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Abstract: The main goal of this paper is to manage the switching on/off of servers in a data center during time to adapt
the system with incoming traffic changes to ensure a good performance and a reasonable energy consumption.
In this work, the system is modeled by a queue then, an optimization algorithm is designed to manage energy
consumption and quality of service in the data center. For several systems, the algorithm is tested by numerical
analysis under various types of job arrivals: arrivals with constant rate, arrivals defined by an constant discrete
distribution, arrivals specified by a variable discrete distribution over time, and arrivals modeled by discrete
distributions obtained from real traffic traces. The optimization algorithm that we suggest, adapts and adjusts
dynamically the number of operational servers according to: traffic variation, workload, cost of keeping a job
in the buffer, cost of losing a job, and energetic cost for serving a job.

1 INTRODUCTION

The increasing development of Data Centers is caus-
ing problems in energy consumption. More than 1.3%
of the global energy consumption is due to the elec-
tricity used by data centers, a rate that is increasing,
revealed by a survey conducted in (Koomey, 2011),
which says a lot about the increasing evolution of
data centers. Therefore, to ensure both a good per-
formance of services offered by these data centers and
reasonable energy consumption, a detailed analysis of
the behavior of these systems is essential for design-
ing efficient optimization algorithms to reduce the en-
ergy consumption.

Two requirements are in conflict: (i) Switching
on a maximum number of servers leads to less waiting
time and decreases the loss of jobs but requires a high
energy consumption. (ii) Switching on a minimum
number of servers leads to less energy consumption,
but causes more waiting time and increases the loss of
jobs.

The goal is to design better managing algorithms
which take into account these two constraints to mini-
mize: waiting time, loss rate and energy consumption.

Studies like in (Berl et al., 2010; Baliga et al.,
2011; Lee and Zomaya, 2012) show that much of
the energy consumed in the data center is mainly due
to the electricity used to run the servers and to cool
them (70% of total cost of the data center). Thus the

main factor of this energy consumption is related to
the number of operational servers. Many efforts have
focused on servers and their cooling. Works have
been done to build better components, low-energy-
consumption processors, more efficient energy cir-
cuits, more efficient cooling systems (Grunwald et al.,
2000), and optimized kernels (Patel et al., 2003).

(Aidarov et al., 2013) analyze an energy optimiza-
tion strategy for a data center where: (i) job ar-
rivals rate, (ii) service price, (iii) promised Quality
of Service (QoS), (iv) penalty paid by the supplier
if the QoS provided is less than promised, are fixed.
Their objective is to maximize revenues from the ser-
vice provider. The strategy should find a balance be-
tween minimizing the penalties, minimizing the cost
of energy, and maximizing the number of served jobs.
They used queues as model and tested their strategy
by simulations.

(Mazzucco and Mitrani, 2012) provide a real test
of an energy optimization strategy. The strategy is to
switch on a number of servers : the more waiting jobs
are observed, the more servers are switched on, and
vice versa. Starting and stopping servers are progres-
sive. This strategy has been tested on the platform
Cloud Amazon EC2 with a cluster of servers. They
have compared their strategy with two other strate-
gies: (i) keeping all servers switched on, (ii) starting
and stopping servers periodically.

(Mitrani, 2013) studies the problem of managing
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a data center to keep a low energy consumption. This
problem is modeled by a queue in which jobs can
leave the system if the waiting time is too long. The
proposed strategy is to consider reserve server groups
that are gradually switched on when the number of
jobs in the buffer exceeds a certain threshold. Sim-
ilarly these server groups are gradually switched off
when the number of jobs in the buffer decreases and
exceeds another threshold. The thresholds are analyt-
ically evaluated using an objective function that takes
into account the parameters of the systems.

(Chase et al., 2001) work on an approach based
on the management of servers based on the supplied
performance. The system continuously monitors its
workload and provides resource allocations by esti-
mating their effects on the performance of the service.
They describe a greedy resource allocation algorithm
to balance supply and demand. Their experimental re-
sults show that the consumption of energy is reduced
by 30%.

(Schwartz et al., 2012) present a theoretical queu-
ing model to find a compromise between jobs wait-
ing time and energy consumption where a group of
servers is active all the time and the remaining servers
are activated on request.

In (Bayati et al., 2015) we present, with other co-
authors, a tool to study the trade-off between energy
consumption and performance evaluation. The tool
uses real traffic traces and stochastic monotonicity
property to insure fast computation. Given a set of
parameters that are fixed by the modeler, the tool de-
termines the best threshold based policy.

Our approach differs from these methods by sev-
eral points. First it is numerical rather than analyti-
cal or simulation based. Thus, this paper considers
less regular processes than the for example Poisson
process considered by Mitrani. Note that the Marko-
vian assumptions (Poisson arrivals, exponential ser-
vices and switching times) and the infinite buffer ca-
pacity are not mandatory for this analysis. However,
here, the arrival process is assumed to be stationary
for short periods of time and change between peri-
ods. This allows us to represent for instance hourly or
daily variations of the job arrivals. Real traffic traces
are used to build discrete distributions for the job ar-
rival.

In this paper a data center is modeled by a discrete
time queue with a finite buffer capacity and with a
time slot equals to the sampling period used to sam-
ple the traffic traces. The job arrivals are specified by
a discrete distribution. The system is analyzed for a fi-
nite time period (let’s say a day or a week). This time
period is divided into sub-intervals where the batch of
arrivals are supposed constant

We design an optimization algorithm in order to
manage energy consumption and QoS in the data cen-
ter. The cost of the consumed energy depends on the
number of operational servers. The QoS cost depends
on the number of waiting time (which depends on
the number of jobs in the buffer) and the losing rate
(which depends on the number of lost jobs). Every
slot, our algorithm minimizes an objective function
that combines the cost of energy and the cost of QoS,
in order to increase or decrease the number of opera-
tional servers according to traffic variation.

As the model is solved numerically, it is much
faster and more accurate than simulation.

The rest of this paper is organized as follows. At
first Section 2 models the system by simple queues.
Then, Section 3 develops an optimization algorithms.
And finally, Sections 4, 5 and 6 test and analyses nu-
merically some systems.

Subsequently we will try to interpret the tests and
explain the behavior of the system. We will carry out
several tests for various types of arrivals: (i) arrivals
with constant rate, (ii) arrivals defined by an constant
discrete distribution, (iii) arrivals specified by a vari-
able discrete distribution over time, (iv) and arrivals
modeled by discrete distribution obtained from real
traffic traces.

2 QUEUE MODEL DEPICTION

A discrete time model is considered. The number of
job arrivals is given by a discrete random variable. For
any distribution X , X [i] is the probability of item i.
The following operators defined over distributions are
needed to compute the system evolution:

• δv is the Dirac function with v ∈ N, defined as:

δv[i] = 1 if i = v and δv[i] = 0 otherwise (1)

• Z = X⊗Y is the convolution of distributions. It is
defined by:

Z[i] =
i

∑
j=0

X [ j]×Y [i− j] (2)

• Y = SUBv(X) is the distribution X translated by
constant v. This function corresponds to a sub-
traction on the underlying random variable. It is
defined by:

Y [i] =X [i−v] if i> v> 0 and Y [0] =
v

∑
i=0

X [i] (3)

• Y = MINb(X) is the distribution X bounded by
constant b. This function corresponds to a mini-
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mum on the underlying random variable. It is de-
fined by:

Y [i] = X [i] if i < b and Y [b] =
∞

∑
i=b

X [i] (4)

Let DC be a data center composed of Max identi-
cal servers working under the FIFO1 discipline. DC
receives jobs requesting the proposed service. The
number of jobs served by one server in one slot is
assumed to be constant and denoted by S. The job
arrivals are sampled with a time interval equal to the
slot duration. Thus, the queuing model is a batch ar-
rival queue with constant services and finite capacity
buffer B (buffer size). The number of jobs arriving to

S

S

S

S

S×M(t)A(t): job arrivals
B: Buffer size

N(t): Waiting jobs

M(t): Number of operational servers
S: Number of jobs served by a server per slot

Figure 1: Illustration of the queuing model.

the data center during the tth slot is denoted by A(t)
which is a discrete distribution. N(t) denotes the dis-
tribution of the number of waiting jobs in the buffer
(buffer length). The number of operational servers
during the slot t is denoted by M(t). Thus, M(0) is
the initial number of operational servers and Max is
the maximal number of servers which can be oper-
ational. The distribution N(t) can be computed by
induction on t using the previous operators. As a
discrete-time model is considered, the exact sequence
of events during a slot have to be described. First, the
jobs are added to the buffer then they are executed by
the servers. The admission is performed per job ac-
cording to the Tail Drop policy: a job is accepted if
there is a place in the buffer, otherwise it is rejected.
The following equations give the distributions of the
number of waiting jobs in the buffer and the lost jobs.
For t ≥ 1, we have:

N(t) = MINB(SUBS×M(t)(N(t−1)⊗A(t))) (5)

From now it is assumed that N(0) = δ0. The distribu-
tion of the number of the lost jobs during slot t is:

R(t) = SUB(S×M(t)+B)(N(t−1)⊗A(t)) (6)

1First In First Out.

Thus A(t), N(t) and R(t) are distributions, and M(t) is
an integer value. It is assumed that the input arrivals
are independent of the current queue state and the past
of the arrival process. Under these assumptions, the
model of the queue is a time-inhomogeneous Discrete
Time Markov Chains. The problem we have to deal
with is related to the nature of the arrival process.
Typically, the job arrivals cannot be assumed to be
stationary. The data center adapts to the fluctuation of
the process by changing the number of servers associ-
ated with the queue, such a policy leads to a trade-off
between the performance (i.e. waiting and loss prob-
abilities) and the energy consumption (i.e. number
of operational servers). However, as the number of
servers changes with time, the system becomes more
complex to analyze.

The number of servers may vary according to
the traffic and performance indexes. More precisely,
distributions N(t) and R(t) are considered and then
some decisions are taken according to a particular cost
function. Let t be the current slot, the expectations
E(N(t)) and E(R(t)) are considered.

Other parameters may be considered:

• the latency to switch on or off a server, which is
a discrete non negative integer values, assumed to
be zero in this study.

• the number of servers g that are switched on or
off. It is a discrete positive integer value. During
this analyses we assume that g = 1.

The energy consumption takes into account the
number of operational servers. Each server consumes
some units of energy per slot when a server is opera-
tional and it costs cM monetary unit. The total energy
used is the sum of units of energy consumed among
the sample path.

QoS takes into account the number of waiting and
lost jobs. Each waiting job costs cN monetary unit per
slot. A loss job cost cR monetary unit:

Table 1: Considered costs.

Cost Meaning

cM energetic cost for running one operational serer during one slot
cN waiting cost for one job over one slot
cR rejection cost for one losing one job

3 OPTIMIZATION ALGORITHM

In any optimization problem we have to minimize a
cost or a maximize gain. In our problem we may both:

• Minimize the number of operational servers M(t)
to minimize the cost paid for electricity.
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• Minimize the number of waiting and lost jobs,
N(t) and R(t), to minimize the waiting time and
the loss rate which increase the QoS.

This section explains our approach to optimize en-
ergy and QoS. Based on some elements of the system
like the number of job arrivals, the number of waiting
jobs, the number of rejected jobs and the number of
servers, the method consists in turning on or off, each
slot, an optimal number of servers to minimize en-
ergy consumption and maximize the QoS. So we will
need to evaluate every slot the number of waiting and
rejected jobs. Notice that parameters M(t) and N(t)
& R(t) are dependent and connected, gain on energy
consumption leads to a degradation on the QoS and
vice versa. Let’s define the following objective cost
function:

C(t)= cM×M(t)+cN×E(N(t))+cR×E(R(t)) (7)

Knowing the parameters of the system at slot
(t − 1), our strategy consists to determine the best
number of servers to be switched on, in slot t, in order
to minimize the cost. To do so, every slot t: for each
possible value of M(t)∈ {0,1, . . . ,Max}, we compute
C(t) and then we returns the value of M(t) that mini-
mizes the cost C(t).

Each slot, our algorithm evaluates all possible
costs for switching on any possible number of servers,
then it returns the number of servers for which the
value of the cost is minimal.

Table 2: Example of optimization. Suppose Max = 10, B =
15, S = 3, cM = 11, cN = 5, cR = 0 and for t = 1 we have:
E(N(t−1)) = 5 and E(A(t)) = 7. In this case our algorithm
chooses M(t) = 4 this value leads to the minimal cost.

M(t) 0 1 2 3 4 5 6 7 8 9 10

C(t) 60 56 52 48 44 55 66 77 88 99 110

Algorithm 1: Optimization for slot t.
1Data: Max, S, B, Nt−1, At , cM , cN , cR
2Result: Mt

3cost min← ∞
4servers min← 0
5for M← 0 to Max (by a step of g) do
6N←MINB(SUBS×M(Nt−1⊗At))
7R← SUB(S×M+B)(Nt−1⊗At)

8cost← cM×M+ cN×E(N)+ cR×E(R)
9if cost < cost min then

10cost min← cost
11servers min←M
12end
13end
14Mt ← servers min

As in (Bayati et al., 2015), taking into account the
monotonicity of the system and using coupling de-
tection algorithm (Sericola, 1999), numerical analy-
sis becomes faster by avoiding unnecessary computa-
tions.

In the next sections, we will use this optimization
algorithm to test, simulate, analyze and compare the
evolution of cost (energy consumption and QoS) of a
computer center for different types of job arrivals. We
will consider mainly three types of arrivals: (i) Sec-
tion 4 which analyzes constant arrival rate. (ii) Sec-
tion 5 which considers arrivals modeled by an con-
stant distribution. (iii) Section 6 which is addressed to
arrivals modeled by a pairwise constant distribution.

4 CONSTANT ARRIVAL RATE

Let’s first study the case where arrivals are modeled
by a constant rate of job arrivals:

a ∈ R : ∀t : A(t) = δa (8)

Given the variety of parameters that must be taken
into account to test and analyze our optimization, we
define the workload of the system as follows:

ρ =
E(A)

Max×S
=

a
Max×S

(9)

Table 3: Workload of system according to ρ.

ρ 0.2 0.5 0.7 0.9 1.2

relaxed moderate comfortable high excessive

4.1 Optimization and Workload

Tests show that, our algorithm turns on, eventually, a
number of servers proportional to the system work-
load (see Figure 2). Although our algorithm calcu-

Workload of system ρ
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Figure 2: Relationship between the number of operational
servers and the system workload.
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lates from the beginning the best number of servers
to be switched on, we observed that this number is
kept the same during the whole observation period:
∀t M(t) = dρ×Maxe. This formula is only valid if
the workload of the system ρ is smaller than 1. Other-
wise, if the workload is greater than 1, the best num-
ber of servers to be turned on will exceed the number
of servers available, so the system turns on all avail-
able servers to be as close as possible to the optimal
number of servers. Finally, the number of servers to
be switched on by our algorithm in the case of a con-
stant arrival rate is given by:

∀t : M(t) = min(dρ×Maxe ,Max) (10)

Note that the more the system has heavy workload,
the more the number of operational servers is big-
ger. Note that the results of this subsection are true
for costs cM , cN and cR of the same order of magni-
tude. In the next subsection, we will show impact of
varying the order of magnitude between these costs.

4.2 Cost Order Magnitude

For the rest, notice that the value cM
S gives the energy

cost paid in a slot for the treatment of one single job
by a server. The various tests we have done show that

Table 4: Impact of costs on the number of operational
servers.

Condition # operational servers Behavior
cM
S >> cN ,cR 0 Lazy

cM
S << cN ,cR Max Fully active

cM
S ≈ cN ,cR min(dρ×Maxe ,Max) Proportional

the behavior of our strategy against energy & QoS op-
timization depends on the values cM

S , cN , and cR. We
distinguish mainly three types of behavior:

• If cost cM
S is higher than cN and cR, the system

prefers to turn off all servers because the cost of
switching on a server to serve S jobs is more ex-
pensive than the cost of rejecting and/or keeping S
jobs in the buffer. We say that the system is lazy.

• If cost cM
S is smaller than cN and cR, then the sys-

tem prefers to turn on all the servers because the
total cost of waiting and rejection is much more
important than the cost of the switching on more
servers. We say that the system is fully active.

• If costs cM
s , cN & cR are close to each

other, the system immediately turns on a num-
ber of servers proportional to the workload:
min(dρ×Maxe ,Max).

To better clarify the results reported in the table 4 a
closer analysis of the relationship between costs, sys-
tem workload and the optimal number of servers is
discussed in the following.

Theorem 1. Assume that the buffer size is infinite.

For any slot t: M(t) =
{

Max if cM
S < cN

0 otherwise.

Proof. Assume that B is ∞. This implies that all jobs
will be accepted and no job will be rejected, which
means that the number of loss jobs R(t) is always
zero: (B is ∞) =⇒ (∀ t : R(t) = 0). The total cost
C(t) will be:

=cM×M(t)+ cN×E(N)+ cR×E(R)
=cM×M(t)+ cN ×E(N)+ cR×0
=cM×M(t)+ cN×E(N)
=cM×M(t)+ cN×E(MINB(SUBS×M(t)(N(t−1)⊗A(t))))
=cM×M(t)+ cN×E(MIN∞(SUBS×M(t)(N(t−1)⊗A(t))))
=cM×M(t)+ cN ×E(SUBS×M(t)(N(t−1)⊗A(t))).

As A(t) is modeled in this section by a constant rate,
we have: ∀t : A(t) = δa, we deduce that:

C(t) = cM×M(t)+ cN×max{0,N(t−1)+a−S×M(t)}.
We have two cases:

1. if (N(t−1)+a−S×M(t))≤ 0
then C(t) = cM×M(t).
In this case we must always choose M(t) = 0 to
ensure a minimum total cost.

2. if (N(t−1)+a−S×M(t))> 0 then
C(t) =cM×M(t)+ cN× (N(t−1)+a−S×M(t))

= M(t)× (cM−S× cN)+ cN× (N(t−1)+a).
It is clear that the right term cN× (N(t−1)+a) is
always a positive value. Thus minimizing the to-
tal cost requires the minimization of the left term
M(t)× (cM−S× cN). Thus, we are mainly deal-
ing with two sub-cases:

(a) If cM
S > cN then M(t)× (cM − S× cN) is nega-

tive, and choosing a maximum value of M(t) =
Max assures a minimum total cost.

(b) If cM
S < cN then M(t)× (cM − S× cN) is pos-

itive, and choosing a zero value of M(t) = 0
provides a minimum total cost.

5 CONSTANT ARRIVAL
DISTRIBUTION

In this section we will study the case where arrivals
are modeled by a single constant distribution that does
not change over time: ∀t : A(t) = D.

As in the previous section we have implemented
and tested our method based on the objective function
to test and analyze the behavior of the system. We
will consider three types of job arrival distributions
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with the same expectations (to keep nearly the same
workload) but with different variances:
• Uniform arrivals: same probability everywhere in

the distribution.
• Middle arrivals: high probabilities in the middle

of the distribution and low probability at the ex-
tremities (leads to low variance).

• Extremities arrivals: low probability in the mid-
dle of the distribution and high probabilities at the
extremities (leads to high variance).

Table 5 illustrates the three types of the considered
distributions.

Table 5: Example of the considered distributions.
Arrivals Type Distribution E(A) Var(A)

Uniform i [ 0 , 2 , 4 , 6 , 8 ]
A[i] [ 0.20 , 0.20 , 0.20 , 0.20 , 0.20 ]

4 8

High in middle i [ 0 , 2 , 4 , 6 , 8 ]
A[i] [ 0.05 , 0.20 , 0.50 , 0.20 , 0.05 ]

4 2.4

High at extremities i [ 0 , 2 , 4 , 6 , 8 ]
A[i] [ 0.40 , 0.08 , 0.04 , 0.08 , 0.40 ]

4 13.44

5.1 Workload Variation

In this subsection we will use the three types of ar-
rivals we have previously introduced to analyze nu-
merically the system whose parameters are described
in Table 6. Figure 3 shows the evolution, over time,

Table 6: Settings of the first numerical analysis.

Parameters Value Unit Description

Max 150 servers total number of servers
S 1 jobs/server processing capacity of a server
B 1000 jobs buffer size

E(A) 20-150 jobs average job arrivals
cM 10 e cost of energy needed by a server
cN 12 e cost of waiting a job
cR 11 e cost of rejecting a job

of the number of operational servers according to sev-
eral workload values of ρ. Clearly, on the curves of
this graph, we observe that the number of operational
servers tends progressively to a value proportional to
the system workload. The more the system has heavy
workload, the more the needed operational servers is
bigger. If the system is overwork-loaded the system
eventually turn on all available servers. Thus, in gen-
eral, the ultimate number of operational servers for a
long term converges to: min{Max,dρ×Maxe}.

Furthermore, Figure 3 shows that for the same
workload value ρ, the ultimate number of operational
servers is reached quickly for middle arrivals (red
curve), slowly for uniform arrivals (curve blue), and
very slowly for extremities arrivals (orange curve).

Note that the results of this subsection were ob-
tained for close costs (same order of magnitude). In
the following subsection, we will conduct tests by
varying costs cM , cN and cR.
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Figure 3: Evolution, over time, of the number of operational
servers depending on workload values ρ according to sev-
eral type of arrivals.

5.2 Cost Variation

In this subsection we will consider an analysis with a
fixed job arrivals distribution A(t) with a fixed expec-
tation and a fixed variance, where varying the costs
cM , cN & cR. We analyze numerically the system
whose parameters are described in Table 7.

Table 7: Settings of the second numerical analysis.

Parameters Value Unit Description

Max 300 servers total number of servers
S 1 jobs/server processing capacity of a server
B 1000-9000 jobs buffer size

E(A) 155 jobs average job arrivals
Var(A) 149.922 jobs variance in job arrivals

ρ 52% - workload

5.2.1 Loss Cost

In this numerical analysis we have set a small value
for the cost of energy consumption cM

S and even
smaller value for the cost of waiting cN but a high
value for the cost of rejection cR: cR > cM

S > cN .
We observe that at the beginning and during a cer-

tain period, the system keeps all the servers switched
off and holds jobs on waiting, because the cost of
turning on a server is higher than keeping a job wait-
ing. Thus the system prefers to put jobs on buffer.
That said, after a certain latency period the buffer B
becomes full and the system begins to reject jobs, and
as the loss cost is too high compared to other costs,
the system starts to turn on servers in order to reduce
loss rate. Figure 4 illustrates this reaction latency phe-
nomenon. Curves show that the larger the buffer B is,
the longer latency period is. Therefore, the latency
period before the response of the system can be ap-
proximated by: B

E(A) . Now, fixing B the size of the
buffer and varying cR (while keeping cR > cM

S > cN).
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Figure 4: Latency phenomenon.

We observe that the system period latency is the same
(because the value of B was fixed) for the different
values of cR. However, the higher the cost cR is, the
higher the system turns on servers. It is a completely
natural reaction because the system tries to minimize
the total cost, and as the loss cost cR is highest, the
system will turn on more servers to serve more jobs
and emptying further the queue which allows a low
loss rate. Figure 5 illustrates this phenomenon.

Time t

N
um

be
ro

fo
pe

ra
tio

na
ls

er
ve

rs
M
(t
)

0 5 10 15 20 25 29 34 39 44 49 54 59 64 69 74 78 83 88 93 98
0

9

17

26

34

43

51

60

68

77

85

94

102

111

119

128

136

145

153

162

170

cR = 1.65

cR = 1.95

cR = 3.15

cR = 6.15

Figure 5: Evolution of the number of operational servers for
different values of loss cost cR.

5.2.2 Waiting Cost

In this subsection we have set a small value for the
cost of energy consumption cM

S and a high value for
the cost of waiting cN > cM

S with any value for the loss
cost. Figure 6 illustrates the result of this configura-
tion. We observed that from the beginning, the system
switch on a significant number of servers because the
cost of energy is lower than the one of waiting. Thus
the system prefers to turn on more servers to serve
more jobs and avoid long waiting time. Eventually,
we note that the loss cost is not involved in this con-
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Figure 6: Evolution of the number of operational servers for
different values of waiting cost cN .

figuration, because the system is fairly active and loss
rate is negligible.

6 VARIABLE ARRIVAL
DISTRIBUTION

In this section we will generalize our study extending
it for arrivals modeled by a distribution that changes
over time: ∃t1 ∃t2 : A(t1) 6= A(t2).

6.1 Hourly Arrival Variation

In a real data center the arrivals jobs vary over the day.
For example high rate arrivals between 8 a.m. and 4
p.m., low arrivals between 4 p.m. and midnight, and
medium arrivals between midnight and 8 a.m. Fig-
ure 7 shows the results of analyzing numerically the
system whose parameters are described in Table 9.

We observe that the system turns on a number of
servers at the beginning of the day to treat arriving
jobs. Then, it gradually increases the number of op-
erational servers to treat the high arrival rate between

Table 8: Example of hourly variation of arrivals.
Arrivals rate Period A(t) E(A)

Medium arrivals 0 a.m.-8 a.m. i [ 0 , 100 , 200 , 300 , 400 , 500 ]
A[i] [ 0.48 , 0.24 , 0.12 , 0.08 , 0.04 , 0.04 ]

100 jobs

High arrivals 8 a.m.-4 p.m. i [ 0 , 100 , 200 , 300 , 400 , 500 ]
A[i] [ 0.17 , 0.04 , 0.13 , 0.17 , 0.22 , 0.27 ]

300 job

Low arrivals 4 p.m.-0 a.m. i [ 0 , 100 , 200 , 300 , 400 , 500 ]
A[i] [ 0.73 , 0.15 , 0.07 , 0.03 , 0.01 , 0.01 ]

50 jobs

Table 9: Settings of the third numerical analysis.

Parameters Value Unit Description

Max 400 servers total number of servers
S 1 jobs/server processing capacity of a server
B 3000 jobs buffer size

cM 7 e cost of energy needed by a server
cN 9 e cost of waiting a job
cR 8 e cost of rejecting a job
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8 a.m. and 4 p.m. Then from 4 p.m. it begins to turn
off the servers and keeping only reduced number of
operational servers to serve the low arrival rate until
midnight. We clearly note the dynamic adaptation of
the energy optimization system to the traffic variation.
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Figure 7: Evolution of the number of operational servers
during two days.

6.2 Daily Arrival Variation

This section uses real traffic traces to model arrivals.
We use the open clusterdata-2011-2 trace (Wilkes,
2011; Reiss et al., 2011), and we focus on the part
that contains the job events corresponding to the re-
quests destined to a specific Google data center for
the whole month of May 2011. The job events are or-
ganized as a table of eight attributes; we only use the
column timestamps that refer to the arrival times of
jobs expressed in µ-sec. This traffic trace is sampled
with a sampling period equal to the slot duration. We
consider frames of one minute to sample the trace and
construct seven empirical distributions corresponding
to arrivals during each day of the week. Such an as-
sumption is consistent with the week evolution of job
arrivals observed by long traces.

High arrivals rate is observed on Thursday, low
arrivals rate on Saturday, Sunday and Monday, and
medium arrivals rate during the rest of the week (see
Table 10). These distributions have different statisti-
cal properties reflecting the fluctuation of traffic over
the week (see Figure 8). For instance, we observe an
average of 39 (resp. 58) jobs per minute during Sun-
day (resp. Thursday) with a standard deviation of 22
(resp. 38)(see Figure 9). Figure 10 shows the results
of analyzing numerically the system whose parame-
ters are described in Table 11.

Table 10: Example of daily variation of arrivals obtained
from Google traces.

Day of week Arrivals rate E(A) σ(A)

Monday Low 43 jobs 21
Tuesday Medium 51 jobs 25
Wednesday Medium 49 jobs 23
Thursday High 58 jobs 38
Friday Medium 53 jobs 25
Saturday Low 41 jobs 24
Sunday Low 39 jobs 22
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Figure 8: Cumulative distribution of A(t) for days of the
week.
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ational servers. Our algorithm adapts the number of opera-
tional server according to the traffic variation.
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Table 11: Settings of the last numerical analysis.

Parameters Value Unit Description

Max 100 servers total number of servers
S 1 jobs/server processing capacity of a server
B 300 jobs buffer size

cM 7 e cost of energy needed by a server
cN 23 e cost of waiting a job
cR 29 e cost of rejecting a job

7 CONCLUSION

In this paper we presented an optimization stochastic
algorithm in order to manage energy consumption and
QoS in a data center modeled by discrete time queue.

Every slot, the algorithm minimizes an objective
function that combines the cost of energy and the cost
of QoS, in order to change the number of operational
servers according to traffic variation.

We show the ability of our algorithm to adapt
dynamically to arrivals changes. Test were showed
through various numerical analysis for several types
of arrivals: (i) arrivals with constant rate, (ii) arrivals
defined by an constant discrete distribution, (iii) ar-
rivals specified by a variable discrete distribution over
time, (iv) and arrivals modeled by discrete distribu-
tion obtained from Google real traffic traces. The sys-
tem starts turning on servers progressively when high
arrivals rate is detected. And turn off gradually the
servers when arrivals rate becomes low.

Doing a closer analysis of the relationship be-
tween costs, workload and optimal number of oper-
ational servers is considered for future work to de-
termine more accurate link between these parameters.
We also intend to extend this study for the case in
which, the number of served jobs in a slot by a server
is defined by a distribution, the latency to switch on or
off a server is not zero, and the servers are not identi-
cal in performance and energy consumption.
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