Figure 6: Behavioral model associated to the class Valve. 

A valve is initially Closed, not providing any 
water flow (update closed is activated, see Table 1), 
awaiting a request to open itself. When the open 
request arrives, the update opening is activated (see 
Table 1) and the valve enters Opening state. Once 
the valve’s water flow reaches its maximum value, 
the update open is activated (see Table 1) and the 
valve enters Opened state. Now the valve awaits a 
request to close itself. When the close request 
arrives, the update closing is activated (see Table 1) 
and the valve enters Closing state. As soon as the 
valve’s water flow reaches 0, the update closed is 
activated and the valve enters its initial Closed state. 

Table 1: Valve’s updates. 

Update Language Data 
closed waterFlow=0 

opening waterFlow+=increasingRate 
opened waterFlow=maxWaterFlow 
closing waterFlow-=decreasingRate 
 

The behavior of the concept ControlStation is 
composed of three states: Mode1, Mode2 and Mode3 
as illustrated in Fig. 7. A control station is initially in 
the Mode1 state, filling the tank (update filling is 
activated, see Table 2) awaiting water request. When 
the request arrives and if there is a sufficient water 
level in the tank, the filling-empting update is 
activated (see Table 2) and the control station enters 
Mode2 state. If the tank is empting faster than 
filling, when its current water level reaches the 
critical min level, the control station enters again 
Mode1 state, activating the filling update. For the 
sake of simplicity, the case when the tank is filling 
faster than empting is not modeled in Fig. 7. When 
the station is in Mode1 state, if a water request has 
not yet arrived and the tank reaches its critical max 
level, the awaiting update is activated (see Table 2). 
The control station enters Mode3 state, waiting for a 
water request. The request arrival activates the 
filling-empting update and the control station enters 
Mode2 state. 

 

Figure 7: eISM behavioral models associated to the class 
Control Station. 

Table 2: Control Station’s updates. 

Update Output Data 

filling 
Outputs.set(waterTank.inputValve, Open) 

Outputs.set(waterTank.outputValve, Close) 
filling-
empting 

Outputs.set(waterTank.inputValve, Close) 
Outputs.set(waterTank.outputValve, Open) 

awaiting 
Outputs.set(waterTank.inputValve, Close) 

Outputs.set(waterTank.outputValve, Close) 
 

The next phase consists of checking dynamic 
semantics for well-constructiveness. For this 
purpose, the formal underlying structure of the eISM 
behavioral models should be developed, as 
illustrated in Fig. 8. 
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Figure 13: The underlying formal structure of the eISM 
behavioral models associated to the class Valve. 

At the upper side of the figure the states, updates 
and firing conditions are specified, along with their 
corresponding propositional variables. Using these 
variables allows the specification of EVFs that are 
furthermore used for the specification of the UVFs. 
In the same way, one can specify the formal 
underlying structure of any eISM model. 

Concerning formal properties, let’s consider the 
transition exclusion hypothesis: “at any given time 
step, for the current active state (which must be 
unique), there is one and only one output transition 
that can be fired”. In other word, all firing condition 
of output transitions of any state from the PC, are to 
be exclusive, modelled as: 

∀ ܵ ∈ ܵ,	
௦ܧ ൌ ൛ ݁ห∀ ܶ ∈ ሺݐݏ ܵሻ, ሺܧܸܨ൫݁ݎ ܶሻ ൌ ܵ ∧ ݁൯ൟ	

⨁ୀଵ/ௗቀாೄቁ
݁ ൌ 0ඈ 

Finally, an adequate model-checker should be used 
to verify this property on the formal specification. 

6 RELATED WORK 

Specifying dynamic semantics in the field of MDE 
have been a topic of research for quite some time 
now, resulting with a wide diversity of approaches 
mainly based either on translational or operational 
semantics (Combemale et al. 2009). 

The main benefit of translational semantics 
approaches is the reuse of appropriate formal tool-
supported target space usually based on Automata-
like formalisms. Among the most popular and 
currently used are: StateMate (Harel and Politi, 
1998), Uppaal (Larsen et al., 1997), the Finite State 
Machine (FSM) model of computation of Ptolemy II 
(Lee and John, 1999), the Stateflow module in the 
The MathWorks Simulink framework (Boldt, 2007) 

and the UML State Machines (Schäfer et al., 2001; 
Harel, 1987). However, in comparison with the 
proposed approach, several drawbacks are hereafter 
highlighted. Translational semantics approaches 
require expertise and knowledge in the chosen target 
domain and in transformation languages and tools. 
Demonstrating the relevance between (source and 
target) concepts and their behaviour remain limited, 
often impossible, i.e., obtained results are only 
available in the target spaces, so they should be 
interpreted back to the source space. 

Operational semantics allows the specification of 
behavior directly on concepts, allowing model 
simulation and animation, as early as possible with 
minimum of effort, improving system quality and 
reducing time-to-market. Action languages can 
define operational semantics in ad hoc manner, as a 
set of operations associated to each concept of a 
DSML. For this matter different types of languages 
can be used: object-oriented (e.g., Java), aspect-
oriented (e.g., Kermeta), executable constraint (e.g., 
xOCL (Clark et al. 2008)) or the MOF action 
language (Paige et al., 2006). Approaches such as: 
Xcore (an extension of EMOF/Ecore) (Clark et al. 
2004) or the EPROVIDE framework (Sadilek et 
Wachsmuth, 2009), are also worth mentioning. The 
latter, for instance, is not related to a single language 
allowing the choice between Java, Prolog, ASM or 
QVT. However, in comparison to our approach, they 
do not follow the basic MDE “everything is a 
model” principle (Bézivin, 2005), providing an 
implementation of the behavior, instead of an 
explicit specification. This principle leverages the 
use of modeling languages for the specification of 
behavior, named behavioral modeling languages. 
Among the commonly used are Statechart or Finite 
Automata. But, as previously discussed, there is a 
gap between the technical spaces related to such 
languages and the MDE that can be bridged by using 
transformation techniques. Alternative approaches 
bridge this gap by integrating a behavioral modeling 
language with a metamodeling language into a 
single metamodeling layer promoted at M3. They 
propose to use various languages to model behavior, 
Statechart in (Douglass, 2002), UML activities in 
(Scheidgen and Fischer, 2007) or fUML in 
(Mayerhofer et al. 2013) and introduce dedicated 
virtual machines for simulation. These approaches 
allows to execute (even partial) models, to test them 
for correctness as early as possible with very little 
effort, eliminating the need to manually write source 
code for the model means, removing consequently 
developer coding defects and thereby improving 
system quality and reducing time-to-market. 

Firing condition functions and propositional variables

States/Updates and propositional variables

Elementary Valid Formulas

Unified Valid Formulas

opening: u1 opened: u2

closing: u3 closed: u4

{waterFlow==0, open}: e1 {waterFlow>maxWaterFlow, /}: e2

{waterFlow==maxWaterFlow, close}: e3 {waterFlow<0, /}: e4

Closed: s1 Opening: s2
Opened: s3 Closing: s4
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However, in comparison to the proposed approach, 
they are not adapted for formal verification of 
defined behavior. 

7 CONCLUSION AND OUTLOOK 

The presented contribution illustrates an original, 
formal and tool-equipped approach named xviCore 
for verification and simulation purposes of DSML 
and models. 

xviCore provides the means for expressing 
dynamic semantics using formal behavioral 
modeling language, i.e., an extended version of the 
interpreted sequential machine (ISM), named eISM. 
eISM is integrated with the metamodeling language 
EMOF, based on the blackboard design pattern. The 
resulting executable metamodeling language is 
promoted to the M3 layer. The approach also 
supports several formal verification techniques for 
dynamic semantics based on the Linear Temporal 
Logic (LTL) and the Temporal Boolean Difference. 

Other contributions remain still a subject of a 
debate. To prove the scalability of the approach, we 
are currently working on a more complex case study 
applied in the field of Systems Engineering. Our 
goal is to provide a framework for Systems 
Engineering composed of several interconnected 
languages. In addition, we aim to integrate xviCore 
with a formal property modeling language, initially 
proposed in (Chapurlat, 2013), allowing the 
specification of structural and behavioral properties 
for an xviDSML. At a final stage, we aim at 
integrating a behavioral modeling language based on 
continuous hypotheses. 
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