
Becoming Agile in a Non-disruptive Way
Is It Possible?

Ilia Bider and Oscar Söderberg
DSV, Stockholm University, Stockholm, Sweden

Keywords: Agile, Software Development, Software Engineering, Challenges, Tacit Knowledge, Knowledge
Transformation.

Abstract: Due to the increasing popularity of Agile Software Development (ASD), more software development teams
are planning to transit to ASD. As ASD substantially differs from the traditional Software Development
(TSD), there are a number of issues and challenges that needs to be overcome when transiting to ASD. One
of the most difficult challenges here is acquiring an agile “mindset”. The question arises whether it is possible
to acquire this mindset with the minimum disruption of an already established TSD process. The paper tries
to answer this question by developing a non-disruptive method of transition to ASD, while using a knowledge
transformation perspective to identify the main features of ASD mindset and how it differs from the one of
TSD. To map the current mindset and plan the movement to the mindset that is more agile, the paper suggests
using a process modelling technique that considers the development process as a socio-technical system with
components that correspond to the phases of the development process. The method suggested in the paper has
been designed in connection to a business case of a development team interested to transit to agility in a non-
disruptive manner.

1 INTRODUCTION

1.1 Formulating a Problem

Agile Software Development (ASD) has appeared as
a reaction on the increasing rate of changes in system
requirements, e.g. see (Highsmith et al., 2000):
“requirements change at rates that swamp traditional
methods”. Since 15 years from its inception, ASD
from a niched development methodology, mainly
used in the web development, made its way to
becoming one of the mainstream methodologies. This
leads to organizations that use a phase-based
methodology become more willing to move to ASD.

Due to the essential differences between the
Traditional Software Development (TSD) and ASD,
a transition from one to another is quite difficult and
includes a number of challenges and pitfalls that are
reported in research papers (Conboy et al., 2011;
Hajjdiab and Taleb, 2011), books (Smith and Sidky,
2009), and practitioners blogs (Hunt, 2015). The main
difficulty here is that an ASD team requires having a
“mindset” that differs from the one of a TSD team.

There are a number of books, such as, (Hajjdiab
and Taleb, 2011), that suggest methods for transiting

from TSD to ASD. However, following these
methods presumes that the decision to complete such
a transition has been made, and risks attached to the
transition understood. In addition, a decision on
which brand of Agile, e.g. XP, or SCRUM, to try
needs to be taken quite early in the transition process.

Understanding the transition risks and making a
right for the given situation choice of the agile
practice requires experience. Thus, such a transition
has better chances for success if it is led by an
experienced person, e.g. an agile coach. Even in this
case, there is no guarantee of success. What is more,
even if the transition was successful in the end, it
could cause a disruption of the existing development
process for quite long time. If the existing process
does not work, taking the risk and introducing the
disruption are fully justified. However, if the process
works satisfactory, there could be doubts whether it
make sense to jump into the unknown taking the risks
and going through the disturbances without knowing
whether a better development process will emerge
after the transition has been completed.

In connection to the deliberations above, a
question arises whether it is possible to gradually
transit from TSD to ASD with the minimum

294
Bider, I. and Söderberg, O.
Becoming Agile in a Non-disruptive Way - Is It Possible?.
In Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS 2016) - Volume 1, pages 294-305
ISBN: 978-989-758-187-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

disruption of the existing development process? In
other words, the question is whether there already
exists a method of non-disruptive transition to ASD,
and if not, whether such method can be devised.
Ideally, such a method should improve the existing
development process even before the full transition
cycle has been completed. It should be also possible
to delay taking the decision on which brand of ASD
to use, and even stop the transition at some point
being satisfied with what has been achieved, and not
taking risks of going farther.

1.2 Overview of a Solution

This paper is a report on the research aimed at
answering this question. To the best of our
knowledge, there is no non-disruptive method of
transition to ASD described in the research or
practical literature. Therefore, we use Design Science
(DS) approach (Peffers et al., 2007) to answer the
question posed above, i.e. we aim to answer it by
designing such a method and testing it in practice.

According to the case studies reported in the
literature, e.g. (Hajjdiab and Taleb, 2011; Conboy et
al., 2011), the biggest issue when transiting to ASD is
acquiring the agile mindset by the development team.
The latter requires all team to acquire a number of
skills, which might not be necessary in the existing
TSD. For example, social and communication skills
are mandatory for all members, so that they can meet
and talk to stakeholders. Therefore, the main focus of
our design work is directed to acquiring the agile
mindset and a set of skills that is included in it.

To design a method that leads to changing the
mindset of the team to the agile mindset, we need to:

1. Find a basis on which to identify the main
features of the agile mindset and in what way it
differs from the mindset of a more traditional
team.

2. Find a way of mapping (modelling) the mindset
of the current team so that the difference
between the current mindset and the targeted
one (agile) can be measured and a plan of
action aimed to shorten this distance can be
developed.

As far as the first item on the list is concerned, the
most commonly used framework for this kind of goal
is Agile Manifesto (Agile Alliance, 2001). However,
we consider it too vague and allowing multiple
interpretations, which leads to misunderstandings and
heated arguments in the agile community (Weaver,
2011); see also critique of Agile Manifesto in
(Conboy and Fitzgerald, 2004). We needed a more
“scientific” basis for developing a non-disruptive

method of transition to agile. For this end, we have
chosen an approach suggested in (Bider, 2014) that is
based on considering TSD and ASD projects from the
knowledge transformation perspective. Based on this
consideration, (Bider, 2014) defines the essence of
ASD in difference from TSD and set some
requirements on the structure of the agile project, its
team, relations with the customer and techniques used
in the project. The results from (Bider, 2014) do not
contradict Agile Manifesto, but rather more clearly
underline the main features of ASD and the difference
between ASD and TSD.

As far as the second item on the list above is
concerned, there are a number of methods for
evaluating and measuring the current level of agility,
see for example (Sidky, 2007). However, mostly,
these works rely on Agile Manifesto when
determining what the agile mindset is. Furthermore,
they are based on the decision of transition to agile
being already taken. In addition, these are general
methods not connected to the current structure of the
development process accepted in the given
organization. In other ways, we consider that the
existing methods of evaluation of the level of agility
do not fit the task of creating a method of non-
disruptive transition to agile.

In this work, we have created our own approach
to maping (modelling) the mindset of the
development team that is suitable for planning steps
for advancing the current mindset towards the agile
one. This approach is based on the business process
modelling technics suggested in (Bider and Perjons,
2015; Bider and Otto, 2015) and called step-
relationship modelling in (Bider and Perjons, 2015).
The technique uses a system view on the business
process considering it as a number of components (or
steps) connected with each other via various
relationships. The model built according to this
technique focuses on depicting these relationships
and their properties. When adopting step-relationship
modelling technique for our purpose, we concentrated
on relationships between the teams that man the
components/steps of the given system development
process.

One of the main activities in a Design Science
(DS) research project is testing the new
artefact/solution, which is a method in our case, in at
least one real situation. DS does not set a restriction
on when in the course of the research project such test
needs to be started, e.g. after the design has been
finished or in parallel with the design. In our case, the
research was conducted in parallel with investigating
a business case in the IT department of an insurance
company. This department was interested in adopting

Becoming Agile in a Non-disruptive Way - Is It Possible?

295

a non-disruptive approach of moving towards agility,
and it was also used as a test bed for the method. The
test is far from being completed, but it was run up-to
the department management understood enough of
the suggested method and became prepared for
completing the first step on the way to agility.

The rest of the paper is structured in the following
manner. Section 2 gives a brief overview of the
research methodology and knowledge base used in
this research and the research background. Section 3
describes the proposed method. Section 4 discusses
testing. Finally, in Section 5, we summarize the
results achieved and draw plans for the future.

2 RESEARCH BACKGROUND

2.1 The Project History and
Methodology

This research has been initiated by the management
of an IT department in a large insurance company
expressing their interest in transition to a more agile
development process. The management did not
possess much knowledge on the essence of ASD, or
its various brands. They were interested in an
approach that included minimum risks and gave a
possibility to learn the essence of ASD on the way,
while allowing to delay the decision of which
particular brand/practice of ASD to adopt. The
literary study, part of which is presented in Section 1,
has shown that there are a number of practical
methods of transition to agile. Nevertheless, none of
them was particularly suitable for the requirements
that came from the IT department. These
requirements were reformulated into the question of
“whether it is possible to gradually transit from TSD
to ASD with the minimum disruption of the existing
development process?” posed in Section 1.1 To
answer this question, we decided to develop a “non-
disruptive” method of transition to agile.

The development of our method follows the
pattern of Design Science (DS) research (Peffers et
al., 2007; Baskerville et al., 2009), which is related to
finding new solutions for problems known or
unknown. To count as a design science solution, it
should be of a generic nature, i.e. applicable not only
to one unique situation, but to a class of similar
situations. DS research can be considered as an
activity aimed at generating and testing hypotheses
for future adoption by practice (Bider et al., 2013).

Our method development ran in parallel with the
investigation of the business case of the IT
department in the insurance company. More exactly,

we investigated and modelled the structure of the
development process in the department including the
skill-sets of the process participants and the ways they
communicated with each other. The activities were
carried out through interviews with representatives of
various phases in the process, and studying the
internal documentation.

One of the key activity in a DS project is
implementation and verification of a generic solution,
or artefact in terms of (Peffers et al., 2007), in at least
one situation. This activity is also referred to as
demonstration or proof of concept in the literature
devoted to methodology of DS (Peffers et al., 2007).
The demonstration phase in this research is a
continuation of our case study. More exactly, we
worked out a suggestion on the first steps of the
transition to agility for the IT department; and it was
accepted by the management. More details on this
activity are presented in Section 5.

As already has been mentioned in Section 1, we
used some existing theoretical frameworks as a
knowledge base when developing our method. As we
do not expect that these frameworks are known to the
reader, in the next sub-sections, we give a short
overview of them before presenting our method.

2.2 Agility from the Knowledge
Transformation Perspective

In this section, we give a short summary of TSD and
ASD models built based on the knowledge
transformation perspective presented in (Bider,
2014). These models, in their own turn, are built
based on the SECI model (Nonaka, 1994). SECI stays
for Socialization – Externalization – Combination –
Internalization, and it explains the ways of how
knowledge is created in an organization while being
transformed from the tacit form (in the heads of the
people) to the explicit one (e.g. on the paper) and
back, see Figure 1. The cycle of knowledge creation
consists of the following four steps or phases:

1. The cycle starts with Socialization, where tacit
knowledge is transferred from the heads of one
group of people to others via informal means,
such as conversations during the coffee breaks,
meetings, observations, working together, etc.

2. The next phase is Externalization, which is the
conversion of knowledge from the tacit form
into the explicit one, e.g. a model of situation.

3. The third phase is Combination, which is
transforming the externalized (explicit)
knowledge in a new form using existing
knowledge, e.g. solution design principles.

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

296

4. The last phase is Internalization, which is
converting the explicit knowledge, e.g. a
solution, in the tacit knowledge of people who
will apply this knowledge to any situation that
warrants it.

Figure 1: SECI diagram of knowledge creation.

Applying ideas from SECI to software development,
(Bider, 2014) designed two models of knowledge
transformation in software development projects, one
- for Traditional Software Development (TSD), and
another - for Agile Software Development (ASD).
Both are presented in Figure 2. In both cases, the
knowledge transformation cycles starts with tacit
knowledge possessed by stakeholders on
problems/needs to be solved/satisfied by a new
software system. The next step common for both
models is embedment when the knowledge on a
solution becomes embedded in the system that is
considered by its users as a whole possessing its own
behaviour. The last step in the knowledge
transformation in both models is adoption –
transforming the knowledge embedded in the system

into the tacit knowledge of the system’s users on how
to use this system in various working situations.

The models for TSD and ASD in Figure 2
substantially differ in the following aspects:

1. The nature of the first phase in ASD differs
from that of TSD. It consists in transferring
tacit knowledge on the problem and needs from
the stakeholders to the development team. This
phase corresponds to Socialization in Figure 2.
Also, Design and Coding are merged into one
phase Embedment. This can be defined as the
first motto of agility: “Avoid or delay
explication of knowledge as much as possible.
Ideally go from tacit knowledge directly to the
embedded one.”

2. In addition, one big cycle is substituted by
many smaller and shorter ones. The system is
built iteratively starting with the basic
functionality. During the exploitation of the
basic system, better understanding of the needs
is acquired, which is converted in adding
details to the system in the next iterations. In
other words, the second motto of agility can be
defined as: “Develop and introduce in practice
as little as possible as soon as possible, and
build upon it in the following iterations”.

Based on the analysis of the knowledge
transformation models for TSD and ASD, (Bider,
2014) identifies 6 properties of the development
process that differentiate TSD and ASD; these are
presented in Table 1. The first three properties, team,
user involvement and agreement, belong to the social

Figure 2: Left – ECEA model (Externalization-Combination-Embedment-Adoption) for TSD.
Right - SEA model (Socialization-Embedment-Adoption) for ASD. Adapted from (Bider, 2014).

Learning to use
in own practice

Solutions
Tacit knowledge

So
ftw

ar
e

sy
st

em

Combination

Em
be

dd
ed

 k
no

w
le

dg
e

Em
be

dd
ed

 k
no

w
le

dg
e

Adoption

Requirements
discovery

Embedment

Coding

Problems/needs
Embedded knowledge

Learning to use
in own practice

Requirements
engineering

Coding Design

Problems/needs
Embedded knowledge

Solutions
Tacit knowledge

Explicit knowledge

Ex
pl

ic
it

kn
ow

le
dg

e

Design Specification

R
eq

ui
re

m
en

ts
 s

pe
ci

fic
at

io
ns

So
ftw

ar
e

sy
st

em

Externalization

Ex
pl

ic
it

kn
ow

le
dg

e

Explicit knowledge

CombinationCombinationEmbedment

Em
be

dd
ed

 k
no

w
le

dg
e

Em
be

dd
ed

 k
no

w
le

dg
e

Adoption

Traditional Agile

Requirements
engineering +
Design + Coding

Becoming Agile in a Non-disruptive Way - Is It Possible?

297

perspective of system development, while the second
three properties, core system, architecture and tools,
belong to the technical perspective of system
development. We will be using these differentiating
properties when developing our non-disruptive
method later in Section 4.

Table 1: Properties that differentiate ASD from TSD.

ASD TSD
1 One team consisting

of “universal”
members

Several specialized
teams

2 Stakeholders
involvement during
the duration of the
project

Stakeholders
involvement during the
Externalization and
Adoption phases

3 Non-contractual
agreement based on
trust

Contractual agreement is
possible

4 Possibility to identify
and agree on a core
system that can be
expanded in
consequent iterations

Not mandatory, but can
be employed.

5 Architecture aimed at
expansion

Architecture aimed at
fulfilling the identified
requirements

6 Employing high-level
tools, e.g. domain-
specific languages,
development
platforms, libraries

Not mandatory – low
level, and universal tools
can be employed

2.3 Step-relationship Model

A step-relationship model represents a business
process as a (relatively) small number of steps (Bider
and Perjons, 2015), or functional components (Bider
and Otto, 2015), connected with each other through
various types of relationships. Each type of
relationships, i.e. a relation in a mathematical sense,
represents a separate view of the model.

There are two ways of representing a relationships
type, graphical and matrix. In the graphical form, the
steps/components are presented as rectangles (boxes),
while arrows between the rectangles show
relationships between the corresponding
steps/functional components. Labels inside the
rectangles name the steps, while labels on the arrows
give additional characteristics to the relationships. As
an example, Figure 3 represents output-input
relationships in a sample software development
process. Each arrow shows formalized output of one
step/component serving as an input to another
step/component.

Figure 3: Graphical presentation of relationships.

In the matrix form, a relationships type is represented
as a square matrix where both columns and rows
correspond to steps/components of the process. A sell
(a,b) where a is a column and b is a row is reserved
for describing a relationship of the given type
between step a and step b, if any exists. As an
example, Table 2 presents the same output-input
relationships type as Figure 3, but in the matrix form.
More examples of relationships in the graphical and
matrix forms are presented in Section 3.

Table 2: An example of presenting relationships in the
matrix form.

 BM RE AD Impl Test
BM
RE Model Bugs
AD Reqs
Impl Design Bugs
Test Software

3 DESIGNING A METHOD

3.1 Creating a Single Team

There are several essential properties of ASD that
need to be achieved in order to successfully transit to
agile. When developing our method, we assume that
at least some of them can be achieved without
essentially changing the current process. We also

Requirements
Engineering (RE)

Analysis & Design
(AD)

Implementation
(Impl)

Test

Business model

Design

Software

Functionality bugs

Technical Bugs

Business Modeling
(BM)

Requirements

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

298

assume that it is possible to somehow measure the
progress achieved on the way.

According to the first row in Table 1, ASD has a
single development team of members that could do
all kind of work in the process, including talking to
the stakeholders and programming. This is not
mandatory for TSD, where separate specialized
nonintersecting teams can complete the job. Also, in
a single ASD team, all members communicate with
each other frequently, which is not required in TSD.
In TSD, informal communication in the frame of the
development process may concentrate inside each
specialized team, while the formal output-input
channels are used for passing over the job between
the teams, as is represented in Figure 3, and Table 2.

The two properties of (a) having specialized teams
and (b) lack of communication between the teams are
related to each other. A narrow specialization may
create a hinder for communication due to differences
in professional jargons and culture.

Based on the deliberation above, we have
identified two properties of the development process
that need to be measured and improved, in the first
hand, when transiting to the agile approach. These
are: (a) intensity of communication between the
teams, and (b) ability of members of one specialized
team to do the job assigned to the other teams. These
two properties can be represented via relationships
between the teams manning the steps. Technically,
these relationships can be represented with the help
of two matrixes: (a) the communication intensity
matrix, and (b) the cross-competency matrix, as is
discussed in the next subsections.

3.1.1 Increasing Communication Intensity

An example of the communication intensity matrix
for the model in Figure 1 is presented in Table 3. A
cell (a,b) in the communication intensity matrix,
where a stays for a column and b for a row, defines
the intensity of communication between teams of
steps a and b initiated by team a. Interpretation of the
values in the cells depends on the level of separation
between the teams, e.g. one site or multiple sites. In
the example presented in Table 3, communication are
supposed to take place in the form of meetings, were
High means daily communications meetings.
Average means 3 times a week, Low means once a
week. Empty cells outside the diagonal mean that no
communication happens between the corresponding
teams.

Note that the communication intensity matrix is
aimed at characterizing the intensity of
communication between the specialized teams,

assumption being that inside the teams their members
communicate/collaborate in a natural way. If this is
not true, the diagonal of the matrix can be used for
representing communication intensity inside the
teams.

Table 3: An example of a communication intensity matrix.

 BM RE AD Impl Test
BM High Average Low
RE High Average High Low
AD High High High
Impl Low Average High
Test Low Low Average High

The communication intensity matrix can be used for
both depicting the communication intensity in the
current state and planning for increasing the
communication intensity. The latter can be done by
changing values of some cells in the matrix to reflect
the goal of increasing communication intensity. To
facilitate the planning work, we have transferred
some information from the output-input matrix, see
Table 2, to the communication intensity matrix in
Figure 3. More specifically, we make the borders of
cell (a,b) thick in all cases where cell (a,b) is not
empty in the output-input matrix. The latter means
that the column step a produces a formalized input for
the row step b, e.g. design specification. In addition,
we made the background of cell (a,b) grey in case cell
(b,a) is nonempty in the output-input matrix (Table
2). The later means that the column step b receives
formalized output from the row step b.

Formally, the result of adding thick borders and
grey background means that the matrix presented in
Table 3 is a merger of a “pure” intensity
communication matrix (without thick borders and
grey background) with the simplified output/input
matrix (the content of the cells in the latter is not
represented in the merger) and a transposition of the
latter. The merged communication extensity matrix is
more convenient for planning the next step of
transition to agile as described below.

One can expect that communication should be
more extensive between the steps that are connected
with an output-input relationship. Formalized
outputs, like requirements or a design specification,
in a software development process cannot be made
totally formal, and they need interpretation from the
receiving team. Misinterpretation can lead to a wrong
system being delivered to the customer. The thick
border represents the needs of informal explanation
of the formalized output when it is being transferred
to the receiving team. The grey background
represents the need for communication between the

Becoming Agile in a Non-disruptive Way - Is It Possible?

299

receiving team and the producing team while the
former is doing their part of work. Even when the
receiving team get the informal explanations on their
formalized input, there can be a need to verify their
understanding from the originator of the input. For
example, the designers may need to contact the
requirements engineers later on when they start
converting certain requirements into design. In (Bider
and Perjons, 2015), this type of backward
communication is called week dependencies, while
(Bider and Otto, 2015) refer to them as to feedback
links.

Summarizing the above, when planning the next
goal in intensifying the communication between the
teams, it is worthwhile to start intensification that
corresponds to cells with thick borders or grey
background. For example, the next goal for the
situation presented in Table 3, could be the one
described in Table 4, where the difference is
presented in bold. The difference consists of
intensifying forward communication between
Analysis & Design and Implementation, and
backward communication between Analysis &
Design and Requirements Engineering. Such measure
makes sense even for improving the already existing
process.

Table 4: Next step in communication intensity.

 BM RE AD Impl Test
BM High Average Low
RE High High High Low
AD High High High
Impl Low High High
Test Low Low Average High

3.1.2 Increasing Cross-Competency

While the communication intensity matrix can be
considered as a tool of intensifying internal
communication in the future single team, the cross-
competency matrix can be considered as a tool for
achieving “universality” of its members (see the first
row in Table 1). An example of such a matrix is
presented in Table 5. In this matrix a cell (a,b), where
a stays for a column and b for a row, defines the
percentage of the team a members that have working
knowledge on the tasks completed in the step b. An
empty non-diagonal cell means 0%. Here, having
working knowledge on a specific task means that a
person in question has some practical experience of
this task.

As with the communication intensity matrix, we
add to this matrix some information from the output-

input matrix in the form of thick borders around cells
and grey background. This information is aimed at
helping to plan the next step of transition to agile.
Marked cells should be targeted for increasing cross-
competence in the first place, as this can decrease the
risks of misinterpretation of the formalized inputs and
misunderstanding in communications. Such measure
might be helpful even for improving the existing
process.

Table 5: An example of cross-competency matrix.

 BM RE AD Impl. Test
BM 50% 75%
RE 75% 75% 50%
AD 75%
Impl. 50% 50% 75% 50%
Test 50%

An example of the next planned step for the situation
presented in Table 5 is presented in Table 6, where
the difference is presented in bold. The difference
consists of increasing cross-competency of the
Requirements Engineering and Implementation
Teams.

Table 6: next step in cross-competency.

 BM RE AD Impl Test
BM 50% 75%
RE 75% 75% 50%
AD 75% 50% 50%
Impl 50% 50% 75% 50%
Test 50% 50%

As cross-competency requires working knowledge of
the tasks completed by other teams, it is not enough
just to send people to a course. The proper way of
achieving cross-competency in cell (a,b) in the frame
of the existing software development process is to
send some people from team a to work in team b for
some time. This can degrade the overall performance
in the beginning, but this one-time cost is worth
taking, as increase in cross-competency minimizes
the risk of producing the wrong software (see
deliberation above).

When planning increase in cross-competency for
Implementation step with other teams, it is
worthwhile to consider row 6 in Table 1 that refer to
using high-level tools. This property has not been
introduced for the sake of creating a single team of
“universal” members, but for being able to complete
development loops in a speedy manner. However,
having high-level development tools may also help in
acquiring programming skills by people without

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

300

technical education. So, if such tools are not already
employed, it could be advantageous to start transition
from low-level programming to using high-level tools
before increasing competency in programming in
other teams.

3.2 Avoiding Explication of Knowledge

As was discussed in Section 2.2, one of the ASD
principles is to delay or avoid explication of
knowledge, ideally, by going from the tacit
understanding of problems/needs to building
software. This implies skipping creating detailed
requirements and design specifications. More
specifically, requirements are left on the tacit level as
a general understanding/image of the problems and
needs, while design is done via proper structuring of
the code. The latter could be facilitated by using high-
level development tools, like domain specific
languages, component libraries.

Avoiding explicit requirements and design does
not mean that these activities are excluded; they are
done on the tacit level. To reach the level of
proficiency when requirements and design are done
on the tacit level is difficult, if ever possible, without
obtaining skills in both requirements engineering and
design. Obtaining these skills by all team members in
the frame of the existing phase-based process has
already been discussed in Section 3.1.

The next question is how to shorten the time
period from the first contact with the customer to
starting producing executable code while still
remaining in the frame of a traditional software
development project. We believe that this can be

achieved by gradual transition from sequential
execution of the steps of development process to the
semi-parallel execution. The latter means starting the
design before all requirements are discovered, and
starting coding before all design specifications are
created.

The current level of parallelism can be
represented in a graphical form as a timeline intensity
diagram (Bider and Otto, 2015). An example of such
a diagram that corresponds to Figure 3 is presented in
Figure 4. The difference between Figure 3 and 4 is
that in Figure 4, the shapes representing steps do not
have rectangular form. The upper border of the shape
can be of any form representing the increase/decrease
in the amount of work being done at certain moments
of time. The intensity of work can be increasing or
decreasing with time, or can be first increasing and
then decreasing or vice versa (not illustrated in Figure
4). In addition, the step shapes in Figure 4 are placed
in the order they are executed. If some steps run partly
in parallel, the projections of their shapes on the time
axes will intersect. In the example of Figure 4, there
are two occasions of the parallelism, namely (1) step
Analysis & Design runs partly in parallel with
Implementation, and step Implementation runs partly
in parallel with Test.

Timeline intensity diagram can be used for
planning the next goal for transition to agile in the
same way as communication intensity and cross-
competency matrices are used, see Fig. 5.

In the example of Figure 5, all steps run partially
in parallel, which is rather a radical change when
starting from Figure 4. If such a transition is too
difficult to complete in one go, then smaller goals can

Figure 4: An example of timeline intensity diagram.

Becoming Agile in a Non-disruptive Way - Is It Possible?

301

Figure 5: An example of timeline intensity diagram to be achieved.

be set in between, e.g. where only two new steps run
in parallel.

Working in parallel means that the formalized
output is delivered to the next step in portions. This
requires understanding of how the formalized output
is used by the next step so that each portion is
relatively independent and can be successfully used
by the team of the next step for producing its own
formalized output. Thus parallel execution requires
certain degree of cross-competency on behave of the
output producer. In addition, it requires efficient
communication channels between the steps. Parallel
execution of steps in software development bares a
risk that the already produced portion of the given
step output, e.g. requirements, can be negated when
the work progresses. If this “negated” portion has
already been sent to the next step, e.g. design, and is
under processing of this step’s team, then the
information on the negation should be immediately
made available for this team. Getting this information
can stop or postpone their activities related to the
questionable portion of the requirements. Note that
with an experienced team, the advantages of running
in parallel, e.g. shorten time, overweight the risks
described above.

Summarizing the deliberation above, transition to
parallel execution of two steps should be planned
when a certain degree of cross-competency and
communication intensity between these steps has

already been achieved.
It is also worthwhile to mention that portioning of

the output needs to take into account architectural
considerations. Portions that are sent first need to be
significant for building a skeleton of the architecture,
and portions that are sent later should be relatively
independent of each other and should not
considerably affect the architecture.

3.3 Other Considerations

In the previous part of this section we mainly
discussed three issues that can help in transition to
agile: inter- step communication, cross-competency
and parallel execution. Furthermore, we touched the
issue of high-level development tools that facilitates
both achieving cross-competency, and excluding
explicit design. In addition, we also touched the
architectural issues that need to be taken care of when
planning transition to the parallel execution of steps.
We also have shown that all these issues are
interconnected and should be considered together
when planning transition to agile.

We believe that after dealing with the issues
discussed in this section the team will acquire the
agile mindset, and became prepared for sorting out
the remaining issue on the way to agility. Consider,
for example, the issue of stakeholders involvement
during the whole project. Such involvement is

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

302

impossible to arrange in a traditional phase based
development process based on two reasons. Firstly,
people outside business modelling and requirements
engineers might not have competency of talking to
non-technical people. Secondly, non-technical
stakeholders seldom understand technical
documentation, which will prevent their engagement.
The first problem can be solved through cross-
competency, and the second - through parallel
execution that ensures that the new portion of
software will be produced in a speedy fashion, and
could be demonstrated and discussed with the
stakeholders.

4 TESTING THE METHOD

As has already been discussed in Section 2.1,
development of our non-disruptive method of
transition to agile was done in parallel with a case
study in the IT department of a large insurance
company. The first phase of the study was connected
to the development of the method, and the second
phase with testing it.

The first phase was completed based on the
internal process documentation and interviews with
representatives of different teams engaged in the
development process. Based on the information
obtained, it was decided that the three most important
aspects that need to be mapped when describing the
current state of affairs were communication intensity,
cross-competency and timeline intensity. The step
relationship modelling technique (Bider and Perjons,
2015; Bider and Otto, 2015) was chosen for
representing these aspects. The concept of the
timeline diagram was already known from (Bider and
Otto, 2015), while the communication intensity
matrix and cross-competency matrix where designed
during the current project.

Based on the internal documentation and
information from the interviews, a model of the
current development process was produced. This
model is closed to the one presented in Figure 3 and
4, and Tables 2, 3 and 5, except that one step from the
original model is omitted. The structure of the
communication intensity and cross-competency
matrixes in the original model were somewhat
simpler than what was presented in Tables 3 and 5.
More exactly, the details that came from merging
with the output-input matrix were absent; they were
added when we worked on this paper.

The test phase of the case study consisted of: (a)
suggesting the next desired state of the development
project, which roughly corresponds to the one

presented in Tables 4 and 5 and Figure 5, and (b)
presenting the suggestions to the IT department
management. The goal of the test phase was twofold,
namely, to check

1. Whether the method could be understood by
people not very familiar with the agile
practices.

2. Whether they can accept concrete suggestions
based on this method, provided that they are
approved by the higher management. This
check (approximately) corresponds to
“reediness to use” in Technology Acceptance
Model (Davis, 1989).

The check has been completed by presenting the
method and an action plan based on this method to the
management of IT-department that consisted of 4
persons. After the presentation, an interview has been
conducted with each person based on the following 4
questions/topics:

1. Based on the presentation, have you understood
what kind of organizational changes the
transition to agile will require?

2. Based on the presentation, have you understood
the action plan for movement towards a more
agile development process?

3. Based on the presentation, are you prepared to
submit the action plan to the upper/higher
management for approval?

4. Based on the presentation, are you prepared to
set the suggested plan in action if approved by
the higher management?

For the questions 1, 2 and 4 the answers were on
the positive side from all respondents. When
answering question 3, some respondents expressed
doubts whether just presenting the action plan to the
higher management is enough to influence the
approval. However, all of them agreed that such a
presentation makes sense. The doubts on influencing
the decisions were connected to the plan itself not
explaining the benefits to be obtained. However,
another opinion was that presenting the action plan
could initiate discussions that would lead to
understanding the benefits. Anyway, the discussion
around the third topic explicated the needs to explain
the benefits achieved even before the full transition to
agile has been completed. This served us as a
motivation to insert the discussion on such benefits in
various places of this paper.

Summarizing the lessons learned about our non-
disruptive method of transition to agile from the case
study, we can state that:

1. It is possible to model the current state of the

Becoming Agile in a Non-disruptive Way - Is It Possible?

303

development process and suggest a plan of
actions for transition to agile.

2. The method is understandable for the
professionals in software development not
familiar with the details of the agile practices.
What is more, the plan of actions based on the
method is considered to be “doable”, and could
be accepted for implementation, provided the
approval of the higher management is obtained.
Though, there are some doubts that such
approval is easy to obtain, presenting the plan
of action to the higher management could
initiate a discussion that could lead to its
acceptance.

The lessons above were obtained based only on
one case study. However, from our practical
experience, the IT department in the study is just an
ordinary system development organization, and there
is no reason to suggest that the lessons learned will
substantially differ when the method is applied to
another organization of the same kind.

In short, we consider the check for “readiness to
use” as completed with positive results. On its own,
such a check does not guarantee that an organization
can actually execute a plan of action developed based
on the method. However, we consider this check
encouraging enough for continuing the efforts of
further development and testing the method.

5 CONCLUSIONS

There are ample evidence, provided in the literature
referenced to in Section 1, of existence of challenges
and difficulties when completing a transition from
TSD to ASD. These can be attributed to such a
transition being a major organizational change for a
software development organization, and it is well
known that any organizational change is difficult to
complete due to an organization, as a system, always
resists any change.

According to (Regev, 2015), the best prerequisite
for successful organizational change is stability.
Therefore, a system development organization with a
well-functioning TSD process does not need to
“jump” on a radical pass to ASD, but should consider
using the existing process as a tool for successful
transition to ASD. The non-disruptive method of
transition to ASD described in this paper gives an
example, of how an organization can practically
conduct the transition via using the existing process
as a tool.

Summarizing the results achieved so far, we can
identify three major contribution of this work:

1. To the best of our knowledge, the
contemporary literature does not have an
explicit definition of a goal of using the
existing development process as a
platform/tool for transiting to agile. Therefore,
our explicit formulation of this goal constitutes
the first contribution of this paper. This
contribution appears in the title and is discussed
in more details in Section 1.

2. In Section 3, we have introduced three types of
measurements that can be used to determine the
level of agility achieved while the organization
is still following TSD: communication
intensity, cross-competency, and the level of
parallelism. This are easy to understand
measures, and as our test case shows can be
obtain through interviewing people working in
the project. This measures can be used
independently whether the organization wants
to transit to agile in disruptive or non-disruptive
manner.

3. Lastly, this paper also contains a draft of the
non-disruptive method of transition to agile
that has gone through the initial test of
designing a plan of actions and acquiring
“readiness to use” in a typical software
organization. More tests and further
development are required to confirm the
validity of the method. However, the work
done so far (including the initial test) is
sufficient to show that, at least theoretically, a
non-disruptive method for transition to agility
can be built. Publishing this work might inspire
other researchers and practitioners to seek own
ways for a non-disruptive transition.

One difference of our method of transition to agile
with those of other (some of them are referred to in
Section 1) is that we pursue a special goal of using the
current development process as a tool/platform for the
transition. Another difference is the theoretical basis
on which the method has been built. Normally, other
researchers and practitioners use Agile Manifesto
(Agile Alliance, 2001) as a basis for building a
method. Instead, we use the theoretical underpinning
of agility based on the knowledge transformation
perspective from (Bider, 2014). This perspective has
helped us to choose the most important issues on
which to focus when transiting to agile. What is more,
the issues, when resolved, may improve the current
development process even before the full transition
can be completed.

Our plans for the future include further
development and testing of the non-disruptive
method, as well as dissemination of results, especially

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

304

among practitioners. The latter activity is considered
as an important one in the Design Science research
(Peffers et al., 2007). The reason for its importance is
that the researchers themselves have no possibility to
fully test a new design, aside of conducting
demonstration in few cases. The real test can be
completed only when (and if) the industry adopts the
method so that more test cases become available for
study.

ACKNOWLEDGEMENTS

The authors are in debts to the management and
developers of the IT department of the insurance
company who initiated this research and spent their
time answering interview questions, and listening,
discussing and accepting our suggestions.

REFERENCES

Agile Alliance, 2001. Manifesto for Agile Software
Development. (Online) Available at: http://
agilemanifesto.org (Accessed 10 October 2013).

Baskerville, R.L., Pries-Heje, J. & Venable, J., 2009. Soft
Design Science Methodology. In DERIST 2009. ACM,
pp.1-11.

Bider, I., 2014. Analysis of Agile Software Development
from the Knowledge Transformation Perspective. In
Johansson, B., ed. 13th International Conference on
Perspectives in Business Informatics Research (BIR
2014). Lund, Sweden. Springer, LNBIP 194, pp.143-
57.

Bider, I., Johannesson, P. & Perjons, E., 2013. Design
science research as movement between individual and
generic situation-problem-solution spaces. In
Baskerville, R., De Marco, M. & and Spagnoletti, P.
Organizational Systems. An Interdisciplinary
Discourse. Springer. pp.35-61.

Bider, I. & Otto, H., 2015. Modeling a Global Software
Development Project as a Complex Socio-Technical
System to Facilitate Risk Management and Improve the
Project Structure. In Proceedings of the 10th IEEE
International Conference on Global Software
Engineering (ICGSE), forthcoming. Ciudad Real,
Spain. IEEE.

Bider, I. & Perjons, E., 2015. Design science in action:
developing a modeling technique for eliciting
requirements on business process management (BPM)
tools. Software & Systems Modeling, 14(3), pp.1159-
88.

Conboy, K., Coyle, S., Wang, X. & Pikkarainen, M., 2011.
People over Process: Key Challenges in Agile
Development. IEEE Software, 28(4), pp.48-57.

Conboy, K. & Fitzgerald, B., 2004. Toward a conceptual
framework of agile methods: a study of agility in

different disciplines. In Proceedings of the 2004 ACM
workshop on Interdisciplinary software engineering
research. Newport Beach. ACM, pp.37-44.

Davis, F.D., 1989. Perceived usefulness, perceived ease of
use, and user acceptance of information technology.
MIS Quarterly, 13(3), pp.319–40.

Hajjdiab, H. & Taleb, A., 2011. Adopting Agile Software
Development: Issues and Challenges. IJMVSC, 2(3),
pp.1-10.

Highsmith, J., Orr, K. & Cockburn, A., 2000. E-Business
Application Delivery, pp. 4-17. (Online) Available at:
www.cutter.com/freestuff/ead0002.pdf .

Hunt, A., 2015. The Failure of Agile. (Online) Available at:
http://blog.toolshed.com/2015/05/the-failure-of-
agile.html (Accessed October 2015).

Nonaka, I., 1994. A dynamic theory of organizational
knowledge creation. Organ. Sci., 5(1), pp.14–37.

Peffers, K., Tuunanen, T., Rothenberger, M.A. &
Chatterjee, S., 2007. A Design Science Research
Methodology for Information Systems Research.
Journal of Management Information Systems, 24(3),
pp.45-78.

Regev, G., 2015. Fundamental Systems Thinking Concepts
for IS Engineering: Balancing between Change and
Non-change. (Online) Stockholm University Available
at: http://sched.co/2OGV (Accessed October 2015).

Sidky, A., 2007. A structured Approach to Adopting Agile
Practices: The Agile Adoption Framework. PhD
Thesis. (Online) VirginiaTech Available at:
http://scholar.lib.vt.edu/theses/available/etd-
05252007-110748/ (Accessed October 2015).

Smith, G. & Sidky, A., 2009. Becoming Agile. Greenwich,
CT: Manning.

Weaver, M., 2011. Do you agree or disagree that Scrum is
not Agile? (Online) Available at: http://
www.linkedin.com/groups/Do-you-agree-disagree-
that-81780.S.52354777 (Accessed April 2014).

Becoming Agile in a Non-disruptive Way - Is It Possible?

305

