
Software Evolution of Legacy Systems
A Case Study of Soft-migration

Andreas Fürnweger, Martin Auer and Stefan Biffl
Vienna University of Technology, Inst. of Software Technology and Interactive Systems, Vienna, Austria

Keywords: Software Evolution, Migration, Legacy Systems.

Abstract: Software ages. It does so in relation to surrounding software components: as those are updated and modern-
ized, static software becomes evermore outdated relative to them. Such legacy systems are either tried to be
kept alive, or they are updated themselves, e.g., by re-factoring or porting—they evolve. Both approaches carry
risks as well as maintenance cost profiles. In this paper, we give an overview of software evolution types and
drivers; we outline costs and benefits of various evolution approaches; and we present tools and frameworks
to facilitate so-called “soft” migration approaches. Finally, we describe a case study of an actual platform
migration, along with pitfalls and lessons learned. This paper thus aims to give software practitioners—both
resource-allocating managers and choice-weighing engineers—a general framework with which to tackle soft-
ware evolution and a specific evolution case study in a frequently-encountered Java-based setup.

1 INTRODUCTION

Software development is still a fast-changing environ-
ment, driven by new and evolving hardware, oper-
ating systems, frameworks, programming languages,
and user interfaces. While this seemingly constant
drive for modernization offers many benefits, it also
requires dealing with legacy software that—while
working—slowly falls out of step with the surround-
ing components that are being updated—for example,
if a certain version of an operating system is no longer
supported by its vendor. There are various ways to
handle such “aging” software: one can try to keep
it up and running; to carefully refactor it to various
degrees to make it blend in better; to port its code;
to rewrite it from scratch. The main stakeholders in
deciding on a course of action are managers, which
must allocate resources to and consider the risks and
maintenance cost profiles of the various options (e.g.,
will affordable developers with specific skills still be
available?), as well as software developers, which
should be aware of the long-term implications of their
choices (e.g., will a certain programming language be
around in five years’ time?).

To provide some software evolution guidelines,
our paper first gives an overview on software evolu-
tion types, covering maintenance, reengineering, and
whether to preserve or redesign legacy systems. We
address software aging and its connection with main-

tainability. We look into different aspects of software
maintenance and show that the classic meaning of
maintenance as some final development phase after
software delivery is outdated—instead, it is best seen
as an ongoing effort. We also discuss program porta-
bility with a specific focus on porting source code.

We then outline costs and benefits of various
evolution approaches. These approaches are either
legacy-based, essentially trying to preserve as much
as possible of the existing system, or migration-based,
where the software is transferred, to various degrees,
into a new setup.

After that, we focus on various methods for “soft”
migration approaches—those approaches aim to fa-
cilitate traditional migration methods like porting or
rewriting code via support tools and frameworks.
We especially concentrate on the Java programming
language and present a specific variant of a soft-
migration approach, which is using a Java-based pro-
gram core with several platform-specific branches.

Finally, we describe a case study of an actual soft
migration of the UML editor UMLet, which is cur-
rently available as a Swing-based Java program and
an SWT-based Eclipse plugin, and which is ported to
a web platform. We analyze some problems we en-
countered, and discuss the benefits and drawbacks of
the suggested approach.

Fürnweger, A., Auer, M. and Biffl, S.
Software Evolution of Legacy Systems - A Case Study of Soft-migration.
In Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS 2016) - Volume 1, pages 413-424
ISBN: 978-989-758-187-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

413



2 RELATED WORK

(Mens and Demeyer, 2008) give an overview of trends
in software evolution research and address the evo-
lution of other software artifacts like databases, soft-
ware design, and architectures. A general overview of
the related topics of maintenance and legacy software
is given by (Bennett and Rajlich, 2000), who also
identify key problems and potential solution strate-
gies.

Lehman classifies programs in terms of software
evolution and also formulates laws of software evo-
lution (Lehman, 1980; Lehman et al., 1997), which
are, however, not considered universally valid (Her-
raiz et al., 2013). There are also many exploratory
studies that try to analyze and understand software
evolution based on specific software projects (Jo-
hari and Kaur, 2011; Businge et al., 2010; Zhang
et al., 2013; Ratzinger et al., 2007; Kim et al., 2011).
(Chaikalis and Chatzigeorgiou, 2015) develop a pre-
diction model for software evolution and evaluate it
against several open-source projects. (Benomar et al.,
2015) present a technology to identify software evo-
lution phases based on commits and releases.

The related topic of legacy systems is a bit am-
biguous, due to differing definitions. It can describe
a system that resists modification (Brodie and Stone-
braker, 1995), a system without tests (Feathers, 2004),
or even all software as soon as it has been written
(Hunt and Thomas, 1999). A natural question regard-
ing legacy systems is whether to preserve or redesign
them. As this question is not easy to answer (Schnei-
dewind and Ebert, 1998), the pros and cons of reengi-
neering or preserving a system are to be compared
thoroughly before making a decision (Sneed, 1995).
In addition, it is possible to replace a system in stages
to minimize the operational disruption of the system
(Schneidewind and Ebert, 1998).

Even though the classic view of maintenance as
the final life-cycle phase of software after delivery is
still prevalent, it is a much broader topic, especially
for programs which must constantly adapt to a chang-
ing environment. There are reports that the total main-
tenance costs are at least 40% of the initial develop-
ment costs (Brooks Jr., 1995), 70% of the software
budget (Harrison and Cook, 1990), and up to 90% of
the total costs of the system (Rashid et al., 2009). As
these numbers show, the topic of maintenance is cru-
cial. (Lientz and Swanson, 1980) categorize mainte-
nance activities into distinct classes. Several authors
(Sjøberg et al., 2012; Riaz et al., 2009) propose main-
tainability metrics.

Finally, when migrating a system, a reengineer-
ing phase is almost always necessary. According

to (Feathers, 2004), this phase should be accompa-
nied by extensive testing to make sure the application
behavior stays the same. (Fowler and Beck, 1999)
list useful refactoring patterns, while (Feathers, 2004)
stresses how legacy code can be made testable.

3 SOFTWARE EVOLUTION

This section outlines relevant disciplines and nomen-
clature related to software evolution.

3.1 Overview

(Lehman et al., 2000) divide the view on software
evolution into two disciplines. The scientific dis-
cipline investigates the nature of software evolution
and its properties, while the engineering discipline
focuses on the practical aspects like “theories, ab-
stractions, languages, activities, methods and tools
required to effectively and reliably evolve a software
system.” (Lehman, 1980) classifies programs based
on their relationship to the environment where they
are executed. Lehman also formulates the eight laws
of software evolution. Among those laws, two as-
pects are emphasized: continuing change (i.e., with-
out adaption, software can become progressively less
effective), and increasing complexity (i.e., as software
evolves, its complexity tends to increase unless effort
is spent to avoid that). According to (Herraiz et al.,
2013), these laws have been proven in many cases,
but they are not universally valid.

3.2 Legacy Systems

There are different definitions of what a legacy system
or legacy code is. (Brodie and Stonebraker, 1995) de-
scribe it as “a system which significantly resists mod-
ification and evolution.” (Feathers, 2004) defines it as
code without tests, while (Hunt and Thomas, 1999)
state that “All software becomes legacy as soon as it’s
written.”

Preserve or Redesign Legacy Systems

According to (Schneidewind and Ebert, 1998), the
question whether to preserve or redesign a legacy sys-
tem is not easy to answer. In general, most organiza-
tions do not rush to replace legacy systems, because
the successful operation of these systems is vital. But
they must eventually take some action to update or re-
place their systems, otherwise they will not be able to
take advantage of new hardware, operating systems,
or applications.

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

414



An important aspect of this decision is that one
does not have to choose an extreme solution like pre-
serving a system unaltered, or redesigning it from
scratch. Instead, the existing system can be main-
tained while the replacement system is developed,
which makes a fluid transition from the old to the new
system possible. This minimizes the disruption to the
existing system and avoids replacing the existing sys-
tem as a whole while it is operational (Schneidewind
and Ebert, 1998).

(Sneed, 1995) remarks that reengineering is only
one of many solutions to the typical maintenance
problems with legacy systems. He also mentions that
there must be a significant benefit, like cost reduction
or added value, to justify the reengineering, and that it
is important to compare the maintenance costs of the
existing solution to the expected improvements intro-
duced by the reengineering.

3.3 Software Aging

“Programs, like people, get old. We can’t prevent ag-
ing, but we can understand its causes, take steps to
limits its effects . . . and prepare for the day when the
software is no longer viable.” (Parnas, 1994)

The maintenance costs of an aged application tend
to increase, because modifications to a software gen-
erally make future adaptions more difficult. Therefore
it is important to invest time to keep software modules
simple, to clean up convoluted code, and to redesign
program logic if necessary (Monden et al., 2000).

3.4 Maintenance

Software maintenance is sometimes considered to be
the final phase of the delivery life-cycle. Unfortu-
nately, this definition is outdated for many types of
software, which must constantly adapt to changing re-
quirements and circumstances in their environment.

Maintenance Effort and Costs

In large software codebases, the required maintenance
effort is high. (Basili et al., 1996) show how to build a
predictive effort model for software maintenance re-
leases, with the goal of getting a better understanding
of maintenance effort and costs. (Brooks Jr., 1995)
claims that the total maintenance costs of a widely
used program are typically at least 40% of the initial
development costs. (Rashid et al., 2009) show that
over the last few decades the costs of software mainte-
nance have increased from 35-40% to over 90% of the
total costs of the system. According to (Harrison and
Cook, 1990), more than 70% of the software budget is

spent on maintenance; 75% of software professionals
are involved with maintenance. According to (Cole-
man et al., 1994), HP has between 40 and 50 million
lines of code under maintenance, and 60% to 80% of
research and development personnel are involved in
maintenance activities.

Maintenance Classes

(Lientz and Swanson, 1980) categorize maintenance
activities into four classes: adaptive (keeping up
with changes in the software environment); perfective
(new functional or nonfunctional user requirements);
corrective (fixing errors); and preventive (prevent fu-
ture problems). The most maintenance effort (around
51%) falls into the second category, while the first cat-
egory (around 23%), and the third one (around 21%),
make up most of the remaining effort.

There are several metrics to evaluate how main-
tainable a system is. Unfortunately, these meth-
ods don’t always produce consistent results (Sjøberg
et al., 2012; Riaz et al., 2009). (Sjøberg et al., 2012)
consider the overall system size to be the best predic-
tor of maintainability.

3.5 Reengineering

“Reengineering (. . . ) is the examination and alter-
ation of a subject system to reconstitute it in a new
form and the subsequent implementation of the new
form. Reengineering generally includes some form of
reverse engineering (to achieve a more abstract de-
scription) followed by some form of forward engineer-
ing or restructuring.” (Chikofsky and Cross II, 1990)

Many times the existing software is a legacy sys-
tem, although “it is not age that turns a piece of soft-
ware into a legacy system, but the rate at which it
has been developed and adapted without having been
reengineered.” (Demeyer et al., 2002)

(Feathers, 2004) mentions that in the case of
legacy systems the necessary reengineering phase has
to be more elaborate and should be accompanied by
the introduction of automated tests, to make sure the
current application behaves the same before and after
the reengineering. (Gottschalk et al., 2012) describe
reengineering efforts to reduce the energy consump-
tion of mobile devices.

3.6 Portability of Programs

Older high-level languages like C always aimed to be
portable across systems, but often fall short, e.g., due
to different APIs or system word size. To solve these
problems, new languages were designed that run on

Software Evolution of Legacy Systems - A Case Study of Soft-migration

415



virtual machines. This was a huge step forward in
terms of portability, as programs are compiled into an
intermediate language that is runnable without modi-
fications on any system with an implementation of the
required virtual machine. Java is an example of such
a language.

A similar approach is taken by web applications,
which require a web browser instead of a virtual ma-
chine. The browser-based approach has other advan-
tages like easy distribution. Web applications run
on every platform with modern browser. Newer ap-
proaches based on system virtualization and contain-
ers (like Docker) address the need for better portabil-
ity of whole subsystems without any restrictions on
programming language or the used ecosystem.

Java Language and Platforms

Java is a programming language specifically designed
for portability, achieved via virtual machines. They
cover nearly all platforms, from smart cards and mo-
bile phones to desktop and server environments. The
most familiar non-official platform is probably An-
droid, which supports large portions of the JavaSE
API excluding graphical related portions such as
Swing and AWT.

Other uses of the language are based on compila-
tion of Java code to another programming language,
such as GWT (Google Web Toolkit), which compiles
from Java to JavaScript, or J2ObjC, which compiles
from Java to Objective-C. Although most transpilers
support a large part of the source language’s features
and API, certain features cannot be mapped to the tar-
get language (e.g., classes that are used for the Java
GUI Framework Swing are not supported in GWT).

The main advantage of such a source-to-source
compiler (also known as transpiler) is that there is
no need for a Java Virtual Machine. This is especially
important for the web platform, because even though
browser-plugin-based Java Applets are possible, the
plugin is based on the Netscape plugin API (NPAPI),
which is not supported by mobile browsers. Further-
more, desktop browsers have also started to remove
NPAPI support, e.g., the Chrome browser removed it
on September 1, 2015.1

4 COSTS AND BENEFITS

This section discusses software evolution types and
costs and benefits of migration/preservation.

1support.google.com/chrome/answer/6213033

4.1 Types of Software Evolution

Simplified, software evolution comes in various fla-
vors (in increasing order of perceived costs), and is
characterized by the following activities:

Legacy-based Evolution

1. Simple maintenance

• Keep the system running.
• Only apply bugfixes and required changes.

2. Maintenance with some reengineering

• Carefully adapt and overhaul program logic.
• Document application logic.
• Create automated tests if missing.

Migration-based Evolution

3. Soft migration

• Use tools to ease migration (e.g., virtual ma-
chines, transpilers, . . . ).

• Reuse as much as possible the core parts of the
legacy source.

• Only add minimal code in new languages (e.g.,
Java wrapper around existing COBOL applica-
tion; HTML pages for GWT transpiled code).

4. Hard migration or porting

• Re-program the application from scratch.
• Re-compile existing code on new target plat-

form.

At first glance, the costs seem to increase in this
list of evolutionary steps. However, this need not be
the case:

• As for (1), legacy systems set up with old pro-
gramming languages (ADA, COBOL) might in-
cur increasing maintenance costs due to a lack of
available expertise.

• With respect to (4), well-programmed C-code, on
the other hand, can theoretically be ported to, i.e.,
re-compiled on, a new operating system at almost
zero cost. (In practice, this very rarely happens;
even supposedly platform-independent languages
like Java often cause portability problems.)

4.2 Software Evolution Criteria

After outlining some terminology and various aspects
of software evolution, we can now summarize costs,
risks, and benefits involved in migrating software
to help determine the appropriate software evolution
type.

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

416



Table 1: Comparison of costs/risks and benefits of preservation.

Preservation Risks Preservation Benefits
Legacy systems are hard to maintain and change. Stability (training, operations, . . . ) is preserved.
Underlying, external dependencies (e.g., hardware,
operating systems, virtual machines, software frame-
works) could become difficult or impossible to ob-
tain, risking an inability to operate the software.

Better predictability of overall system costs (if no ma-
jor changes are required).

User acceptance for the software might wane, and the
user base might erode, as users flock to other vendors
with more modern approaches, like updated GUIs, or
solutions running on new systems. For example, en-
dusers might choose to use windows-based GUIs over
their command-line-based ancestors.

Saved resources can be applied to keep the software
alive with minor, and less dangerous, software evo-
lution steps than outright migration, like partial re-
engineering, documentation via reverse-engineering,
or virtualization.

If the software components, languages, or frame-
works are becoming obsolete, it might get more dif-
ficult and/or costlier to find the required program-
ming expertise (witness the numerous COBOL sys-
tems still running in insurance and banking). Mainte-
nance efforts and costs will likely increase over time.

Table 2: Comparison of costs/risks and benefits of migration.

Migration Risks Migration Benefits
Obviously, setting up or re-writing software is expen-
sive and the costs are often difficult to estimate. The
original software’s long-developed optimizations and
workarounds might not always be easy to reproduce
with completely new technology.

Modern languages and related tools, a larger pro-
grammer base, faster hardware, . . . , can reduce costs
of new feature development, maintenance, and error
fixing.

Choosing new environments, setups, and languages
as migration target carries the risk of selecting wrong
candidates, like soon-to-be obsolete OSes or lan-
guage paradigms. New, buzz-word-rich platforms of-
ten fade and disappear quite unceremoniously.

Modern new software frameworks and libraries can
improve the user experience, maintainability, and
testability of the system.

There are considerable risks of introducing bugs or
unwanted software behavior. Even seemingly useful
bug fixes can lead to problems, e.g., if other systems,
aware of the known bug, already compensate for it.

Better APIs can increase interoperability with mod-
ern software.

If parts of the system are not migrated, or if the old
software needs to be kept alive (e.g., due to con-
tractual obligations), duplicate code bases need to be
maintained, and changes propagated to both.

New platforms (mobile, web, . . . ) can open up new
markets and increase user acceptance.

Domain experts and the developers of the legacy sys-
tem are probably not available anymore, therefore it
can be hard to understand and re-implement the soft-
ware correctly.

New code can be made more modular using object
oriented design patterns, increasing its re-usability,
and introduce automated tests (unit tests, integration
tests, . . . ).

If the old system is not documented properly, knowl-
edge that exists only implicitly within the program
logic can get lost.

Vendor and platform dependency can be reduced
(e.g., by removing libraries).

5 SOFT MIGRATION

Tools and frameworks can greatly facilitate software
migrations; they allow for what we dub “soft” migra-

tions. The next subsection gives a general overview
on the variety of such migration assistance; the fol-
lowing one focuses on Java-based support.

Software Evolution of Legacy Systems - A Case Study of Soft-migration

417



5.1 Soft Migration Overview

System Virtual Machines

System VMs (also called Full Virtualization VMs)
virtualize the complete operating system to emulate
the underlying architecture required by a program.
Examples are VirtualBox or VMWare.

Application Virtual Machines

Application VMs (also called Process VMs) run as a
normal application inside an existing operating sys-
tem. They abstract away (most) platform and op-
erating system differences, and therefore allow the
creation of platform-independent programs that can
be executed using this VM. Examples are the Java
Virtual Machine, the Android Runtime (ART), or
the Common Language Runtime (used by the .NET
Framework).

Integrated Virtual Machines

Integrated VMs can be seen as a subtype of Applica-
tion VMs, because they are integrated and run within
another program (e.g., as a plugin). One popular ex-
ample are Java Applets, where the JVM is either part
of a browser, or added with a browser plugin. Today,
they are not very common anymore, because browsers
started to remove the support for such plugins for se-
curity reasons (see section 3.6 about the removal of
NPAPI support in browsers).

Transpilers

A transpiler is a source-to-source compiler. It com-
piles or translates one language to another and there-
fore enables code reuse between different program-
ming languages. Examples are GWT, which tran-
spiles from Java to JavaScript, or J2ObjC, which tran-
spiles from Java to Objective-C.

Delegates/Wrappers

Delegates or wrappers are tools that allow interaction
between system and programming language bound-
aries. There are several reasons to create a wrapper
(like security, or usage of a different programming
language), but the basic idea is to hide the underly-
ing program and instead provide a suitable interface
for the user. Examples are libraries that allow to call
from COBOL to Java2, or from Java to .NET.3

2supportline.microfocus.com/documentation/books/nx40/
dijint.htm

3www.ikvm.net

Distribution Utilities/Platforms

These are tools to facilitate the installing and up-
dating of applications. One example is Java Web
Start, which is basically a protocol for a standardized
way to distribute Java applications and their updates.
Other examples are digital distribution platforms like
Google Play Store or the Apple App Store.

5.2 Java-based Soft Migration

This section describes soft-migration approaches in
the context of the Java platform in more detail. Java
has several properties that make it a good example
for software migration: it is designed for platform in-
dependence, which facilitates, e.g., mere migrations
to new operating systems; it is very popular and thus
there exist a wide variety of support tools; and sev-
eral of its language features make concurrent support
of different platforms easier than with other program-
ming languages.

Idea

As mentioned, the Java Programming language can
be run on nearly all commonly used platforms (any
platform with a Java Virtual Machine (JVM) support,
like Android, iOS, and GWT via transpilation). Un-
fortunately, not the full Java API is available on all of
these platforms—therefore core Java code that is to be
run on various platforms needs to be more restrictive
in terms of API usage than the rest of the code.

The idea of reusing program logic on several plat-
forms and programs, even if they do not use the same
programming language, is not new. Most client/server
applications already hide their internally used pro-
gramming language(s) by providing a standardized
type of API (e.g., CORBA, JAX-WS, or REST). This
enables several programs to reuse certain functional-
ity as if it were part of their own application code.

This soft-migration approach also encapsulates
the shared functionality behind a specific API and al-
lows different programs to reuse it. If these programs
use different programming languages, the language
barrier can be avoided by using transpilers (e.g., to
JavaScript with GWT, or to Objective-C with J2Objc).

Supporting Technology

As mentioned in section 4.1, soft-migration relies on
supporting tools. With Java, several such tools and
frameworks are available:

• GWT is a Java to JavaScript compiler to facilitate
migrations to web-based platforms.

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

418



• J2Objc is a Java to Objective-C compiler to port
code to iOS.

• RoboVM is a Java ahead-of-time compiler and
runtime, for iOS and OS X.

An alternative way to run Java applications within
a web browser are Java Applets, but they depend on
browser plugins, which are often limited in function-
ality for security reasons.

Steps

1. Analyze the current application. The first goal
must be to understand the legacy system in its cur-
rent form. The core concepts must be abstracted
and a high-level architectural model must be cre-
ated. Ideally, the system is amply documented;
in practice, some reverse-engineering is often in-
evitable.

2. Improve the architectural model. To support mi-
gration, or to extract reusable core components,
the high-level architectural model usually must be
improved. This typically leads to improved mod-
ularization of the application and to the creation
of a clearer, layered architectural model.

3. Reengineer the application. The next step is the
implementation of the improved model. This is
also typically the most complex step. Special care
must be taken not to break original functionality,
e.g., via—possibly newly introduced—unit tests.
Documentation must be updated and/or kept in
sync with the changes. Organically grown ex-
tensions and ad-hoc solutions or fixes should be
ironed out. This is also an opportunity to clean up
naming conventions, as well as build processes.

4. Migrate to the new platform. After the necessary
reengineering steps are completed, the new plat-
form specific code must be implemented. If the
previous steps were successfully implemented,
there should be clear interfaces to the shared code-
base.

5. Optional: remove code for old platform. If the old
platform should be dropped, its platform-specific
code can be removed. This helps minimize main-
tenance efforts—even “dead” code causes obsta-
cles when browsing/understanding a code base.

Creating New Software

In addition to the use case of migrating an existing ap-
plication to a new platform, the idea of a shared Java
core component can also be used when writing new
software that should run on several platforms. Ray

Cromwell gave a presentation at the GWT.create con-
ference in January 2015 entitled Google Inbox: Multi
Platform Native Apps with GWT and J2ObjC4, where
he explained details about how Google approached
the development of their new product Inbox. He men-
tions that they share 60-70% of their code in a Java-
based core component, which is (a) used as a Java De-
pendency for the Android application, (b) compiled
to Objective-C (with J2Objc) for the iOS application,
and (c) compiled to JavaScript (with GWT) for the
web application.

Useful Tools

As mentioned, the Java platform offers many tools
that help in keeping the codebase maintainable and
modular. The following list presents some important
categories of tools, and lists some examples.

• Automated Tests. Typically, legacy codebases
have no automated tests, therefore it is risky to
refactor such code, because any change can eas-
ily break previously working features. Therefore
it is usually a good idea to write some tests before
refactoring the code. A useful tool to write and ex-
ecute tests for Java code is JUnit.5 It can be com-
bined with Mockito6 to create simple mocks of
dependencies. Combined with Powermock7, even
static fields, final classes, and private methods can
be mocked for tests.
As legacy codebases often consist of tightly cou-
pled components, it might be necessary to break
those dependencies (see section 5.2) before writ-
ing tests (e.g., a tightly coupled database connec-
tion is typically a problem for tests, but a tightly
coupled utility class might not). Unfortunately,
breaking those dependencies also involves code
changes. (Feathers, 2004) describes this vicious
cycle of avoiding bugs by making code testable
through changes that can potentially introduce
new bugs.

• Dependency Injection. This implements the prin-
ciple of Inversion of Control for resolving the de-
pendencies of a class. It basically means that ob-
jects do not instantiate their dependencies them-
selves, but get them injected either manually us-
ing the constructor, or by a dependency injection
framework. Martin Fowler8 describes the pattern

4drive.google.com/file/d/0B3ktS-w9vr8IS2ZwQkw3WVR
VeXc

5junit.org
6code.google.com/p/mockito
7www.powermock.org
8www.martinfowler.com/articles/injection.html

Software Evolution of Legacy Systems - A Case Study of Soft-migration

419



in detail and compares it to some alternatives (like
the Service Locator pattern).
The advantages of using dependency injection be-
come apparent in this migration-approach, as the
shared code must not depend on the platform-
specific implementation of any dependency. Ex-
amples for frameworks supporting dependency in-
jection are Google Guice9 or Spring.10

• Static Code Analysis Tools. These tools can find
potential bugs, dead or duplicate code, and they
can help to enforce a common code style. Exam-
ples: FindBugs,11 PMD,12 or Checkstyle.13

• Build and Dependency Management. Tools like
Apache Maven14 or Gradle15 manage the depen-
dencies of an application and its submodules.
They also standardize several other aspects of an
application like the directory structure and the
build process. Their “convention over configu-
ration” approach16 also helps to familiarize new
developers with a cade base, simply because of
familiar project structure conventions.

6 EXEMPLARY MIGRATION

UMLet (Auer et al., 2009; Auer et al., 2003) is a UML
tool in active development since 2001. It is referenced
in 200+ publications, as well as 16+ books on soft-
ware engineering. UMLet is the most favored plu-
gin on the Eclipse Marketplace (Eclipse is the world-
leading Java integrated development environment). In
the 12 months leading up to August 1st 2015, more
than 700.000 page views to UMLet’s main web site
have been recorded via Google Analytics.

UMLet uses a text-based approach of customiz-
ing UML elements (e.g., entering the line fg=red in
the elements properties text block will color the back-
ground of the element red). Text without a specific
meaning is simply printed, which is, e.g., a fast way
to declare class methods.

To provide an exemplary application of the sug-
gested soft-migration approach, UMLet gets migrated
to a modern GWT-based web application that runs
without browser plugins, while the Swing and Eclipse
plugin versions are retained.

9github.com/google/guice
10spring.io
11findbugs.sourceforge.net
12pmd.sourceforge.net
13checkstyle.sourceforge.net
14maven.apache.org
15www.gradle.org
16softwareengineering.vazexqi.com/files/pattern.html

6.1 Legacy/Migration Criteria

Section 4.2 suggests two main decision drivers with
the current UMLet codebase:

• The user base might move to new, web-based plat-
forms, e.g., yUML17, sketchboard18, js-sequence-
diagrams19 or websequencediagrams20.

• The current two-level platform (Java virtual ma-
chine on top of an OS) is not very future-proof:

– Java often does not come pre-installed; it is not
unlikely that future closed-source OS iterations
further discourage Java deployments.

– OS vendors like Apple increasingly limit the in-
stallation of unsigned software, or try to coax
applications to be provided via custom app
stores. This gives vendors the influence to pro-
hibit flexible, uncomplicated installs for casual
users, and also allows them to ban applications
outright (e.g., if an application does not com-
ply with some user interface guidelines, if the
vendor perceives its usability or uniqueness as
not adequate, or if tech specs like access right
handling are not to the vendor’s liking).

These two criteria are the main drivers to use a mi-
gration approach with the goal of increasing the plat-
form independence of UMLet.

6.2 Analysis

A first analysis shows that most of the applications
code is tightly coupled with Swing classes. The
main building blocks of the diagram (UML-Classes, -
UseCases, -Relations, . . . ), which are called GridEle-
ment, all extend the Swing class JComponent.

The Eclipse plugin provides a small SWT-based
wrapper around the Swing-based code to make it
runnable in Eclipse. The parsing of the elements
text is done within an overwritten JComponent.print()
method, therefore there is no clear separation between
parsing and drawing.

6.3 Reengineering

The goals of the UMLet reengineering are to:
• separate parsing and drawing of element proper-

ties;

• remove coupling between GridElement classes
and Swing-specific classes;

17yuml.me/diagram/scruffy/class/draw
18sketchboard.me
19bramp.github.io/js-sequence-diagrams
20www.websequencediagrams.com

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

420



• introduce an abstraction layer with generic draw
methods instead of directly relying on Swing
Graphics objects;

• move GridElements to a separate module.

Even after the reengineering, there will be a rel-
atively large portion of platform-specific code. E.g.,
the composition of the graphical user interface will
still be platform-specific and must be implemented
separately for GWT and Swing.

Based on this analysis, the given high-level archi-
tectural model can be retained with only minor differ-
ences on each platform (e.g., file-IO handling). The
main restructuring of the model consists of a clear
definition on how the properties of GridElements get
parsed and drawn by each platform.

6.4 Implementation of Shared Codebase

As mentioned, the shared codebase mostly consists
of the GridElements and the appropriate parsing and
drawing logic.

New GridElements

The new GridElements have a unified syntax for the
commands and therefore break backwards compati-
bility with some old diagrams. They are also reduced
to a smaller set of customizable elements to avoid un-
necessary element duplication.

Reusable Commands on Properties

The concept of element properties (and functions trig-
gered by specific commands) is implemented using a
separate parsing procedure, which is executed every
time an element changes its properties or size. During
this procedure, all possible commands for the specific
element are checked and—if triggered—executed.

The main advantage of this approach is that these
functions can be shared between elements. If two ele-
ments need to implement, e.g., the command bg=red
to set the background color to red, they can refer to
the same generic function. Changes like new features
or bugfixes to such a function will therefore automat-
ically be applied to all elements relying on them.

Common Drawing API

Platform-specific drawing logic is hidden behind a
platform-independent API, which offers basic meth-
ods like drawLine(), drawRectangle(), printText(), as
well as styling methods like setBackgroundColor() or
setLineThickness(). Every platform has to implement

this API and redirect the calls to the underlying graph-
ical framework (e.g., Swing in JavaSE, or the HTML
Canvas drawing methods in GWT).

Missing Basic Classes in GWT

As UMLet makes heavy use of geometric function-
ality, it needs classes such as Point, Line, Rectan-
gle, . . . Unfortunately, those classes are located in the
AWT package and therefore not available on many
platforms like GWT21 or Android.22 To circumvent
this problem, alternative classes are created that are
converted to platform-specific ones directly before
drawing.

6.5 Web Implementation UMLetino

The web version of UMLet is called UMLetino and it
transfers UMLet’s minimalistic, text-based GUI ap-
proach to the web. The initial GUI mock was de-
signed to look exactly like UMLet, but after further
evaluation, it was apparent that a web application
needs several adaptions. One difference, e.g., is the
menu, which is a collapsible horizontal menu at the
top border in most desktop applications, but a simple
vertical menu on the left side for most web applica-
tions.

Another UI component that is different, because
it is already embedded in the browser, is the tab-bar.
An UMLetino-specific tab-bar below the browser tabs
can be confusing and it does not prevent the user from
opening multiple UMLetino tabs in the browser. It
was therefore removed; users who want to work in
parallel on several diagrams can rely on the native
browser tabs instead.

Figure 1 shows the final, reengineered code struc-
ture in UML format.

Storing in Files or on the Web

UMLet stores diagrams in the file system. Web appli-
cations typically have limited access to it, therefore
we have implemented several alternatives. Diagrams
can be stored:

1. in the local storage of the browser (as a quick
save/load while working on a diagram);

2. on the file system, with drag-and-drop-based im-
port, and an export based on Data-URIs and the
browser’s save-as functionality;

3. on Dropbox23 servers using the users’ accounts.

21www.gwtproject.org/doc/latest/RefJreEmulation.html
22developer.android.com/reference/packages.html
23www.dropbox.com

Software Evolution of Legacy Systems - A Case Study of Soft-migration

421



The diagrams are stored using the XML-based
UXF file format, which is also used in UMLet.

Browser Local Storage

- used for persistent data
- store/load diagram uxfs
- clipboard simulation

Menu

- offers basic operations
-e.g. import, export,
save, restore

File Drop

- drag&drop uxf files
into the browser to
create diagram

Command

- represents a undoable
interaction with the diagram
- e.g. Add Element
- e.g. Move Element

Listener

- routes browser events to
Diagram
- e.g. MouseClickEvent
- e.g. KeyPressEvent

XML Parser

- transforms uxf into diagram with grid elements
- transforms diagram with grid elements into uxf

Palette

- represent predefined diagrams
for certain use case
- e.g. UML Class, UML Package

Selector

- holds selection state of diagram
- can manipulate selection state

Diagram

- contains diagram specifics (e.g. elements,
diagram properties, ...)
- consists of DrawPanel and DrawCanvas

GridElement

- represents one element and its properties (text,
color, ...)
- executable properties encapsulated in Commands
- drawn using a DrawHandler

Entry Point

- the point which starts the application
- html page with mostly javascript

uses ▲

interacts
with ▲

◄ interacts
with

sends uxf to ▲

executes on ▲

routes
events

uses

1

1

selection state
contains

0..*

0. .1

initializes serializes

contains

0..*

1

is a

Figure 1: Reengineered code structure in UML format.

6.6 Code Base Analysis

Before Migration:
• 22,688 total (all in one project)

After Migration:
• 21,419 in Baselet (Standalone/UMLet specific)

• 8,915 in BaseletElements (shared)

• 3,135 in BaseletGWT (Web/UMLetino specific)

• 33,469 total

These numbers show that the web version con-
sists of approx. 26% platform-specific code and 74%
shared code.

The standalone version in comparison only con-
sists of approx. 70% platform specific code and 30%
shared code, but this is mostly due to the legacy sup-
port for the now deprecated OldGridElements. The
old elements consist of roughly 5,600 LOC, so as
soon as they are removed, approx. 36% of code will
be shared.

Furthermore, there are some elements that have
not been migrated to the shared codebase until now,
due to their complexity (All in One Elements), or de-
pendency on a Java Compiler during runtime (Custom
Elements). They consist of roughly 4,000 LOC and

will reduce the standalone specific code even more,
while increasing the shared portion.

Although containing still much more specific code
than the web version, the standalone project supports
3 different sub-platforms (Eclipse plugin, Swing stan-
dalone, and batch-mode) and therefore requires more
code.

The overall duration of the migration was roughly
6 months; 2 developers in a remote-team setup spent
an overall effort of 400 man-hours.

6.7 Lessons Learned

During UMLet’s soft migration, we encountered sev-
eral generic and specific issues worth mentioning:
• Front-end code is often more platform-dependent

and should be de-coupled from business logic.
There are several graphical libraries for JavaSE
like AWT, Swing, or SWT. Android and GWT of-
fer their own APIs. One possible way of avoid-
ing this duplication is the usage of HTML (prob-
ably with some JavaScript generated by GWT),
because most modern GUI frameworks can dis-
play embedded HTML+JavaScript views. In case
of UMLet the code didn’t have a clear separation
between GUI and business logic; therefore a sig-
nificant amount of time was necessary to modu-
larize and decouple the components of the appli-
cation in order to make the extraction of a shared
core component possible. Fortunately, large por-
tions of UMLet’s graphical output is drawn on a
Canvas where every platform offers its own im-
plementation with only minor differences.

• Choosing 3rd-party libraries creates dependen-
cies and impacts the overall portability. If a Java
program should run on several platforms it must
be verified that 3rd-party libraries work on all of
them. In general, such libraries are only allowed
to use Java classes that are supported by the plat-
form specific API. In addition, GWT compiles
Java source code to JavaScript, i.e., the library
must be available as source code and not only as
compiled classes.

• Special language features like reflection and reg-
ular expressions limit portability. GWT does not
support reflection out of the box, and the default
Java RegEx classes are only partially supported.
Complex Regular Expressions must use GWT
specific classes that work more like JavaScript
RegEx than Java RegEx. In general, if a specific
JVM feature like bytecode generation or just in
time compilation is used, it has to be verified if it
is supported by the target platform and the used
transpiler.

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

422



• The documentation and tool support of GWT is
very good, but the future is uncertain. GWT
is well documented and an Eclipse plugin eases
development and testing. The GWT Dev Mode
makes debugging within the IDE very convenient.
Nevertheless, GWT Dev Mode is restricted to
older browser versions (e.g., Firefox 26), because
current browser versions have removed some re-
quired APIs (e.g., NPAPI). GWT offers the Super
Dev Mode as alternative, but the Eclipse integra-
tion is only possible by using 3rd-party plugins
like SDBG24, and is less convenient.

• Useful web applications require modern brow-
sers. In general, web applications that should
behave like standalone desktop applications typ-
ically require certain APIs to interact with the un-
derlying system. This is a minor inconvenience
for browsers like Chrome or Firefox, which get
constantly updated, but other browsers like the In-
ternet Explorer often lag behind. UMLetino also
requires some specific HTML 5 features like the
Web Storage API or the File Reader API, which
are only available in Internet Explorer 10+.

• Platforms have different constraints. Although
modern browsers offer several APIs to allow deep
system integration, the web platform still has
many constraints that do not exist for standalone
applications. One example is the interaction with
the file system. Standalone applications like UM-
Let have full access to the file system, but web
applications have only limited access. File can
be read by using the HTML 5 File Reader API,
but most browsers disallow write access to the
file system (only Chrome allows it to a sandboxed
section of the filesystem).

Find UMLetino at www.umletino.com.

7 CONCLUSION

Software maintenance, aging, and evolution are often
considered an afterthought. We hope to emphasize
with this paper that software will inevitably age, and
that this will surely have a non-trivial impact on its
use and cost profile over time.

Within the general evolution process, planners and
programmers can use a simple framework to help
reach evolution decisions. A concrete instance of
one application’s soft migration hopefully helps to il-
lustrate this. This should also underline how mod-
ern tools make software migration much more fea-

24github.com/sdbg/sdbg

sible. Future work should especially look a the re-
cent container-based software deployment tools, es-
pecially with regard to outside interface dependen-
cies. Of special interest are layers that interact with
persistent data storage (typically databases). Another
approach worth examining concerns GUI adaptabil-
ity for various screen/input environments, especially
as GUIs are notoriously tricky to migrate.

Finally, these considerations should not merely be
applied “down the road,” though this is still useful.
Instead, the foreseeable eventual software evolution
should be part of any decisions made during the soft-
ware’s initial design stages. Those are often crucial
in making sure the software will age gracefully—and,
ideally, never die.

REFERENCES

Auer, M., Pölz, J., and Biffl, S. (2009). End-User Develop-
ment in a Graphical User Interface Setting. In Proc.
11th Int. Conf. on Enterprise Inf. Systems (ICEIS).

Auer, M., Tschurtschenthaler, T., and Biffl, S. (2003). A
Flyweight UML Modelling Tool for Software Devel-
opment in Heterogeneous Environments. In Proc.
29th Conf. on EUROMICRO.

Basili, V., Briand, L., Condon, S., Kim, Y.-M., Melo, W. L.,
and Valett, J. D. (1996). Understanding and Predict-
ing the Process of Software Maintenance Releases. In
Proc. 18th Int. Conf. on Software Engineering (ICSE).

Bennett, K. H. and Rajlich, V. T. (2000). Software Mainte-
nance and Evolution: A Roadmap. In Proc. Conf. on
The Future of Software Engineering (ICSE).

Benomar, O., Abdeen, H., Sahraoui, H., Poulin, P., and
Saied, M. A. (2015). Detection of Software Evo-
lution Phases Based on Development Activities. In
Proc. 23rd IEEE Int. Conf. on Program Comprehen-
sion (ICPC).

Brodie, M. L. and Stonebraker, M. (1995). Migrating
Legacy Systems: Gateways, Interfaces, and the Incre-
mental Approach. Morgan Kaufmann.

Brooks Jr., F. P. (1995). The Mythical Man-Month. Addi-
son-Wesley.

Businge, J., Serebrenik, A., Brand, M. V. D., and van den
Brand, M. (2010). An Empirical Study of the Evo-
lution of Eclipse Third-party Plug-ins. In Proc. Joint
ERCIM WS on Software Evolution (EVOL) and Int.
WS on Principles of Software Evolution (IWPSE).

Chaikalis, T. and Chatzigeorgiou, A. (2015). Forecasting
Java Software Evolution Trends Employing Network
Models. IEEE Transactions on Software Engineering,
41(6):582–602.

Chikofsky, E. J. and Cross II, J. H. (1990). Reverse En-
gineering and Design Recovery: A Taxonomy. IEEE
Software, 7(1):13–17.

Coleman, D., Ash, D., Lowther, B., and Oman, P. (1994).
Using Metrics to Evaluate Software System Maintain-
ability. IEEE Computer, 27(8):44–49.

Software Evolution of Legacy Systems - A Case Study of Soft-migration

423



Demeyer, S., Ducasse, S., and Nierstrasz, O. (2002). Object
Oriented Reengineering Patterns. Morgan Kaufmann.

Feathers, M. (2004). Working Effectively with Legacy Code.
Prentice Hall.

Fowler, M. and Beck, K. (1999). Refactoring: Improving
the Design of Existing Code. Addison-Wesley.

Gottschalk, M., Josefiok, M., Jelschen, J., and Winter, A.
(2012). Removing Energy Code Smells with Reengi-
neering Services. In Beitragsband der 42. Jahresta-
gung der Gesellschaft für Informatik e.V. (GI).

Harrison, W. and Cook, C. (1990). Insights on Improving
the Maintenance Process Through Software Measure-
ment. In Proc. Int. Conf. on Software Maintenance
(ICSME).

Herraiz, I., Rodriguez, D., Robles, G., and Gonzalez-
Barahona, J. M. (2013). The Evolution of the Laws
of Software Evolution: A Discussion Based on a Sys-
tematic Literature Review. ACM Computing Surveys,
46(2):1–28.

Hunt, A. and Thomas, D. (1999). The Pragmatic Program-
mer: From Journeyman to Master. Addison-Wesley.

Johari, K. and Kaur, A. (2011). Effect of Software Evolu-
tion on Software Metrics. ACM SIGSOFT Software
Engineering Notes, 36(5):1–8.

Kim, M., Cai, D., and Kim, S. (2011). An Empirical In-
vestigation into the Role of API-Level Refactorings
during Software Evolution. In Proc. 33rd Int. Conf.
on Software Engineering (ICSE).

Lehman, M. M. (1980). Programs, Life Cycles, and Laws
of Software Evolution. In Proc. IEEE.

Lehman, M. M., Ramil, J. F., and Kahen, G. (2000). Evolu-
tion as a Noun and Evolution as a Verb. In Proc. WS
on Software and Organisation Co-evolution (SOCE).

Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E.,
and Turski, W. M. (1997). Metrics and Laws of Soft-
ware Evolution - The Nineties View. In Proc. 4th Int.
Symposium on Software Metrics (METRICS).

Lientz, B. P. and Swanson, E. B. (1980). Software Mainte-
nance Management. Addison-Wesley.

Mens, T. and Demeyer, S. (2008). Software Evolution.
Springer.

Monden, A., Sato, S.-i., Matsumoto, K.-i., and Inoue, K.
(2000). Modeling and Analysis of Software Aging
Process. In Product Focused Software Process Im-
provement SE - 15, volume 1840 of Lecture Notes in
Computer Science, pages 140–153. Springer.

Parnas, D. L. (1994). Software Aging. In Proc. 16th Int.
Conf. on Software Engineering (ICSE).

Rashid, A., Wang, W. Y. C., and Dorner, D. (2009). Gaug-
ing the Differences between Expectation and Systems
Support: the Managerial Approach of Adaptive and
Perfective Software Maintenance. In Proc. 4th Int.
Conf. on Cooperation and Promotion of Inf. Resources
in Science and Techn. (COINFO).

Ratzinger, J., Sigmund, T., Vorburger, P., and Gall, H.
(2007). Mining Software Evolution to Predict Refac-
toring. In Proc. 1st Int. Symposium on Empirical Soft-
ware Engineering and Measurement (ESEM).

Riaz, M., Mendes, E., and Tempero, E. (2009). A Sys-
tematic Review of Software Maintainability Predic-
tion and Metrics. In Proc. 3rd Int. Symp. on Empirical
Software Engineering and Measurement (ESEM).

Schneidewind, N. F. and Ebert, C. (1998). Preserve or Re-
design Legacy Systems. IEEE Software, 15(4):14–17.

Sjøberg, D. I. K., Anda, B., and Mockus, A. (2012). Ques-
tioning Software Maintenance Metrics: A Compar-
ative Case Study. In Proc. 6th Int. Symposium on
Empirical Software Engineering and Measurement
(ESEM).

Sneed, H. M. (1995). Planning the Reengineering of Legacy
Systems. IEEE Software, 12(1):24–34.

Zhang, J., Sagar, S., and Shihab, E. (2013). The Evolu-
tion of Mobile Apps: An Exploratory Study. In Proc.
Int. WS on Software Development Lifecycle for Mobile
(DeMobile).

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

424


