
Evolution Taxonomy for Software Architecture Evolution

Noureddine Gasmallah1,2,3, Abdelkrim Amirat2 and Mourad Oussalah3

1Department of Computer Science, University of Annaba, Sidi-Amar, 23000, Annaba, Algeria
2Department of Maths and Computer Science, University of Souk-Ahras, Rte d’Annaba, 41000, Souk-Ahras, Algeria
3Department of Computer Science, University of Nantes, 2 Rue de la Houssiniére BP-92208, 44322, Nantes, France

Keywords: Software Architecture, Software Evolution, Evolution Taxonomy, Quality Criteria.

Abstract: Nowadays, architects are facing the challenge of proliferation of stakeholder requirements for preserving and
ensuring the effectiveness of the software, by using software evolution as a key solution. Hence, in terms
of landscaping evolution space there is a great need to define the thinking on which efforts to deal with this
issue have been based. In this paper, we propose a framework for software architecture evolution taxonomy
based on four structural dimensions. This framework could both position existing evolution models in the
field and highlight gray areas for the future. Mapping over framework dimensions, a set of quality factors and
an investigation including 67 studies are performed to assess the proposals. The results contain a number of
relevant findings, including the need to improve software architecture evolution by accommodating predictable
changes as well as promoting the emergence of operating mechanisms.

1 INTRODUCTION

Nowadays, there is no doubt that software develop-
ment is facing a cumbersome process of handling or
modeling the inevitable evolution within open sys-
tems. Software architecture is a combination of a
set of architectural elements and their interconnec-
tions which are unified to satisfy design require-
ments. However, the architecture should adhere to the
changes required by the various stockholders in order
to avoid system erosion (Perry and Wolf, 1992) and
to meet their different goals. Thereby, software archi-
tecture must evolve as a systematic result of increased
concern about the environment (Jazayeri, 2005). Con-
sequently, evolution should be planned in the early
phases of modeling the software. These requirements
have in turn stimulated and challenged researchers to
develop new approaches for dealing with the archi-
tecture evolution topic. Despite this widespread inter-
est, few studies on architecture evolution taxonomy
have been found in literature. Therefore, there is a
clear need to bring structure into the software archi-
tecture domain to better landscape the wide array of
research devoted to covering this field. This kind of
study is vital for both categorization of the existing
works and highlighting gaps that may provide new
trends for the future. This paper refers to some of the
most significant of these. First, (Buckley et al., 2005)

adopt a complementary way of thinking to position a
taxonomy of software change using a non-exhaustive
set of factors inherent to mechanisms used to evolve
systems. These factors are categorized into two non-
separate sets of: dimensions as characterizing and
influencing factors. Meanwhile, in (Breivold et al.,
2012), the authors identified five main categories of
themes based substantially on research topics to con-
duct an investigation of 82 research papers. A set of
specific characteristics is provided with a view to re-
fine each category to subcategories reflecting a com-
mon specification on research focus, research con-
cepts and context. The proposed overview does not
mention an explicit framework for the proposed tax-
onomy but presents significant descriptions of many
relevant studies for software evolution. However, a
recent study (Ahmad et al., 2014) has identified six re-
search themes of evolution reuse knowledge by inves-
tigating a set of existing methods, techniques and so-
lutions either for systematic application or for empir-
ical acquisition of architectural knowledge. The pro-
posed thematic classification is focused on both time
of evolution (design or runtime) and type of evolution
(change execution or change mining) for reuse knowl-
edge. The lack of existing studies on characterization
of architectural evolution provide much scope for new
thinking about classifying the existing works (Gar-
lan et al., 2009)(Chaki et al., 2009). The aim of the

124
Gasmallah, N., Amirat, A. and Oussalah, M.
Evolution Taxonomy for Software Architecture Evolution.
In Proceedings of the 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering (ENASE 2016), pages 124-131
ISBN: 978-989-758-189-2
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



paper is threefold: (i) to provide a conceptual frame-
work by addressing major concerns (what, why, who,
how and when) about the evolution of software ar-
chitecture, (ii) to identify the main taxonomy classes
which could assist in both landscaping the field and
highlighting gray areas, (iii) to identify a set of ex-
pected quality criteria which can elucidate the quality
criteria focus for each evolution mechanism. Our mo-
tivations are driven by the need to promote synergy
between the various existing mechanisms throughout
the software evolution field. However, we attempt to
find a simple and effective arrangement of approaches
which may serve, subsequently, as a standard for evo-
lution. To carry out this study, a set of 67 selected
papers have been classified into broad categories and
then utilized according to the experimental software
engineering guidelines (Wohlin et al., 2012). The re-
mainder of this paper is structured as follows: sec-
tion two introduces the dimensions of evolution which
draw the conceptual framework and the structure of
the evolution taxonomy. The third section is devoted
to presenting a brief definition of qualitative expecta-
tions for an evolution model. Section four conducts
a proposal assessment to establish a more holistic un-
derstanding of our proposals. The last section recapit-
ulates our major findings and discusses implications
for further research.

2 TAXONOMIC FRAMEWORK

A taxonomic framework should be regarded rather
as a tool which provides meaningful benchmarks for
both coverage of the current state of the art and sup-
positions to guide new trends.

2.1 Framework for Software Evolution

By answering certain questions about: what, why,
who, how and when does software architecture
evolve? we can substantially identify the following
four dimensions throughout the current studies:lev-
els (who?), object (where?), type (what?)and theop-
erating mechanism (how?)of evolution (OME in the
following).

2.1.1 Levels of Evolution

This dimension emphasizes the importance of ad-
dressing architecture over one or several hierarchical
levels (Amirat et al., 2011). This entails consider-
ing distinctively the modeling and abstraction levels
during the evolution process as follows: (i)Model-
ing level (M0 to M3)- is an abstract representation of

the structure and behavior of a system with a view to
provide a line of reasoning related to the system con-
sidered (Bézivin, 2003); changes can be performed in
one or more of these levels (e.g. each instance’s ma-
nipulation is at a lower modeling level for the class
concept). (ii) Abstraction level (a0 to an)- is used
to address complex problems by defining appropriate
levels of abstraction for relegation of irrelevant details
to a lower level with a view to restrict the semantic in-
formation (Oussalah et al., 2014) (e.g. refining classes
to subclasses would be helpful and effective measures
for designers).

2.1.2 Object of Evolution

Means the subject on which the evolution is operated.
Object can be:(i)Artifact- an abstraction of any ele-
ment belonging to the architectural structure (archi-
tecture, component, service...), for example, when a
change is performed on a component port of an archi-
tecture (user interface, shared variable, ...), the evo-
lution is basically made on the artifact itself (compo-
nent). (ii) Process- an abstraction of all isolated or
combined operations or methods to be applied to a
process,e.g. installation of a new strategy in terms of
rules and constraints.

2.1.3 Operating Mechanism of Evolution (OME)

Outline the fashion in which an object of evolution
is involved over the different hierarchical levels con-
sidered during the evolution of the architecture. Two
main operating mechanisms can be identified accord-
ing to (Brooks, 1989): (i)Reduce- Brooks defines
the ”reductionist” approach as a ”classical” approach
to problem solving whereby the overall resolution
task is decomposed into subtasks. During this re-
ductionist evolution, the operating mechanism goes
through a pre-defined evolution path, until the so-
lution is satisfied (evolved model) (e.g. the evo-
lution of classes impacts the instances). Distinc-
tions can be made in terms of three major cases: (a)
the reduction operating mechanism can involve sev-
eral modeling levels (Modeling level reduce) or only
one modeling level either over (b) several abstraction
levels(Inter-abstraction level reduce) or also only (c)
one abstraction level (Intra-abstraction level reduce).
(ii) Emergence- In contrast, during an ”emergentist”
evolution approach, the activity builds the path to
a solution. Indeed, the emergence exposes a pas-
sage between the activity of ”micro-level” and that of
”macro-level” (e.g. categorization of classes in super-
classes). Modeling level emergence, inter-abstraction
level emergenceand intra-abstraction level emer-
genceare identified in the same way as by the reduce

Evolution Taxonomy for Software Architecture Evolution

125



Figure 1: Operating mechanism across hierarchical levels.

OME (Fig. 1).

2.1.4 Type of Evolution

This dimension is commonly used throughout the
software taxonomy (Williams and Carver, 2010)(Ah-
mad et al., 2014)(Buckley et al., 2005) but with dif-
ferent perceptions. The first embodies the behavioral
aspect of maintainability according to type of main-
tenance. Meanwhile, the second type of evolution
focuses on the development environment being used
during the evolution (static, dynamic or load-time). In
this light, the evolution type has to be considered from
two relevant perspectives to achieve a reasonable as-
sessment. The first concerns a technical view which
applies the notion of maintainability (corrective, per-
fective, adaptive and preventive). For the sake of sim-
plicity, this paper employs the following well known
categories: corrective, perfective and adaptive (Swan-
son, 1976). The second perception adopts an archi-
tectural viewpoint which mainly considers architec-
ture as an artifact of evolution (Chaki et al., 2009).
It expresses the reason for supporting and conduct-
ing software changes whether after (curative) or be-
fore (predictable) software delivery, regardless of the
technical type used.
(i) Curative- ensures that when new requirements
arise unpredictably or were poorly defined or even un-
specified during the life cycle, the environment will
help to correct, perfect and adapt them by integrat-
ing the desired changes. Usually, the curative type
depends on the nature of problem that is being ad-
dressed, mainly in relation to its context and the re-
source deployed, and often is applied in an ad-hoc
manner as problems arise.
(ii) Predictable- ensures that evolution requirements
are taken into account during the analysis phase and
specified during the design. These requirements are
specified at an earlier stage of the design process and
define all anticipated changes allowed using any tech-
nical types for evolution. The latter can be divided
into two main categories depending on the architects
view: according to the predefinition of the final ar-
chitecture (Chaki et al., 2009) and depending on the
continuity of the evolved architecture (Oussalah et al.,

Figure 2: Type of evolution sub-dimensions.

1999). The first category emphasizes two types of
evolution: (a)Open evolution-means a deduction,
from an initial architecture, of a new architecture re-
flecting a system solution in which a set of invariants
and constraints are respected. (b)Closed evolution-
the final architecture is considered as a premise. This
evolution consists of performing a valid sequence of
operations which, once they are applied to architec-
ture, lead without any ambiguity to the final architec-
ture. This involves oriented knowledge construction
and requires a greater capacity of conceptual thinking.
The second category provides two kinds of evolution:
(c) Evolution with break- means that interventions are
applied directly to the initial architecture without hav-
ing the ability to go back on the trace of the made
evolution (e.g. evolution by extensibility (open white
box), changes are performed directly on codes). (d)
Evolution with seamless- denotes an evolution with
trace where the architecture keeps a trace of its ini-
tial properties and operations performed before each
evolving operation. Such continuity is ensured by the
backup of the applied operation sequences (e.g. in
versioning technique, operations undertaken on ver-
sions are imperatively stored, which in turn preserves
the evolution history). In fact, open or closed types
of evolution can be either with break or seamless
(Fig. 2).

2.2 Evolution Taxonomy

The taxonomy allows presentation of the whole
solution space of architecture evolution. The pro-
posed taxonomy is based successively on the OME
dimension and on the modeling and abstraction levels
of the architecture affected during the evolution
activity. During evolution process, each OME
(reduce or emergent) can either impacts at least two
modeling levels of the architecture (modeling levels)
or preserving the same modeling level. In such case,
the OME should be specified whether it concerns
different abstraction levels (inter-Abstraction) or
simply evolved within the same level of abstraction

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

126



Figure 3: Architecture involvement through operating
mechanisms.

(intra-abstraction). Thereby, the evolution taxonomy
is structured around six classes for software architec-
ture evolution, as follows:
Intra-abstraction Level Reduce Oriented Evolu-
tion (class 1)- The OME consists of evolving one
or more architectural elements, of an architecture
sited at a defined modeling level, within the same
abstraction level (e.g. modification of one or more
component properties of an architecture).
Inter-abstraction Level Reduce Oriented Evolu-
tion (class 2)- The OME consists of evolving one
or more architectural elements sited at a defined
modeling level, from their associated abstraction
level to the lower abstraction levels (e.g. evolution of
class impacts several sub-classes).
Modeling Level Reduce Oriented Evolution
(class 3)- The OME consists of evolving one or more
architectural elements on a downward modeling path
i.e. from their initial modeling level to the lower
modeling levels (e.g. evolution of classes impacts
instances).
Intra-abstraction Level Emergence Oriented
Evolution (class 4)- The OME consist of emerging
one or more architectural elements, of an architecture
sited at a defined modeling level, within the same
abstraction level (e.g. categorization of classes by
creating a superclass).
Inter-abstraction Level Emergence Oriented
Evolution (class 5)- The OME consists of emerging
one or more architectural elements, belonging to
one defined modeling level, from their associated
abstraction level up to the higher abstraction levels
(e.g. aggregation of classes in one class).
Modeling Level Emergence Oriented Evolution
(class 6)- The OME of evolution consists, on upward
path, of emerging one or more architectural elements
from their associated modeling level to the higher
modeling levels (e.g. creation of new classes to deal
with differences on multiple instances).

3 QUALITY EXPECTATION FOR
AN EVOLUTION MODEL

Expectancy indicates that better effort will result in
better performance (Vroom, 1964). Qualitative ex-
pectancy assumes that researchers have reasons for
favoring one set of conscious criteria over others. In-
deed, an architectural evolution model is operated to
satisfy a set of subjective factors to achieve some valid
goals. We are focused on devising a set of quality
criteria for a new evolution approach. We have esti-
mated that these are the minimum expected according
to an architectural point of view. However, these cri-
teria must not be interpreted as a restriction on quality
factors but rather as the common specific criteria for
our topic. Therefore, according to (Oussalah et al.,
1999), an evolution approach must be: (i) enunciated
to better provide a thorough behavior for the changes,
(ii) expressed to better outline the development and
refinement characteristics of the desired model, and
finally, (iii) evaluated from the fact that the evolu-
tion model provides a set of quality appraisal criteria
aimed to estimate the relevance of the model com-
paratively to a goal commitment. Thus, quality ex-
pectancy can be structured into three capacities: Qn,
Qx and Qv respectively for the enunciation, expres-
siveness and evaluation capacities. Furthermore, a
model of evolution can be evaluated to indicate its
representativeness expectancy, which means the per-
centage to which the evolution quality has met the ex-
pected quality criteria. These percentages can be used
as an indicator tool for assessing the evolution quality
of a model.

3.1 Enunciation Capacity

Enunciation is formalized in terms of criteria to: for-
mulate, manage the impacts of changes and keep track
between the starting model (before changes) and the
final model. This capacity encompasses criteria of:
Formulation of evolution (F)-which reflects the level
of evolution visibility in terms of applying operators
to cause the initial architecture to evolve.Impact
management of the evolution (I)-means the result due
to the change of an architectural element of the model
in terms of influence on the other elements.Trace-
ability (T)- formalizes the model’s ability to keep
track of the sequence of evolution operations applied
for changing an initial architecture. The enunciation
capacity (Qn) can be expressed through a parametric
equation given by:

Qn =
a×F(p)+b× I(p)+ c×T(p)

a+b+ c
(1)

Evolution Taxonomy for Software Architecture Evolution

127



Where parameter p is the degree of parameterization
for criterion. Coefficientsa, b andc are the associ-
ated weights by which we can establish a hierarchical
order of preference between criteria.

3.2 Model Expressiveness Capacity

This capacity indicates what this model is actually
capable of describing regarding the evolution of ar-
chitecture. Modeling level (M)-appoints the differ-
ent modeling levels affected during the OME. It can
be flat trend in the case of an evolution on the same
modeling level, otherwise it affects different model-
ing levels to achieve the result.Abstraction level (A)-
defines the degree of refinement within an evolution
in terms of the internal architecture details during the
reuse time. These details are presented in a white,
gray or black box.Expressiveness mode (E)-reflects
the chosen representation to express the model evolu-
tion. This criterion focuses on accuracy and simplic-
ity of expression and offers more semantics to enable
reuse. Operating mode (O)-prescribes the mode of
reasoning by which the evolution is managed. This
can be done by deduction or by induction or by clas-
sification. Domain (D)- represents the scope cov-
ered by the solution of the evolution model. In fact,
a generic domain means that multiple situations are
likely to adopt this solution without giving details of
their execution. In counterpart, the specific domain
provides a further investment of multiple aspects of
details to enable the architecture to evolve. The ex-
pressiveness capacity can be expressed by:

Qx = (a×M(p)+b×A(p)+ c×E(p)

+d×O(p)+e×D(p))/(a+b+c+d+e) (2)

3.3 Quality Evaluation Capacity of an
Evolution Model

The third dimension reflects the ability to measure the
capacities of the model to assess its quality, through:
Re-usability (R)-represents the degree of re-use given
by a model of evolution.Adaptability (A)-expresses
the ability to control and enable an evolution model
to be adapted dynamically. Performance (P)-de-
fines the faculty of the model to make the desired
changes by optimizing time, cost, space and speed ra-
tios. Support of evolution (S)-describes if the evo-
lution model has an predefined or implemented tools
for the used evaluation mechanism. The evaluation
capacity can be formulated as:

Qv =
a×R(p)+b×A(p)+c×P(p)+d×S(p)

a+b+ c+d
(3)

Application Example: For the simplicity of under-
standing the example, some assumptions are made:
(i) for handling criteria values, numerics 1, 0.5 and
0 are assigned respectively to explicit, implicit and
not recognized criteria, (ii) the common associated
weights used in each equation such as a, b ,c, .., d
have been set to 1, (iii) parameters p- are considered
equivalent for simplicity of calculation, thus equal
values have been assigned to each one of them, and
(iv) representativeness ratio is in the range of three in-
tervals: 0≤weak< 1/3≤medium< 2/3≤ high≤ 1.
Prospection of the paper by (Oussalah et al., 2006) led
to the following criteria results: enunciation capac-
ity (F=1, I=1, T=0), expressiveness capacity (M=1,
A=0.5, E=1, O=1, D=1) and evaluation quality capac-
ity (R=1, A=1, P=1, S=0). Then applying equations
(1),(2), (3) results: Qn = (1×1+1×1+1×0)/3=
0.67; Qx = (1× 1+ 1× 0,5+ 1× 1+ 1× 1+ 1×
1)/5= 0.90; Qv = (1×1+1×1+1×1+1×0)/4=
0.75. The quality expectancy given by the capacities:
Q(Oussalahet al.,2006)= (0,66+0,90+0,75)/3=
0.77 which means that the model presents a high rep-
resentativeness for software architecture evolution.

4 PROPOSAL ASSESSMENT

Substantially, selection of papers focused on: (i) pa-
pers studying either a software architecture evolution
or software engineering evolution thematic, or both of
these, and (ii) according to two potential criteria: first,
papers used within other classifications research, and
second, well known papers using the indicator cited
index paper. The preparation of the review was done
through devising a prospective study sheet in accor-
dance with (Wohlin et al., 2012). Once the appropri-
ate information had been gathered, calculations were
conducted as shown in the previous example. After-
ward, representativeness expectancy was assessed and
studies with a weak expectancy were removed. Fi-
nally, 67 selected papers were selected that to the best
of our knowledge are the most representative studies
in the field.

4.1 Evolution Mechanism Categories

In order to provide clarification and therefore wider
understanding of the proposed taxonomy, the selected
papers were divided into five thematic categories to
reflect the broadest range of well known mechanisms
for dealing with evolution. Each category includes
mechanisms that share conceptually low close reflec-
tions regardless of the technique used for modeling
(static or dynamic):

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

128



(i) Evolution Change-based Approaches(Gott-
lob et al., 1996)(Bengtsson et al., 2004)(Oreizy
et al., 1999)- encompass work related to: (i)
Maintainability- reflects changes into software after
its implementation, (ii) Modifiability- describes the
architectures ability to be changed in response to
changes due to the environment or stockholder re-
quirements or functional specifications, and (iii) Self-
changes- comprise automation in computing which
refers to execution of important computing opera-
tions. It includes: automatic computation, self-
management, self-organization, self-adaptive.
(ii) Evolution Algorithmic-based Approaches(En-
gel and Browning, 2008)(Wermelinger and Fiadeiro,
2002)- include all reflections for improving software
architecture by providing simple structures, deal-
ing with similarity of objects. It contains mecha-
nisms of categorization, reorganization, incremental
approaches and refactoring.
(iii) Evolution Trace-based Approaches(Cicchetti
et al., 2008)(Herrmannsdoerfer et al., 2009)- includes
mechanisms where traceability is seen as a key insight
for evolution to promote consistency and compliance.
This category encompasses mechanisms related to:
migration, co-evolution, versioning and view-point.
(iv) Evolution Transformation based Approaches
(Zhao et al., 2007)(Engels and Heckel, 2000)- in-
clude mechanisms wherein changes are applied us-
ing one or more transformation rules for transform-
ing or verifying or validating models (Mens and
Van Gorp, 2006). Model driven architecture ap-
proaches and graph-transformation approaches are
approaches dealing with such topics.
(v) Evolution style based approaches(Garlan et al.,
2009)(Le Goaer et al., 2010)- designate high-level
modeling approaches, using architectural style for
modeling the evolution. Evolution-styles help to
specify the basic structure to evolve in software ar-
chitecture.

4.2 Results and Discussion

Results are discussed according to:
(i) Framework Dimensions: Investigated papers
were compared to the framework using the represen-
tativeness percentage, which represents the quotient
of the number of explicit and implicit (weighted) ex-
pressions of criteria relatively to the total number of
papers within a category. Afterwards, percentages
were reported in the Table 1, in which: Explicitly,
overall the studied evolution mechanisms focus on:
(i) the artifact as an object of evolution with more than
70%, to the detriment of the process object, which re-
mains a very promising direction (minus 30%), par-

Table 1: Representativeness of the framework dimensions.

Framework dimensions Metrics %

Object of evolution
Artifact 71.64
Process 28.36

Level of evolution
Modeling 67.76
Abstration 32.24

OME of evolution
Reduce 89.56
Emergence 10.44

Type of evolution
Technical 55.33
Architectural 44.67

ticularly because the process is usually considered as
a dynamic specification of the artifact, without ne-
glecting that the artifact provides an advantageous al-
ternative through UML modeling specifications, (i)
abstraction level has attracted less interest (nearly
33%) from the evolution community for the reason
that it overlaps with the modeling level concept, (iii)
the ”Reduce” OME is the most covered, scoring more
than 89% as against 11% for the ”Emergent”, mainly
due to the developer opting for rigorous mathemati-
cal reasoning based on a formal logic, which favors
the deduction process, and (iv) technical type (55%)
is relatively better represented than architectural type.
The study has also found an overwhelming rate for the
”Predictable” type (97%), absolutely justified by the
rough dynamicity of the environment and the instabil-
ity of stakeholder requirements at the different mod-
eling levels, with an advantage for the ”Open” type
of more than 70%. In addition, the study indicates
that almost 80% of the selection are devoted to cor-
rective and perfective typology. It should furthermore
be noted that adaptability produced a low represen-
tation percentage (less than 20%), mainly due to the
difficulty of dynamic evolution at the design-time.
(ii) Evolution Taxonomy: Evolution mechanisms
were ranked according to the suggested taxonomy
with the aim of assessing the cover achieved by each
category of mechanisms and to deduce the least con-
sidered taxonomy classes. By using the percentage of
representativeness in the same way as described pre-
viously, Table 2 displays the different hedging of each
mechanism and clarifies that existing studies have
fostered the modeling-level reduce oriented evolution
class (class 3), with trace-based approaches being the
most significant in 68% of the work. The 14% of stud-
ies in intra-abstraction level reduce oriented evolution
(class 1) is justified by the presence of techniques sup-
porting quality, assessment, and analysis at the archi-
tectural level. Classification of the selection reveals a

Table 2: Class percentages of evolution taxonomy.

C-1 C-2 C-3 C-4 C-5 C-6
14.93 5.97 68.66 5.96 1.49 2.99

Evolution Taxonomy for Software Architecture Evolution

129



Table 3: Criterion and capacity percentages (%).

Qenunciation=22.60 Qexpressiveness= 54.29 Qevaluation=23,11
F I T M A E O D R A P S

11.80 6.16 4.64 12.51 6.56 12.21 10.90 12.11 6.66 5.95 6.26 4.24

significant shortage in research focusing on the emer-
gence OME.
(iii) Quality Expectancy: This evaluation can rule
on potential strengths and weaknesses of each cate-
gory of the architectural evolution mechanisms. Ta-
ble 3, which presents the percentage of representa-
tiveness of a quality criterion across all the studied
papers, shows that for the studied models the appro-
priateness of the measurement formulation capacity
for the enunciation dimension is the most respected
aspect in terms of the fact that all the selected works
were revised and published. Traceability capacity had
the weakest representation, possibly because of the
priority that approaches attach to finding a new so-
lution. Regarding the expressiveness capacities, all
modeling levels were covered, from the lowest level
(M0) to the meta-modeling level(M2). However, a
weak separation between modeling and abstraction
levels was formulated (almost 32%). Expressiveness
mode, operating mode and domain applicability are
strongly expressed criteria in the studied models. In
addition, evaluation criteria are considered in a less
rigorous manner in the selection, by which we de-
duce that the field of architectural evolution has not
yet reached a sufficient level of saturation and matu-
rity to focus primarily on quality evaluation. Never-
theless, the research displays more consideration of
re-usability criterion, and to a lesser extent of adapt-
ability and performance criteria, while the support of
quality assessment tools proposed by approaches re-
mains a very promising track. Table 4 sets out the
representativeness percentage of the expected qualita-
tive capacities for each evolution mechanism. On this
basis, the main findings are as follows: (i) the trans-
formation based approaches present the higher enun-
ciation ratio in comparison to the other categories, due
essentially to its great ability for traceability and for-
malization, (ii) the algorithmic-based approaches fo-
cus largely on criteria related to expressiveness capac-

Table 4: Capacity percentages by mechanism category.

Evolution mech. (%) QEnun QExpr Qeval

Change-based 20,77 54,62 24.62
Algorithmic-based 20.99 57.41 21.60
Trace-based 21.47 55.21 23.31
Transformat-based 30.77 55.38 13.85
Style-based 23.75 51.91 24.34
Average 22.60 54.29 23.11

ity through the operating and expressiveness modes,
domain of specification and modeling level identifi-
cation, and (iii) throughout all categories, there is in-
sufficient representation of quality evaluation capac-
ity which denotes slightly higher representation of
change based and style-based approaches.

5 CONCLUSION

The first goal of this study was to devise a framework
for software architecture evolution. This framework
attempts to provide a structural organization which,
while far from considering qualitative specifications,
is organized in four main dimensions: levels, ob-
ject, type and operation mechanism of evolution. The
evolution taxonomy, as a second goal, offers a land-
scape of what was being done and what remains to
be done. It has unveiled a lack of emergence ap-
proaches. The third goal was to deal with the real
challenge of achieving representativeness of a given
evolution model in the field. The paper recapitulated
a large number of quality criteria crucial to evalua-
tion of effectiveness of the effort-making in terms of
devising a model that meets the quality expectations.
The latter were arranged into the following three im-
portant capacities: enunciation, expressiveness and
quality evaluation. The results shows that criteria re-
lated to expressiveness are often given more weight as
opposed to enunciation and evaluation quality. Like-
wise, our study limitation relates to the estimation of
qualitative criteria either in terms of assigning a par-
ticular value for each criterion (explicit and implicit)
or in terms of adopting an equal weight value for pa-
rameters over all criteria. Thus, we believe that the
conceptual framework that we have presented could
be applied in future studies to: (i) determine the ap-
propriate evolution approach according to the crite-
ria that seem the most relevant, (ii) highlight how the
quality criteria of an evolution approach would influ-
ence its representativeness, and (iii) provide guidance
in particular research fields, such as the study of emer-
gent operating mechanisms. Moreover, future studies
could use the proposed framework to explore many
of the research papers investigated by previous taxo-
nomic studies in the software engineering domain. In
this light, it would be invaluable to provide a meta-
classification which could be instantiated according
to the field specialization.

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

130



REFERENCES

Ahmad, A., Jamshidi, P., and Pahl, C. (2014). Classifica-
tion and comparison of architecture evolution reuse
knowledgea systematic review.Journal of Software:
Evolution and Process, 26(7):654–691.

Amirat, A., Menasria, A., and Gasmallah, N. (2011). Evolu-
tion framework for software architecture using graph
transformation approach.

Bengtsson, P., Lassing, N., Bosch, J., and van Vliet,
H. (2004). Architecture-level modifiability analysis
(alma).Journal Syst.and Software, 69(1):129–147.

Bézivin, J. (2003). La transformation de modéles. INRIA-
ATLAS & Universit de Nantes, 2003. Ecole dEt dIn-
formatique CEA EDF INRIA 2, cours #6.

Breivold, H. P., Crnkovic, I., and Larsson, M. (2012).
A systematic review of software architecture evolu-
tion research.Information and Software Technology,
54(1):16–40.

Brooks, R. A. (1989). A robot that walks; emergent behav-
iors from a carefully evolved network.Neural compu-
tation, 1(2):253–262.

Buckley, J., Mens, T., Zenger, M., Rashid, A., and Kniesel,
G. (2005). Towards a taxonomy of software change.
Journal of Software Maintenance and Evolution: Re-
search and Practice, 17(5):309–332.

Chaki, S., Diaz-Pace, A., Garlan, D., Gurfinkel, A., and
Ozkaya, I. (2009). Towards engineered architecture
evolution. InProceedings of the 2009 ICSE Work-
shop on Modeling in Software Engineering, pages 1–
6. IEEE Computer Society.

Cicchetti, A., Di Ruscio, D., Eramo, R., and Pierantonio, A.
(2008). Automating co-evolution in model-driven en-
gineering. InEnterprise Distributed Object Comput-
ing Conference, 2008. EDOC’08. 12th International
IEEE, pages 222–231. IEEE.

Engel, A. and Browning, T. R. (2008). Designing systems
for adaptability by means of architecture options.Sys-
tems Engineering, 11(2):125–146.

Engels, G. and Heckel, R. (2000). Graph transformation as
a conceptual and formal framework for system mod-
eling and model evolution. InAutomata, Languages
and Programming, pages 127–150. Springer.

Garlan, D., Barnes, J. M., Schmerl, B., and Celiku, O.
(2009). Evolution styles: Foundations and tool sup-
port for software architecture evolution. InSoftware
Architecture, 2009 & European Conference on Soft-
ware Architecture. WICSA/ECSA 2009. Joint Working
IEEE/IFIP Conference on, pages 131–140. IEEE.

Gottlob, G., Schrefl, M., and Röck, B. (1996). Extending
object-oriented systems with roles.ACM Transactions
on Information Systems (TOIS), 14(3):268–296.

Herrmannsdoerfer, M., Benz, S., and Juergens, E. (2009).
Cope-automating coupled evolution of metamodels
and models. InECOOP 2009–Object-Oriented Pro-
gramming, pages 52–76. Springer.

Jazayeri, M. (2005). Species evolve, individuals age. In
Principles of Software Evolution, Eighth International
Workshop on, pages 3–9. IEEE.

Le Goaer, O., Tamzalit, D., and Oussalah, M. (2010). Evo-
lution styles to capitalize evolution expertise within
software architectures. InSEKE 2010, pages to–
appear.

Mens, T. and Van Gorp, P. (2006). A taxonomy of model
transformation.Electronic Notes in Theoretical Com-
puter Science, 152:125–142.

Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimbigner, D.,
Johnson, G., Medvidovic, N., Quilici, A., Rosenblum,
D. S., and Wolf, A. L. (1999). An architecture-based
approach to self-adaptive software.IEEE Intelligent
systems, 14(3):54–62.

Oussalah, M. et al. (1999).Génie objet: analyse et concep-
tion de l’évolution. Hermès Science publications.

Oussalah, M. et al. (2014). Architectures logicielles :
Principes, techniques et outils. Hermes Science Pub-
lications (12 fvrier 2014).

Oussalah, M., Sadou, N., and Tamzalit, D. (2006). Saev:
A model to face evolution problem in software archi-
tecture. InProceedings of the International ERCIM
Workshop on Software Evolution, pages 137–146.

Perry, D. E. and Wolf, A. L. (1992). Foundations for the
study of software architecture.ACM SIGSOFT Soft-
ware Engineering Notes, 17(4):40–52.

Swanson, E. B. (1976). The dimensions of maintenance.
In Proceedings of the 2nd international conference
on Software engineering, pages 492–497. IEEE Com-
puter Society Press.

Vroom, V. H. (1964). Work and motivation. new york: John
willey & sons.

Wermelinger, M. and Fiadeiro, J. L. (2002). A graph
transformation approach to software architecture re-
configuration. Science of Computer Programming,
44(2):133–155.

Williams, B. J. and Carver, J. C. (2010). Characterizing
software architecture changes: A systematic review.
Information and Software Technology, 52(1):31–51.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Reg-
nell, B., and Wesslén, A. (2012).Experimentation in
software engineering. Springer Science & Business
Media.

Zhao, C., Kong, J., Dong, J., and Zhang, K. (2007).
Pattern-based design evolution using graph transfor-
mation. Journal of Visual Languages & Computing,
18(4):378–398.

Evolution Taxonomy for Software Architecture Evolution

131


