
Enabling GPU Virtualization in Cloud Environments

Sergio Iserte, Francisco J. Clemente-Castelló, Adrián Castelló,
Rafael Mayo and Enrique S. Quintana-Ortı́

Department of Computer Science and Engineering, Universitat Jaume I, Castelló de la Plana, Spain

Keywords: Cloud Computing, GPU Virtualization, Amazon Web Services (AWS), OpenStack, Resource Management.

Abstract: The use of accelerators, such as graphics processing units (GPUs), to reduce the execution time of compute-
intensive applications has become popular during the past few years. These devices increment the compu-
tational power of a node thanks to their parallel architecture. This trend has led cloud service providers as
Amazon or middlewares such as OpenStack to add virtual machines (VMs) including GPUs to their facilities
instances. To fulfill these needs, the guest hosts must be equipped with GPUs which, unfortunately, will be
barely utilized if a non GPU-enabled VM is running in the host. The solution presented in this work is based
on GPU virtualization and shareability in order to reach an equilibrium between service supply and the ap-
plications’ demand of accelerators. Concretely, we propose to decouple real GPUs from the nodes by using
the virtualization technology rCUDA. With this software configuration, GPUs can be accessed from any VM
avoiding the need of placing a physical GPUs in each guest host. Moreover, we study the viability of this
approach using a public cloud service configuration, and we develop a module for OpenStack in order to add
support for the virtualized devices and the logic to manage them. The results demonstrate this is a viable
configuration which adds flexibility to current and well-known cloud solutions.

1 INTRODUCTION

Nowadays, many cloud vendors have started of-
fering virtual machines (VMs) with graphics pro-
cessing units (GPUs) in order to provide GPGPU
(general-purpose GPU) computation services. A
few relevant examples include Amazon Web Ser-
vices (AWS)1, Penguin Computing2, Softlayer3 and
Microsoft Azure4. In the public scope, one of the
most popular cloud vendors is AWS, which offers
a wide range of preconfigured instances ready to be
launched. Alternatively, owning the proper infrastruc-
ture, a private cloud can be deployed using a specific
middleware such as OpenStack5 or Opennebula6.

Unfortunately, sharing GPU resources among
multiple VMs in cloud environments is more com-
plex than in physical servers. On one hand, instances
in public clouds are not easily customizable. On

1https://aws.amazon.com
2http://www.penguincomputing.com
3http://www.softlayer.com
4https://azure.microsoft.com
5https://www.openstack.org
6http://opennebula.org

the other, although the instances in a private cloud
can be customized in many aspects, when referring
to GPUs the number of options is reduced. As a
result, neither vendors nor tools offer GPGPU ser-
vices. Remote virtualization has been recently pro-
posed to deal with the low-usage problem. Some rel-
evant examples include rCUDA (Peña, 2013), DS-
CUDA (Kawai et al., 2012), gVirtus (Giunta et al.,
2010), vCUDA (Shi et al., 2012), VOCL (Xiao et al.,
2012), and SnuCL (Kim et al., 2012). Roughly
speaking these virtualization frameworks enable clus-
ter configurations with fewer GPUs than nodes. The
goal is that GPU-equipped nodes act as GPGPU
servers, yielding a GPU-sharing solution that poten-
tially achieves a higher overall utilization of the ac-
celerators in the system.

The main goals of this work are to study current
cloud solutions in an HPC GPU-enabled scenario, and
to analyze and improve them by adding flexibility via
GPU virtualization. In order to reach this goal, we
select rCUDA, a virtualization tool that is possibly the
more complete and up-to-date for NVIDIA GPUs.

The rest of the paper is structured as follows. In
Section 2 we introduce the technologies used in this
work; Section 3 summarizes related work; the effort

Iserte, S., Clemente-Castelló, F., Castelló, A., Mayo, R. and Quintana-Ortí, E.
Enabling GPU Virtualization in Cloud Environments.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 2, pages 249-256
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

249

to use AWS is explained in Section 4; while the work
with Openstack is described in Section 5; finally, Sec-
tion 6 summarizes the advances and Section 7 outlines
the next steps of this research.

2 BACKGROUND

2.1 The rCUDA Framework

rCUDA (Peña et al., 2014) is a middleware that en-
ables transparent access to any NVIDIA GPU de-
vice present in a cluster from all compute nodes.
The GPUs can also be shared among nodes, and a
single node can use all the graphic accelerators as
if they were local. rCUDA is structured following
a client-server distributed architecture and its client
exposes the same interface as the regular NVIDIA
CUDA 6.5 release (NVIDIA Corp.,).With this mid-
dleware, applications are not aware that they are ex-
ecuted on top of a virtualization layer. To deal
with new GPU programming models, rCUDA has
been recently extended to accommodate directive-
based models such as OmpSs (Castelló et al., 2015a)
and OpenACC (Castelló et al., 2015b). The inte-
gration of remote GPGPU virtualization with global
resource schedulers such as SLURM (Iserte et al.,
2014) completes this appealing technology, making
accelerator-enabled clusters more flexible and energy-
efficient (Castelló et al., 2014).

2.2 Amazon Web Services

AWS (Amazon Web Services, 2015) is a public cloud
computing provider, composed of several services,
such as cloud-based computation, storage and other
functionality, that enables organizations and/or indi-
viduals to deploy services and applications on de-
mand. These services replace company-owned local
IT infrastructure and provide agility and instant elas-
ticity matching perfectly with enterprise software re-
quirements.

From the point of view of HPC, AWS offers high
performance facilities via instances equipped with
GPUs and high performance network interconnec-
tion.

2.3 OpenStack

OpenStack (OpenStack Foundation, 2015) is a cloud
operating system (OS) that provides Infrastructure as
a Service (IaaS). OpenStack controls large pools of
compute, storage, and networking resources through-
out a datacenter. All these resources are managed

through a dashboard or an API that gives administra-
tors control while empowering their users to provision
resources through a web interface or a command-line
interface. OpenStack supports most recent hypervi-
sors and handles provisioning and life-cycle manage-
ment of VMs. The OpenStack architecture offers flex-
ibility to create a custom cloud, with no proprietary
hardware or software requirements, and the ability to
integrate with legacy systems and third party tech-
nologies.

From the HPC perspective, OpenStack offers high
performance virtual machine configurations with dif-
ferent hardware architectures. Even though in Open-
Stack it is possible to work with GPUs, the Nova
project does not support this architecture yet.

3 STATE-OF-THE-ART

Our solutions to the deficiencies exposed in the pre-
vious section relies on GPU virtualization, sharing
resources in order to attain a fair balance between
supply and demand. While several efforts with the
same goal have been initiated in the past, as exposed
next, none of them is as ambitious as ours. The work
in (Younge et al., 2013) allows the VM managed by
the Xen hypervisor to access the GPUs in a physical
node, but with this solution a node cannot use more
GPUs than those locally hosted, and an idle GPU
cannot be shared with other nodes. The solution
presented by gVirtus (Giunta et al., 2010) virtualizes
GPUs and makes them accessible for any VM in the
cluster. However, this kind of virtualization strongly
depends on the hypervisor, and so does its perfor-
mance. Similar solution is presented in gCloud (Diab
et al., 2013). While this solution is not yet integrated
in a Cloud Computing Manager, its main drawback
is that the application’s code must be modified in or-
der to run in the virtual-GPU environment. A run-
time component to provide abstraction and sharing of
GPUs is presented in (Becchi et al., 2012), which al-
lows scheduling policies to isolate and share GPUs in
a cluster for a set of applications. The work intro-
duced in (Jun et al., 2014) is more mature; however,
it is only focused on compute-intensive HPC applica-
tions.

Our proposal goes further, not only bringing solu-
tions for all kind of HPC applications, but also aiming
to boost flexibility in the use of GPUs.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

250

4 GPGPU SHARE SERVICE WITH
AWS

4.1 Current Features

4.1.1 Instances

An instance is a pre-configured VM focused on an
specific target. Among the large list of instances of-
fered by AWS, we can find specialized versions for
general-purpose (T2, M4 and M3); computer science
(C4 and C3); memory (R3); storage (I2 and D2) and
GPU capable (G2). Each type of instance has its own
purpose and cost (price). Moreover, each type offers
a different number of CPUs as well as network in-
terconnection, which can be: low, medium, high or
10Gb. For our study, we worked in the AWS avail-
ability zone US EAST (N. VIRGINIA). The instances
available in that case present the features reported in
Table 1.

Table 1: Shown HPC instances available in US EAST (N.
VIRGINIA) in June 2015.

Name vCPUs Memory Network GPUs Price

c3.2xlarge 8 15 GiB High 0 $ 0.42

c3.8xlarge 32 60 GiB 10 Gb 0 $ 1.68

g2.2xlarge 8 15 GiB High 1 $ 0.65

g2.8xlarge 32 60 GiB 10 Gb 4 $ 2.6

For the following experiments, we select C3 fam-
ily instances, which are not equipped with GPUs, as
clients; whereas instances of the G2 family will act as
GPU-enabled servers.

4.1.2 Networking

Table 1 shows that each instance integrates a different
network. As the bandwidth is critical when GPU vir-
tualization is applied, we first perform a simple test to
verify the real network bandwidth.

Table 2: IPERF results between selected instances.

Server Client Network Bandwidth

g2.8xlarge c3.2xlarge High 1 Gb/s

g2.8xlarge c3.8xlarge 10Gb 7.5 Gb/s

g2.8xlarge g2.2xlarge High 1 Gb/s

g2.8xlarge g2.8xlarge 10Gb 7.5 Gb/s

To evaluate the actual bandwidth, we executed the
IPERF7 tool between the instances described in Ta-

7http://iperf.fr/

ble 1, with the results shown in Table 2. From this
experiment, we can derive that network “High” cor-
responds to a 1 Gb interconnect while “10 Gb” has
a real bandwidth of 7.5 Gb/s. Moreover, it seems
that the bandwidth of the instances equipped with
a “High” interconnection network is constrained by
software to 1 Gb/s since the theoretical and real band-
width match perfectly. The real gap between sus-
tained and theoretical bandwidth can be observed
with the 10 Gb interconnection, which reaches up to
7.5 Gb/s.

4.1.3 GPUs

An instance relies on a VM that runs on a real
node with its own virtualized components. Therefore
AWS can leverage a virtualization framework to of-
fer GPU services to all the instances. Although the
nvidia-smi command indicates that the GPUs in-
stalled are NVIDIA GRID K520, we need to verify
that these are non-virtualized devices. For this pur-
pose, we execute the NVIDIA SDK bandwidthtest.
As shown in Table 3, the bandwidth achieved in this
test is higher than the network bandwidth, which sug-
gests that the accelerator is an actual GPU.

Table 3: Results of bandwidthtest transferring 32MB us-
ing pageable memory in a local GPU.

Name Data Movement Bandwidth

g2.2xlarge Host to Device 3,004 MB/s

g2.2xlarge Device to Host 2,809 MB/s

g2.8xlarge Host to Device 2,814 MB/s

g2.8xlarge Device to Host 3,182 MB/s

4.2 Testbed Scenarios

All scenarios are based on the maximum number of
instances that a user can freely select without sub-
mitting a formal request. In particular, the maximum
number for “g2.2xlarge” is 5; for “g2.8xlarge” it is 2.
Ant the instances operate the RHEL 7.1 64-bit OS and
version 6.5 of CUDA. We design three configuration
scenarios for our tests:

• Scenario A (Figure 1(a)) shows a common con-
figuration in GPU-accelerated clusters, with each
node populated with a single GPU. Here, a node
can access 5 GPUs using the “High” network.

• Scenario B (Figure 1(b)) is composed of 2 server
nodes, equipped with 4 GPUs each, and a GPU-
less client. This scenario includes a 10Gb net-
work, and the client can execute the application
using up to 8 GPUs.

Enabling GPU Virtualization in Cloud Environments

251

• Scenario C (Figure 1(c)) combines scenarios A
and B. A single client, using a 1Gb network inter-
connection, can leverage 13 GPUs as if they were
local.

Once the scenarios are configured from the point
of view of hardware, the rCUDA middleware needs
to be installed in order to add the required flexibil-
ity to the system. The rCUDA server is executed in
the server nodes and the rCUDA libraries are invoked
from the node that acts as client.

In order to evaluate the network bandwidth us-
ing a remote GPU, we re-applied NVIDIA SDK
bandwidthtest. Table 4 exposes that the bandwidth
is limited by the network.

Table 4: Results of bandwidthtest transferring 32MB us-
ing pageable memory in a remote GPU using rCUDA.

Scenario Data Movement Network Bandwidth

A Host-to-Device High 127 MB/s

A Device-to-Host High 126 MB/s

B Host-to-Device 10 Gb 858 MB/s

B Device-to-Host 10 Gb 843 MB/s

4.3 Experimental Results

The first application is MonteCarloMultiGPU, from
the NVIDIA SDK, a code that is compute bound (its
execution barely involves memory operations). This
was launched with the default configuration, “scal-
ing=weak”, which adjusts the size of the problem de-
pending on the number of accelerators. Figure 2 de-
picts the options per second calculated by the appli-
cation running on the scenarios in Figure 1 as well as
using local GPUs. For clarity, we have removed the
results observed for Scenario B as they are exactly the
same as those obtained from Scenario C with up to 8
GPUs. In this particular case, rCUDA (remote GPUs)
outperforms CUDA (local GPUs) because the former
loads the libraries when the daemon is started (Peña,
2013). With rCUDA we can observe differences in
the results between both scenarios. Here, Scenario
A can increase the throughput because the GPUs do
not share the PCI bus with other devices as each node
only is equipped with one GPU. On the other hand,
when the 4-GPU instances (“g2.8xlarge”) are added
(Scenario C), the PCI bus constrains the communica-
tion bandwidth, hurting the scalability.

The second application, LAMMPS8, is a classi-
cal molecular dynamics simulator that can be applied
at the atomic, meso, or continuum scale. From the

8http://lammps.sandia.gov

implementation perspective, this multi-process appli-
cation employs at least one GPU to host its processes,
but can benefit from the presence of multiple GPUs.
Figure 3(a) shows that, for this application, the use
of remote GPUs does not offer any advantage over
the original CUDA. Furthermore, for the execution
on remote GPUs, the difference between both net-
works is small, although, the results observed with the
“High” network are worse than those obtained with
the “10 Gb” network. In execution of LAMMPS on
a larger problem (see Figure 3(b)), CUDA still per-
forms better, but the interesting point is the execu-
tion time when using remote GPUs. These are almost
the same even with different networks, which indi-
cates that the transfers turn the interconnection net-
work into a bottleneck. For this type of application,
enlarging the problem size compensates the negative
effect of a slower network.

4.4 Discussion

The previous experiments reveal that the AWS GPU-
instances are not appropriate for HPC because nei-
ther the network nor the accelerators are powerful
enough to deliver high performance when running
compute-intensive parallel applications. As (Peña,
2013) demonstrates, network and device types are
critical factors to performance. In other words, AWS
is more oriented toward offering a general-purpose
service than to provide high performance. Also, AWS
fails in offering flexibility as it enforces the user to
choose between a basic instance with a GPU and a
powerful instance with 4 GPUs. Table 1 shows that
the resources of the “g2.8xlarge” are quadrupled, but
so is the cost per hour. Therefore, in the case of
having other necessities (instances type), using GPU
virtualization technology we could in principle at-
tach an accelerator to any type of instance. Further-
more, reducing the budget spent in cloud services is
possible by customizing the resources of the avail-
able instances. For example, we can work on an
instance with 2 GPUs for only $ 1.3 by launching
2 “g2.2xlarge” and using remote GPUs, avoiding to
pay the double for features that we do not need in
“g2.8xlarge”. In terms of GPU-shareability, AWS re-
serves GPU-capable physical machines which will be
waiting for a GPU-instance request. Investing in ex-
pensive accelerators to keep them in a standby state is
counter-productive. It makes more sense to dedicate
less devices, accessible from any machine, resulting
in a higher utilization rate.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

252

1 Gb

1 GPU

1 GPU

1 GPU

1 GPU

1 GPU

(a) 5 remote GPUs over 1GbE.

4 GPUs

4 GPUs

10 Gb

(b) 8 remote GPUs over 10GbE.

1 Gb

4 GPUs

4 GPUs

1 GPU

1 GPU

1 GPU

1 GPU

1 GPU

(c) 13 remote GPUs over 1GbE.
Figure 1: Configurations where an AWS instance, acting as a client, employs several remote GPUs.

Figure 2: NVIDIA SDK MonteCarloMultiGPU execution
using local (CUDA) and remote (Scenarios A and C) GPUs.

(a) Run size = 100.

(b) Run size = 2000.
Figure 3: Execution time of LAMMPS.

5 GPGPU SHARED SERVICE IN
OPENSTACK

5.1 Managing Remote GPUs with
OpenStack

The main idea is to evolve from the original Open-
Stack architecture (see Figure 4(a)) to a solution
where a new shared service, responsible for the GPU
accelerators, becomes integrated into the architecture
(see Figure 4(b)). This new service brings more flexi-
bility when managing GPUs and new working modes
for GPGPU computation in the Cloud. As illustrated
in Figure 5, we alter the original OpenStack Dash-
board with a new parser, which splits the HTTP query
in order to make use of both the GPGPU API for
GPU-related operations, and the Nova API for the rest
of the computations. The new GPGPU Service grants
access to GPUs in a VM, but also allows the creation
of “GPU-pools”, consisting of a set of independent
GPUs (logically disattached from the nodes) that can
be assigned to one or more VMs.

Thanks to the modular approach of the GPGPU
Service, the Nova Project does not need to be modi-
fied, and the tool can be easily ported to other Cloud
Computing solutions.

5.2 Working Modes

The developed module allows users to set up any of
the scenarios displayed in Figure 6. The users are
given two configuration options to decide whether a
physical GPU will be completely reserved for an in-
stance (first column) or the instance will address a
partition of the GPU as if it were a real device (second
column). We refer to this as the “mode”, with possible
values being: “exclusive” or “shared”. Let us assume
there are 4 GPU devices in the cluster (independently
of where they were hosted). An example of these sce-
narios is shown in Figure 6. There, in the “exclusive”

Enabling GPU Virtualization in Cloud Environments

253

(a) Version Icehouse

(b) With GPGPU module
Figure 4: OpenStack Architecture.

Figure 5: Internal Communication among modules.

mode the instance monopolizes all the GPUs; while
in the “shared” mode, the GPUs are partitioned. As a
result of sharing the GPU memory, the instance will
be able to work with up to 8 GPUs, provided that each
partition can be addressed as an independent GPU.

Moreover, the users are also responsible for de-
ciding whether a GPU (or a pool) will be assigned to
other instances. This behavior is refereed as “scope”,
and it determines that a group of instances is logically
connected to a pool of GPUs. Working with the “pub-
lic” scope (bottom row of Figure 6) implies that the
GPUs of a pool can be used simultaneously by all the
instances linked to it. Again, the GPU pool can be
composed of “exclusive” or “shared” GPUs.

5.3 User Interface

In order to deal with the new features, several modi-
fications have been planned in the OpenStack Dash-
board, they have not been implemented yet, though.
First of all, the Instance Launch Panel should be ex-
tended with a new field, where the user could assign
an existing GPU pool, create a new one, or keep the

Figure 6: Examples of working modes.

GPU Pool

New

GPU Count

GPUs Memory (MB)

2048

Public Pool

Exclusive GPUs

Figure 7: Launching Instances and assigning GPUs.

instance without accelerators of this kind. When the
option “New GPU Pool” is chosen, fields for the pool
configuration would appear (see Figure 7). Further-
more, a new panel with the existent GPUs displays all
the information related to GPUs (see Figure 8).

Instances

GPUs

GPUs

1 10.0.0.1:0 1024 Public Pool 1 Shared

2 10.0.0.1:0 2048 Public Pool 2 Shared

3 10.0.0.2:2 4096 Private instance 00362 Private

ID Address Memory Scope Pool or Instance Mode Actions

Figure 8: GPU Information Panel.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

254

5.4 Experimental Results

Following tests were executed on 2 sets of nodes us-
ing a 1Gb Ethernet network. All the nodes composed
by an Intel Xeon E7420 quadcore processor, at 2.13
GHz, and 16 GB DDR2 RAM at 667 MHz.

The first set, in charge of providing the cloud envi-
ronment, consisted of 3 nodes. To deploy an IaaS, we
used OpenStack Icehouse version, and QEMU/KVM
0.12.1 as the hypervisor. A fully-featured Open-
Stack deployment requires at least three nodes: a con-
troller manages the compute nodes where the VMs
are hosted; a network node manages the logic virtual
network for the VMs, and one or more compute nodes
run the hypervisor and VMs.

The second set, composed of 4 nodes, were aux-
iliary servers with a Tesla C1060 GPU each. The OS
was a Centos 6.6; the GPUs used CUDA 6.5; and
rCUDA v5.0 as GPU virtualization framework.

We have designed 6 different set-ups which can
be divided into 2 groups: exclusive and shared GPUs.
The exclusive mode provides, at most, 4 accelerators.
The number of available GPU in shared mode will de-
pend on the partition size. In this case, we halved the
GPU memory, resulting 8 partitions that can be ad-
dressed as independent GPUs. For each group, we de-
ployed virtual clusters of 1, 2 and 3 nodes, where the
application processes were executed. The instances
were launched with the OpenStack predefined fla-
vor m1.medium, which determines a configuration of
VMs consisting of 2 cores and 4 GB of memory.

MCUDA-MEME (Liu et al., 2010) was the appli-
cation selected to test the set-ups. Thus is an MPI
software, where each process must have access to
a GPU. Therefore, the number of GPUs determines
the maximum number of processes we can launch.
Figure 9 compares the execution time of the appli-
cation with different configurations over different se-
tups. We used up to 3 nodes to spread the processes
and launched up to 8 processes (only 4 in exclusive
mode), one per remote GPU. We can first observe that
the performance is higher with more than one node,
because the traffic network is distributed among the
nodes. In addition, the shortest execution time is ob-
tained by both modes (exclusive and shared) when
running their maximum number of processes with
more than one node. This seems to imply that it is not
worth to scale (increase) the number of resources, be-
cause the performance growth rate is barely increas-
ing. Although, the time is lower when the GPUs are
shared, the setup cannot take advantage of an increase
in the number of devices.

Figure 9: Scalability results of MCUDAMEME with a dif-
ferent number of MPI processes.

5.5 Discussion

The network interconnect restricts the performance of
our executions. The analysis in (Peña, 2013) reveals
that improving the network infrastructure can make a
big different for GPU virtualization.

The most remarkable achievement is the wide
range of possible configurations and the flexibility to
adapt a system to fit the user requirements. In addi-
tion, with this virtualization technology, the requests
for GPU devices can be fulfilled with small invest-
ment in infrastructure and maintenance. Energy can
be saved not only thanks to the remote access and
the ability to emulate several GPUs using only a few
real ones, but also by consolidating the accelerators
in a single machine (when possible), or turning down
nodes when their GPUs are idle.

6 CONCLUSIONS

We have presented a complete study of the possibil-
ities offered by AWS when it comes to GPUs. The
constraints imposed by this service motivated us to
deploy our own private cloud, in order to gain flexibil-
ity when dealing with these accelerators. For this pur-
pose, we have introduced an extension of OpenStack
which can be easily exploited to create GPU-instances
as well as manage the physical GPUs to better profit.

As we expected, due to the limited bandwidth of
the interconnects used in the experimentation, the per-
formances observed for the GPU virtualized scenarios
in the tests were quite low. On the other hand, we
have created new operation modes that open interest-
ing new ways to leverage GPUs in situations where
having access to a GPU is more important than hav-
ing a powerful GPU to boost the performance.

Enabling GPU Virtualization in Cloud Environments

255

7 FUTURE WORK

The first item in the list of pending work is an up-
grade of the network to an interconnect that is more
prone to HPC. In particular, porting the setup and the
tests to an infrastructure with an Infiniband network
will shed light on the viability of this kind of solu-
tions. Similar reasons, motivate us to try other Cloud
vendors which better support for HPC. Looking for
situations where performance is less important than
flexibility will drive us to explore alternative tools to
easily deploy GPU-programming computer labs.

Finally, an interesting future work is to design new
strategies in order to decide where a remote GPUs is
created and assigned to a physical device Concretely,
to innovate scheduling policies can enhance the flexi-
bility offered by the GPGPU module for OpenStack.

ACKNOWLEDGEMENTS

The authors would like to thank the IT members of
the department Gustavo Edo and Vicente Roca for
their help. This research was supported by Universitat
Jaume I research project (P11B2013-21); and project
TIN2014-53495-R from MINECO and FEDER. The
initial version of rCUDA was jointly developed by
Universitat Politècnica de València (UPV) and Uni-
versitat Jaume I de Castellón until year 2010. This
initial development was later split into two branches.
Part of the UPV version was used in this paper
and it was supported by Generalitat Valenciana un-
der Grants PROMETEO 2008/060 and Prometeo II
2013/009.

REFERENCES

Amazon Web Services (2015). Amazon web services.
http://aws.amazon.com. Accessed: 2015-10.

Becchi, M., Sajjapongse, K., Graves, I., Procter, A., Ravi,
V., and Chakradhar, S. (2012). A virtual memory
based runtime to support multi-tenancy in clusters
with GPUs. In 21st Int. symp. on High-Performance
Parallel and Distributed Computing.

Castelló, A., Duato, J., Mayo, R., Peña, A. J., Quintana-
Ortı́, E. S., Roca, V., and Silla, F. (2014). On the use
of remote GPUs and low-power processors for the ac-
celeration of scientific applications. In The Fourth Int.
Conf. on Smart Grids, Green Communications and IT
Energy-aware Technologies, pages 57–62, France.

Castelló, A., Mayo, R., Planas, J., and Quintana-Ortı́, E. S.
(2015a). Exploiting task-parallelism on GPU clusters
via OmpSs and rCUDA virtualization. In I IEEE Int.
Workshop on Reengineering for Parallelism in Het-
erogeneous Parallel Platforms, Helsinki (Finland).

Castelló, A., Peña, A. J., Mayo, R., Balaji, P., and Quintana-
Ortı́, E. S. (2015b). Exploring the suitability of re-
mote GPGPU virtualization for the OpenACC pro-
gramming model using rCUDA. In IEEE Int. Con-
ference on Cluster Computing, Chicago, IL (USA).

Diab, K. M., Rafique, M. M., and Hefeeda, M. (2013). Dy-
namic sharing of GPUs in cloud systems. In Parallel
and Distributed Processing Symp. Workshops & PhD
Forum, 2013 IEEE 27th International.

Giunta, G., Montella, R., Agrillo, G., and Coviello, G.
(2010). A GPGPU transparent virtualization compo-
nent for high performance computing clouds. In Euro-
Par, Parallel Processing, pages 379–391. Springer.

Iserte, S., Castelló, A., Mayo, R., Quintana-Ortı́, E. S.,
Reaño, C., Prades, J., Silla, F., and Duato, J. (2014).
SLURM support for remote GPU virtualization: Im-
plementation and performance study. In Int. Sym-
posium on Computer Architecture and High Perfor-
mance Computing, Paris, France.

Jun, T. J., Van Quoc Dung, M. H. Y., Kim, D., Cho, H.,
and Hahm, J. (2014). GPGPU enabled HPC cloud
platform based on OpenStack.

Kawai, A., Yasuoka, K., Yoshikawa, K., and Narumi, T.
(2012). Distributed-shared CUDA: Virtualization of
large-scale GPU systems for programmability and re-
liability. In The Fourth Int. Conf. on Future Computa-
tional Technologies and Applications, pages 7–12.

Kim, J., Seo, S., Lee, J., Nah, J., Jo, G., and Lee, J.
(2012). SnuCL: an OpenCL framework for hetero-
geneous CPU/GPU clusters. In Int. Conf. on Super-
computing (ICS).

Liu, Y., Schmidt, B., Liu, W., and Maskell, D. L. (2010).
CUDA-MEME: Accelerating motif discovery in bio-
logical sequences using CUDA-enabled graphics pro-
cessing units. Pattern Recognition Letters, 31(14).

NVIDIA Corp. CUDA API Reference Manual Version 6.5.
OpenStack Foundation (2015). OpenStack.

http://www.openstack.org. Accessed: 2015-10.
Peña, A. J. (2013). Virtualization of accelerators in high

performance clusters. PhD thesis, Universitat Jaume
I, Castellon, Spain.

Peña, A. J., Reaño, C., Silla, F., Mayo, R., Quintana-Ortı́,
E. S., and Duato, J. (2014). A complete and efficient
CUDA-sharing solution for HPC clusters. Parallel
Computer, 40(10).

Shi, L., Chen, H., Sun, J., and Li, K. (2012). vCUDA:
GPU-accelerated high-performance computing in vir-
tual machines. IEEE Trans. on Comput., 61(6).

Xiao, S., Balaji, P., Zhu, Q., Thakur, R., Coghlan, S., Lin,
H., Wen, G., Hong, J., and Feng, W. (2012). VOCL:
An optimized environment for transparent virtualiza-
tion of graphics processing units. In Innovative Paral-
lel Computing. IEEE.

Younge, A. J., Walters, J. P., Crago, S., and Fox, G. C.
(2013). Enabling high performance computing in
cloud infrastructure using virtualized GPUs.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

256

