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Abstract: With the rapidly increasing amount of various types of biological data currently available to researchers, the 
focus of the biomedical research community has been shifting from pure data generation towards the 
development of new methodologies for data analytics. Although many researchers continue to focus on 
approaches developed for analyzing single types of biological data, recent attempts have been made to utilize 
the availability of heterogeneous data sets that contain various types of data and try to establish tools for data 
integration and analysis in many bioinformatics applications. Such attempts are expected to increase 
significantly in this coming decade. While this can be viewed as a positive step towards advancing big data 
analytics in bioinformatics, it is critical that these integration methodologies are meticulously studied to 
ensure high quality of the knowledge extracted from the integrated data. In this work, we employ data 
integration methods to analyze biological data obtained from protein interaction networks and gene expression 
data. We conduct a study to show that potential problems can arise from integrating or fusing data obtained 
at different granularity levels and highlight the importance of developing advanced data fusing techniques to 
integrate various types of biological data for analytical purposes. Further, we explore the impact of granularity 
from a more formulized approach and the granularity levels significantly impact the quality of knowledge 
extracted from the integrated data. 

1 INTRODUCTION 

The bioinformatics perspective of data integration is 
the uncovering of biological data and the extraction 
of useful biological information (Rhee et al., 2008). 
With the subsequent push towards data aggregation 
and integration (Chatr-aryamontri et al., 2013; 
Salwinski et al., 2004), comes a series of challenges, 
highlighted by rapidly changing bioinformatics data 
standards (Prasad et al., 2009; Kerrien et al. 2011). 
Many of these bioinformatics data standards are 
suitable for aggregation by targeting data reporting 
and storage, such as the Minimum Information about 
a high-throughput SEQuencing Experiment for 
microarrays (Ceol et al. 2009), standards of data-use 
are influenced by research outcomes and must be 
more flexible to handle the swift evolution of 
community ordained workflows. Particularly, 
standards must handle the sensitivities of data sources 
within these evolving workflows. 

Data fusion is a special case of data integration 
where two or more pieces of data are combined to 
create a new parameter with its own novel meaning. 

Although the term data fusion is relatively new to 
bioinformatics, long associated with a military 
connotation, its utilization is becoming increasingly 
popular, with 21 PubMed publications in 2005 using 
the term “data fusion”, and 95 publications in 2015.  

Data fusion is a multi-step process, cascading 
from the primary step of data source selection 
(Taneera et al., 2012; Hanisch et al. 2002). The high 
complexity of bioinformatics data sources creates a 
special challenge (Bossi and Lehner, 2009). Not only 
does this complexity enhance the central 
characteristics of big data, such as variety and 
veracity, but it accentuates the problem of 
granularity.  

Granularity refers to the shifts in scale where 
membership is defined through mereology (Bittner 
and Smith, 2003) or indiscernibility (Hobbs, 1995). 
These two granularity dimensions were originally 
specified as abstraction, shifts in specificity, and 
aggregation, shifts in part-whole relations (McCalla 
et al. 1992). Later the aggregation dimension was 
adapted to into granularity parthood, molecules in a 
cell, and determinate parthood, functioning members 
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of the cell (Bittner et al., 2004). These scales have not 
seen a lot of change in recent publications, and the 
term granularity usually attributed to specificity. 
However, increased differentiation of granularity 
scales have been specified for ontology purposes 
(Rector et al., 2006; Vogt et al., 2012). In the 
biomedical domain, data sources contain members 
from a population of available data-producing 
sensors, we refer to the determinate parthood scale in 
this study. Further, we use the terms abstraction and 
aggregation in reference to their associated 
dimensions of granularity, instead of their traditional 
data processing definitions. 

When examining biomedical data sources within 
the abstraction dimension, two overarching 
categories arise, isolated and integrated data sources. 
Isolated data sources are typically specific, 
representing results from single experiments. 
Integrated data sources, if single-modal, may exist at 
a similar abstraction level as isolated data sources. 
However, if multi-modal, due to multiple 
technologies being implemented, the data will exist at 
a higher abstraction and consequently lower 
granularity level. 

We use microarray data as an example of low 
abstraction, high granularity data, since each series 
usually represents just a few experimental conditions 
across a limited number of tissues. The variability of 
cellular function within these tissues necessitates that 
microarray data is not the epitome of high granularity 
data, rather it exists at a granularity level where 
differences between cellular conditions can be 
extracted. To combat high false-positive and false-
negative rates, microarray is often enriched through 
low-granular domain knowledge. A key component 
to microarray data analysis is to differentiate between 
cellular conditions. One data fusion methodology is 
to put these differences in the context of domain 
knowledge as a component of network creation 
(Agarwal et al., 2008), through enrichment (Xu et al., 
2011), or examining expression differences within 
the protein-protein interaction (PPI) network 
(Medintz et al., 2007).  

Protein-protein interaction databases may contain 
high abstraction, low granularity data. Some recent 
PPI databases are cell-specific or even molecule 
specific (Veres et al., 2014; Liu et al., 2011). 
Additionally, many integrated PPI databases, such as 
the Search Tool for the Retrieval of INteracting 
Genes/Protein (STRING), compile a list of potential 
relationships, not taking unique cellular conditions 
into account. STRING scores the interaction between 
proteins across a set of data sources in a union-like 
fashion (Bindea et al. 2009). Here, we use PPI data 

sources that are non-integrated and not condition 
specific, in order to bias the data towards a low 
granularity. These non-integrated PPI databases use 
manual curation methods to extract PPI information 
from scientific literature. So, even non-integrated PPI 
data sources are examples of multi-modal systems. 
Yet, since the manual curation methodologies 
employed to create PPI databases may innately 
increase the granularity of the data, the diversity in 
the curation methods may lead to the lower-
abstraction levels. In this work, we examine the 
structural and biological attributes of several popular 
PPI databases in order to characterize their unique 
contributions towards data integration. We further 
examine their pathway enrichment of each database 
to determine any specificity or unique bias towards 
similar groupings of biological functionality, which 
would indicate increased levels of granularity. 

Although the differences may be explicit between 
cellular conditions from the expression data and since 
PPI data comes from high abstraction data sources, 
integrating microarray data with PPI data that is not 
tissue or cellular condition specific does not model 
the true protein-protein interaction network within the 
experimental cellular condition. Therefore, the 
consequences of alternate expression and PPI 
network structure changes may not depict true 
biological reality. If the variability in granularity 
levels between PPI databases and microarray data 
biases the data away from high-granularity, 
potentially questionable biological information will 
be extracted after the data fusion implementation. To 
test this critical point, we can fuse the PPI and the 
microarray data and compare the information 
extraction between the original experimental 
microarray data and the fused datasets. In this study, 
we test to see the effect of fusing low abstraction, 
microarray data with high abstraction, PPI data on 
extraction of Type II Diabetes specific pathways. 

Granularity along the aggregation dimension 
requires a more formulized definition, which is 
specified within the methods section. This 
formulization includes three suggestions for 
aggregation definition. First, using a rough set theory 
definition of granularity, data fusion of specific data 
sources lies on an abstraction granularity level 
dependent on a set of attributes governing the 
differentiation between data sources. Alternate 
abstraction levels along scales defined by a set of 
relevant attributes, impact the results of biological 
information extraction by biasing the fusion towards 
those chosen attributes. Second, when separating 
these data sources according to attributes we create a 
set of fusion networks for each attribute set used. The 
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segmentation of the original data sources can also be 
used to define level of aggregation. Finally, the 
number of original data sources can be used to define 
aggregation within each fused network separately.   

We use these three definitions of aggregation to 
test the relationship between information extraction 
and aggregation. So, in summary, we have three 
hypothesis: 

H1: The different curation methods of non-
integrated PPI databases do not offer unique 
bias towards specific biological functionality. 

H2: Fusion of low-abstraction and high-
abstraction data will decrease experimental-
specific information extraction. 

H3: There exists a definition of aggregation such 
that a relationship between granularity and 
information extraction can be seen. 

Section 2 describes the methods for this study, 
including the formulizations for the definition of 
granularity in the aggregation dimension. Section 3 
depicts the results. Section 4 discusses the outcome of 
the study and its impact on the hypotheses. The paper 
concludes with section 5. 

2 METHODS 

Throughout the study, protein-protein interaction data 
and microarray data are modeled as networks, where 
the nodes represent the biological elements and the 

edges connect elements that are related by interaction 
or high correlation. In the first part, we attempt to find 
unique biological themes or functionalities associated 
with the PPI databases queried in order to answer 
hypothesis H1. We use structural similarity between 
the PPI networks and the quality of the clusters 
obtained from the networks using standard pathway, 
disease, and ontology enrichments. In this manner, 
we identify the biological functionality associated 
with each protein-protein interaction network and 
enriched clusters are mapped to human pathway 
hierarchies to search for significant patterns.  

In the second part, we address hypothesis H2. To 
test the hypothesized relationship between 
abstraction and data extraction, we use a case study 
with a Type II Diabetes microarray series. We create 
the integrated network using PPI and microarray data. 
We then enrich obtained network clusters to identify 
network-specific biological functions. We choose a 
list of 24 diabetes associated pathways or diseases 
curated from Reactome, the Online Mendelian 
Inheritance in Man (OMIM), and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG). We 
assess the enrichments of these pathways across the 
original and fused networks, and discuss the potential 
information loss that may occur due to the lack of 
consistent granularity levels. 

To validate the relationship between aggregation 
granularity and knowledge extraction, hypothesis H3, 
we formulize granularity using three different 
approaches and add additional sources to expand on 
the number of discrete granularity levels that can  be  

 

Figure 1: Data sources of this study. Stage one corresponds to hypothesis 1 and uses only the PPI databases. Stage 2 uses a 
selection from the PPI databases and conducts an enrichment comparison. Stage 3 uses all the data sources in an information 
extraction test to understand its interplay with aggregation. 
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formed. Extraction scores based on enrichment 
results are assigned to each network and correlation 
is measured. 

2.1 Protein-protein Interaction 
Databases 

The following protein-protein interaction databases 
were selected for this study since they reflect 
variability associated with experiments used to obtain 
them, they do not have a high-degree of integration 
among each other, and they were initially, seemingly 
sources of low granularity. The databases used were 
Database of Interacting Proteins (DIP) (Thorne and 
Stumpf, 2007), BioGRID (Zhang and Horvath, 2005), 
Human Protein Reference Database (HPRD) 
(Obayashi and Kinoshita, 2009), IntAct (Ingram et 
al., 2006), and Molecular INTeraction database 
(MINT) (Kashani et al., 2009). 

DIP focuses on extracting experimental 
knowledge from publications and stores binary 
interactions between proteins, clarifying source and 
evidence. BioGRID is a database of protein and 
genetic interactions that are extracted from manually 
annotated publications, by a team of PhD curators. 
Text mining is used to rank relevant publications 
where interactions are manually extracted and added 
to BioGRID. HPRD uses laboratory submitted data 
through a tool called BioBuilder which helps 
researchers interact with the database and submit 
experimental information. In this way, HPRD has 
protein-protein interactions that are post-translational 
modification, disease, and tissue specific. It also has 
an overarching binary PPI source. IntAct takes an 
open-source approach, with all data and repository 
code available to the public. The stored interactions 
are publicly curated from literature but also have a 
design to allow for direct researcher annotation. Rules 
on curation are specified on the EBI website and 
interactions are reviewed by a second curator. MINT 
is highly similar to IntAct, using the same 
infrastructure and curation rules. The difference is the 
set of MINT curators. 

For the third (aggregation) component of the 
study, we expand on those PPI databases with 
curation conducive to tissue or disease specificity. 
We add a diabetes sub-network for IntAct. HPRD has 
many tissue specific curations, but we use only the 
HPRD subnetworks with attribute overlap for the 
microarray series used in the third part. So, we 
include skeletal muscle, β-cell, pancreas, and blood 
HPRD PPI networks. 

2.2 Network Creation 

Although the protein-protein interaction databases 
contained evidence codes which may affect edge 
weights through confidence variance, the granting of 
specific edge weights was not implemented. This 
alleviated the necessity of consolidating the PPI edge 
weights with the microarray edge weights. Instead, 
edges exist where evidence supports an edge. Further, 
all types of experiments, including high-throughput 
evidences, were included if they were present in the 
original PPI data source. This may introduce a 
technology bias beyond what is incorporated into the 
research bias. However, correction of a technology 
bias may introduce unknown sensitivities. So, 
networks created were binary and non-directional. 
Protein-protein interaction networks were derived 
from the overarching sets of database information, 
such that tissue specific information was included 
without its specificity. Only complete proteins which 
correspond to at least one Ensembl gene Id were 
utilized. We attempt to highlight the issues of 
removing granularity from domain knowledge 
sources. Yet for validating the concept of the 
interaction between aggregation and information 
extraction, we use PPI networks with higher levels of 
granularity as mentioned above. 

Microarray data was initially downloaded from 
the Gene Expression Omnibus series, GSE 38642 
(Halevy et al., 2006). This series was chosen since it 
is human, has a large set of biological replicates, 
demonstrates a disease with a long list of well-
characterized pathways, Type II Diabetes, and 
obtains expression through a relevant and specific 
tissue, pancreatic islets. Additionally for the third part 
of the study, we included series GSE 30803, a 
treatment based study on healthy β-cells, GSE 67297, 
a study on cold acclimation effects of diabetic adipose 
tissue, GSE 55100, a blood tissue study of diabetes, 
and GSE 59363, which uses skeletal muscle tissue in 
healthy and diabetic samples with exercise stages. 
These additional microarray series were chosen as 
they have at least a moderate number of biological 
replicates, and overlapping values across “tissue”, 
“disease state”, “treatment”, and “technology” 
attributes. 

The raw expression files were downloaded, and 
robust multi-array (RMA) normalized. Pearson 
correlation was implemented to find expression 
relationships. The microarray networks then took two 
different paths, those filtered through false-discovery 
rate p-value correction and those with hard thresholds 
at 0.8 power and a 0.05 p-value. Base mapping of 
probes to Ensembl gene Ids was completed through 
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the Biomart API. Ensembl gene Ids which correspond 
to multiple probes were assigned edge weights which 
matched the highest correlation scoring probe for 
each individual interaction. The strong influence of 
some protein domains (e.g. probes which correspond 
to multiple transcripts) reduce the accuracy of the 
correlations which use the probe’s expression values. 
The conjugated expression values are representative 
of multiple transcripts. Depending on the abundance 
distribution of these transcripts either correlations 
may be assigned to the wrong protein, or more likely, 
the correlations will favor random correlation values, 
which are more likely to be insignificant and 
negligible. These multi-transcript probes are 
considered negligible in this study as they make up 
only a small percentage of the total probes. 

With the lack of PPI exact interaction strength 
values, the integrated networks created were the 
union of the PPI matrices and the microarray 
matrices. Union is a surprisingly common kernel 
function when integrating and fusing biological data 
sources. We use it here as an example of an 
integration-based data fusion approach. 

2.3 Identification of Unique 
Contributions from Protein-protein 
Interaction Data and Type II 
Diabetes Case Study 

PPI networks were clustered with the Speed and 
Performance In Clustering (SPICi) algorithm, a fast 
and biologically driven clustering approach (Jiang 
and Singh, 2010). The standard parameters produced 
ideally sized clusters for enrichment. An in-house 
tool for enrichment which downloads source groups 
and group information for Reactome, OMIM, and 
KEGG datasets. It uses the multivariate 
hypergeometric function to find overly expressed 
source groups within network clusters. Then, it uses 
the Benjamini-Hochberg-Yekutieli false discovery 
rate p-value correction to address multiple hypothesis 
testing and dealing with the lack of independence for 
enrichment terms on a single cluster. 

Unique contributions were determined by finding 
those enrichments for a PPI source that were not 
identified in any other PPI source. For visualization, 
unique Reactome enrichments were mapped to the 
Reactome pathway hierarchy and grouped by 
pathway similarity. Further, structural differences 
between PPI networks were uncovered at the node, 
edge, and cluster levels. 

The microarray networks were fused with the PPI 
networks in a union fashion so that there were control 
microarray, diabetes microarray, PPI, control fused, 

and diabetes fused networks. These networks were 
filtered as to only include only those biological 
elements present in the microarray sets. Then they 
were clustered and enriched using SPICi and the in-
house enrichment tool. Diabetes pathways were 
manually determined for Reactome, GO, OMIM, and 
KEGG. Enrichments of these pathways were 
examined across the networks to identify biological 
differences between control and diabetes networks.  

2.4 Validation of Relationship between 
Aggregation and Information 
Extraction 

A more formulized definition of granularity is 
required to characterize the relationship between 
granularity and information extraction. So far, we use 
the dimension of abstraction. This allows only for 
direct comparisons between objects or networks 
along the same scale. An extended discrete 
comparison scale is needed along the dimension of 
aggregation. 

Shortly after the initial introduction of rough sets 
into uncertainty theory (Pawlak, 1982), Hobbs began 
to distinguish granularity as a significantly 
contributing factor towards uncertainty (Hobbs, 
1985). This received formulization (Greer and 
McCalla, 1989) and then developed into concepts of 
discrete granularity scales (Hobbs, 1995). We use 
Hobbs scales of granularity with the concept of 
minimum rough sets to define levels of granularity 
from our universe of objects (i.e. our set of original 
data sources). Granularity over multiple universes in 
rough sets is currently used in decision support and 
management science (Słowiński et al., 2014; Sun and 
Ma, 2015). We use it here as a formulized approach 
to measuring granularity. 

Given a universe, U, consisting of a set P of 
predicates over a number of objects in O. R is the 
relevant subset of predicates from P. So, we can 
define objects x and y as indistinguishable if they 
meet: 

∀ሺݔ, ሻݕ ݕ~ݔ ≅ ሺ∀ ∈ ܴሻሺሺݔሻ ≅ ሻሻ (1)ݕሺ

Two objects are indistinguishable if their values 
for every relevant predicate are equal. Expanding on 
this, given a set of predicates (or attributes), we can 
separate the complete list of objects into sets of 
indistinguishable elements or equivalence sets. In the 
first definition of aggregation, we define granularity 
by the number of attributes used to create the 
equivalence sets. In the second definition, each of 
these equivalence sets have membership at a discrete 
granularity level defined by the number of these 
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indistinguishable sets. So, given a set of attributes we 
can determine the granularity level as well as group 
data sources for network fusion. In the third definition 
of aggregation, we can define granularity by the 
number of data sources in the equivalence set and 
separate these sets according to granularity. 

We created three universes of objects as our 
complete set of data sources, using “source”, “tissue”, 
“disease state”, “treatment”, “technology”, 
“aggregation method”, and “species” as attributes. 
The first universe, the overarching universe, 
contained all data sources. The second two, diabetes 
and control universes, representatively used diabetic 
or non-diabetic data sources. In doing so we can see 
the effect of experimental condition on information 
extraction. We used each combination of every length 
of these attributes, defining a set of fused networks 
and a defined granularity level. We can use the 
enrichment and granularity level to characterize the 
relationship between the two, given our defined 
universe.  

To score information extraction, we use a similar 
method as above, measuring the enrichment of 
diabetes related terms from Reactome, KEGG, and 
OMIM. We define the information extraction score in 
two ways. First, we use the proportion of relevant 
enrichment terms found over the total number of 
relevant enrichment terms. To standardize 
enrichment term impact on the score, we also use an 
information extraction score which weights the 
contribution of an enriched term by the probability of 
finding  the   term,   as   defined   by   the   calculated 

 

Figure 2: Data Source Sizes – The relative sizes for the data 
sources as the number of nodes, number of edges, and 
number of clusters are displayed as numbers and 
represented as the area of their corresponding circles in 
order to show relative size. 

probability of finding the term across all used 
networks produced by the universe. In this equation, 
N is the set of enrichment terms in a given network, 
T is the complete set of diabetic enrichment terms, 
and P(t) is the probability of finding term t in any 
network. 

݀݁ݐ݄݃݅݁ݓ ݁ݎܿݏ ൌ
∑ 1 െ ܲሺݐ௧∈ே ሻ
∑ 1 െ ܲሺݐሻ௧∈்

 (2)

Then we find the correlation between discrete 
levels of granularity and information extraction 
scores, utilizing equivalent set derived fused 
networks as each point. In total, we obtain six 
correlation and p-value pairs for each aggregation 
definition from the three universes and the two 
scoring techniques. These correlations are applied to 
each of the definitions for aggregation granularity: 
number of attributes, number of equivalence sets, and 
number of contributing data sources. 

3 RESULTS 

3.1 Protein-protein Interaction 
Databases Show Low Structural 
Similarity 

Structural differences between networks were 
examined at the node, edge, and cluster levels. Figure 
2 shows the number of biological elements found in 
each database, i.e. proteins for the PPI databases, and 
transcripts for the microarray series. The overlap 
percent of these node sets were calculated by dividing 
the intersection of the two sets by their union. As 
would be expected the larger databases have low 
overlap percent with the smaller databases since their 
potential overlap is small. Table 1 shows this overlap 
between the PPI networks and the 0.8 power 
threshold control microarray network. The larger, 
more inclusive networks tend to have higher 
similarity, but DIP and MINT, even with a close 
number of nodes, had a low overlap.  

More so than the overlap between biological 
elements, the interactions derived from each data 
source showed almost no overlap. The number of 
edges in each network seemingly enhanced the 
distance in size between data sources. Figure 2 shows 
the number of interactions in each network; Table 2 
shows the overlap, calculated by taking the 
intersection over the union of two interaction sets. 

The overlap of clusters from each network was 
determined. Only clusters of size five or higher were 
used and two clusters needed a 70% member overlap 
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as determined by the smallest cluster to be determined 
the same. Figure 4 shows the number of clusters in 
each network; Table 3 shows the overlap between 
these clusters. The BioGRID network had a high 
density and clustered into small, yet huge clusters. 
Once again, the structural overlap of these networks 
is negligible.  

Table 1: Node Overlap. 

 MicroArray DIP Biogrid HPRD IntAct 

MINT 0.08 0.22 0.14 0.20 0.20 

IntAct 0.18 0.21 0.65 0.50  

HPRD 0.16 0.23 0.56   

Biogrid 0.19 0.16    

DIP 0.09     

Table 2: Edge Overlap. 

 MicroArray DIP Biogrid HPRD IntAct 

MINT 0.00 0.02 0.00 0.02 0.04 

IntAct 0.00 0.03 0.02 0.06  

HPRD 0.00 0.04 0.03   

Biogrid 0.00 0.02    

DIP 0.00     

Table 3: Cluster Overlap. 

 MicroArray DIP Biogrid HPRD IntAct 

MINT 0.00 0.01 0.01 0.01 0.02 

IntAct 0.00 0.01 0.08 0.06  

HPRD 0.00 0.02 0.06   

Biogrid 0.00 0.01    

DIP 0.00     

Table 4: Potential Enrichment Overlap. 

 MicroArray DIP Biogrid HPRD IntAct 

MINT 0.30 0.52 0.60 0.56 0.57 

IntAct 0.74 0.43 0.40 0.40  

HPRD 0.71 0.49 0.46   

Biogrid 0.72 0.49    

DIP 0.54     

 

 

Figure 3: Full hierarchy of Reactome human pathways. The 
entire list of human Reactome pathways and their hierarchy 
was graphed so that nodes represent pathways and edges 
represent the child-parent relationships in the Reactome 
hierarchy. The unique Reactome enrichments for each PPI 
network are highlighted in color: HPRD (green), IntAct 
(gold), BioGRID (blue), DIP (pink), and MINT (red). These 
unique enrichments represent a small proportion of the total 
human pathway hierarchy. 

 

Figure 4: Organized hierarchy of Reactome human 
pathways - Fig. 3 is restructured to group pathways from 
the same branches of the Reactome hierarchy together. The 
unique pathway enrichments show low grouping tendency, 
and the PPI sources do not demonstrate biological 
specificity. Enrichments for each PPI network are 
highlighted in color: HPRD (green), IntAct (gold), 
BioGRID (blue), DIP (pink), and MINT (red). 
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Figure 5: Relationship between Granularity (Aggregation) Definitions and Information Extraction Scores – For each universe 
and each information extraction score type, the correlation and p-value between score type and granularity is shown 
(correlation, pvalue). Only significant scores are highlighted and the darker the coloring, the higher the correlation value. 

3.2 Reactome Enrichment: Overlap 
and Unique Contributions 

Although the structural aspects of the networks had 
low similarity, the biological properties as 
determined through Reactome enrichments had 
comparatively high overlap. Table 4 shows the 
potential enrichment overlap between data sources. 
Here, the intersection is divided by the size of the 
smaller enrichment size to highlight the low 
availability for unique contributions by the smaller 
datasets.  

For visualization, we examine only the Reactome 
enrichments of each PPI network. The unique 
enrichments for individual networks would delineate 
any source as specific towards an individual 
biological domain. Figure 3 shows the unique 
Reactome pathway enrichments for each individual 
PPI source in the setting of the entire set of human 
Reactome pathways. Although the structural 
differences between networks are small, unique 
pathway enrichments only make up a small 
proportion of the total potential pathway space. 
Initially, this indicates that any bias that does exist 
towards a specific biological condition or theme, is 
weak. However, the impact of these biases can only 
be examined by segmenting the Reactome hierarchy 
into biologically relevant clusters.  

The manual grouping of these pathways into 
groups of similar function, as shown in Figure 4, does 
not distinguish confident unique themes of biological 
extraction. Yet a few sets of unique contributions 
show significant grouping within the pathway 
hierarchy. HPRD highlights gamma carboxylation; 
IntAct highlights GAG protein metabolism; and 
BioGRID highlights ER to Golgi transport and 
single-nucleotide replacement. However, these 

tendencies are insufficient to specify particular 
granularity for individual PPI data sources. Rather, 
they each demonstrate generic pathway enrichment 
across the human pathway hierarchy.  

3.3 Data Fusion with PPI Sources 
Drowns Microarray Conditional 
Differences 

We compare the differences between control and 
diabetic conditions for the microarray networks, the 
PPI networks, and the fusion networks. For the 
microarray networks, the false-discovery rate 
adjustment diminished the interactions and 
enrichment so that there are only three differences 
between the control and diabetic conditions.  The 
power and p-value threshold networks showed ten 
pathway differences between the control and diabetic 
conditions out of 24 total diabetes related pathways. 
After fusion, the network structure for the FDR 
adjusted and the thresholded networks were enriched 
for nearly every single available pathway.  Table 5 
shows these enrichments, only showing 0.05 p-value 
adjustment. The ten differences from the microarray 
networks are not seen in the fusion networks. 

3.4 A Significant Interaction between 
Granularity and Information 
Extraction Exists 

The currently defined universes of predicates and 
objects has seven relevant attributes; however, we 
remove the “source” attribute as it does not produce 
equivalence sets greater than one, leaving 60 total sets 
of attributes. A total of 57 equivalence sets were 
determined across 7 discrete granularity levels for the 
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first definition of aggregation granularity, 24 discrete 
granularity levels for the second, and 24 for the third. 
We found the correlations between the information 
extraction scores based on enrichment. Of these, we 
found no significant correlations between granularity 
and information extraction when using the number of 
attributes determining equivalence sets. When using 

the number of equivalence sets, half of the correlations 
were significant. Finally, when considering the 
number of sources as the scale of granularity, each of 
the correlations was significant. 

Table 5: Pathway Enrichment Network Spectrum. 

 Micro 
Array 
Control 
0.05 p 

Micro 
Array 
T2D  
0.05 p 

DIP Bio 
GRID 

HPRD IntAct MINT Fusion 
Control 
0.05p 

Fusion 
T2D 
0.05p 

Metabolism of lipids 
and lipoproteins 

         

PERK regulates gene 
expression 

         

Protein processing in 
endoplasmic reticulum 

         

Adrenaline, 
noradrenaline inhibits 
insulin secretion 

         

Calcitonin-like ligand 
receptors 

         

Glucagon-like Peptide-
1 (GLP1) regulates 
insulin secretion 

         

Signaling by Leptin          

Notch signaling 
pathway 

         

Wnt signaling pathway          

TGF-beta signaling 
pathway 

         

Hormone-sensitive 
lipase (HSL)-mediated 
triacylglycerol 
hydrolysis 

         

PPAR signaling 
pathway 

         

Cell cycle          

p53 signaling pathway          

Advanced glycosylation 
end-product receptor 
signaling 

         

Regulation of insulin 
secretion 

         

Unfolded Protein 
Response (UPR) 

         

Type II diabetes 
mellitus 

         

Diabetes Mellitus, 
noninsulin-dependent; 
NIDDM 

         

Pancreatic secretion          

Maturity onset diabetes 
of the young 

         

mTOR signaling          

Insulin secretion          
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4 DISCUSSION 

The cascading importance of high confidence 
necessary in medical and biological data puts an 
emphasis on reproducibility, stability, and sensitivity 
of analytical workflows. Due to the complexity of 
biological data analysis, results have a high sensitivity 
to small changes in parameters, producing results that 
are unstable and difficult to reproduce. This concept is 
accentuated and expanded in data fusion, granularity 
being just a single potential for sensitivity. The data 
fusion approach presented here demonstrates the 
sensitivity of these biological data towards the various 
levels of granularity along two different dimensions. 

4.1 Protein-protein Interaction 
Database Differences and 
Sensitivity 

The structural differences between the protein-
protein interaction networks are byproduct of slight 
differences in curation methods. Although each PPI 
database retrieves their information from the same 
population of publications, the knowledge presented 
in the databases is different. These curation 
differences which lead to vast node and edge network 
differences, also lead to different structural or 
clustering differences.  

Conversely, although the structure of the 
networks is sensitive to the curation methods, the 
biological enrichment of the networks is not. The 
biological enrichment had a relatively large overlap 
between databases. Had the creation of the PPI 
databases led to significant biological differences, as 
a total, they would have represented a higher 
granularity. However, as it stands, the small unique 
pathway enrichments are not representative of highly 
granular data. To address our hypothesis, H1, the 
unique biological extractions of the PPI networks do 
not represent any apparent biological themes or 
conditions.  

4.2 Flooding of High Granular Data 
through Data Fusion 

The promise of data fusion is a more accurate 
depiction of biological reality through the 
combination of data sources to compensate for 
individual source inadequacies. Yet a key component 
to data fusion is within its own definition: the 
combination of two or more data elements to create a 
novel and meaningful data element. “Meaningful” is 
vitally important. A good data fusion result captures 

a biologically relevant meaning and treats the data 
accordingly. 

Hypothesis 2 states that the fusion of low and high 
granular data sources will remove experimentally 
derived information. The union function utilized here, 
innately, favors a low granularity. The PPI databases, 
created through the union function, result in 
“potential” networks. These networks illustrate the 
potential of protein interaction partners and structure, 
but may not be specific enough to differentiate 
specific biological conditions or pathways, and 
ultimately as seen in Table 5 the larger PPI databases 
capture the majority of this selection of Type 2 
Diabetes enrichments. So, the union between high 
granularity data, and low granular data initially 
created through the union function, results in a low 
granularity data set. As with the PPI networks 
covering the potential of interaction partners, this 
fusion creates a potential of pathways list, making it 
impossible to differentiate between experimental 
conditions. I.e. the fusion networks do not show 
enrichment dissimilarity. In this case, the 
experimental specific differences are those which 
differentiate the control tissue from the diabetic 
tissue. These differences are flooded and unable to be 
extracted after fusion. 

4.3 Information Extraction Sensitivity 
towards Granularity  

The third hypothesis, a granularity scale exists in 
which aggregation is associated with information 
extraction, was not supported by each of the defined 
scales of aggregation. The first scale of aggregation, 
number of attributes, did not demonstrate any 
relationship with information extraction. When 
aggregation was defined as the number of 
equivalence sets, half of the correlations were 
significant. Explicitly, we find that the diabetes 
universe and weighted score using this definition of 
granularity had the highest correlation out of all the 
tested conditions. The lack of significant correlation 
in the control universe indicates that these diabetes 
data sources are the reason that significant correlation 
was found in the overarching universe. We note that, 
biologically, diabetic data sources are likely to have 
increased diabetic information extraction; however, 
the relationship between granularity and information 
extraction is not innately evident. Defining 
aggregation by the number of equivalence sets is only 
satisfactory under certain data source combinations 
and a weighted information extraction score. 

The final definition of granularity, as the number 
of data sources used in the fused network, had a 
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complete suite of significant correlations. Yet the 
diabetic set of data sources carried a higher bias in 
generating a strong relationship between granularity 
and information extraction. This result defends the 
proposition that more available information innately 
present in a data fusion indicates a higher potential for 
information extraction after the fusion has taken 
place. 

By supporting the third hypothesis, we suggest 
that sensitivity to granularity contributes to the 
confidence in the limits of a data fusion function. Yet 
the field of data fusion is diverse and we are not 
certain that granularity is important for all data fusion 
functions, specifically those which may correct for 
abstraction or aggregation among sensor 
technologies. Further, granularity is a high-level 
uncertainty term and can be defined in various ways 
beyond the two dimensions suggested in this study. 
An intelligent data fusion must consider the biology, 
the technology, and the sensitivity of the function to 
initial parameters, including granularity, in order to 
obtain confidence in its results. 

4.4 Generalizability across Biomedical 
Data Sources 

When conducting multivariate data analysis, 
univariate normality does not guarantee multivariate 
normality. In the same way, the sensitivities of 
individual biomedical data sources, including the 
sensitivity to granularity, must be examined in a 
multi-modal perspective. We can only speculate to 
the sensitivity of biomedical data sources not 
included in this study, but we suggest that while 
granularity may not be an issue in an individual data 
source, data fusion approaches should check for 
sensitivity to granularity.  

5 CONCLUSIONS 

As the technology associated with biomedical 
research continues to advance, larger and more 
diverse data sources are becoming available to 
researchers. Each data source has its own attributes 
that influence the way its data can be used or 
integrated with other data. As a result, there is a 
growing need for sophisticated ways to effectively 
integrate different types of biological data and 
improve the outcome of using data mining 
algorithms. In this study, we proposed several tests 
for characterizing granularity within the integration 
of protein-protein interaction and gene expression 

data using the network model. The results indicate 
that using high aggregation of information provides a 
context bias that alters the composition of various 
substructures in the network and enhances the 
significance of the signals obtained from the 
integrated networks, under certain conditions. In 
addition, abstraction with union data fusion favors 
high abstraction information extraction, flooding 
condition-specific results. 

This study serves as a case study to highlight the 
need to study data integration methods further in the 
domain of biomedical informatics and explore 
different ways to characterize the impact of 
uncertainty variables throughout alternate data 
integration methodologies. These characterizations 
must also include topological information regarding 
substructure changes in order to further classify the 
relationships among elements in biological networks. 
The underlying principle here is that each network 
represents a form of an expert system, the more 
relevant data incorporated in the network, the more 
knowledgeable the network becomes. Yet the 
dependency of the extraction of this knowledge is 
dependent on data source variables (including 
granularity) which impact the topology. In turn, 
proper handling of these variables would allow the 
researchers to extract more biologically relevant 
signals while limiting the impact of noise that will 
always be associated with raw biological data. 
Ultimately, the attainment of the more useful 
biological networks, dependent on the type and 
environment of a network or biological replicate, is 
contingent on the ability to successfully integrate data 
types through characterization of their sensitivities. 
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