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Abstract: Nowadays, applications must often handle a large amount of data and apply complex algorithms on it. It is a 
promising and popular way to apply the computation in parallel in order to meet the performance 
requirements. Since GPUs are designed to apply highly parallel computations efficiently, using CPU+GPU 
heterogeneous architecture have gained an increasing popularity in computation intensive applications. 
Model-driven development (MDE) is a widely used software development methodology in the software 
industry. MDE is heavily building on model transformations in converting and processing the models. Graph 
transformation-based model transformation is a popular technique in this field. It is based on isomorphic 
subgraphs matching, which often require serious computing power. Currently, model transformation tools are 
not capable of using the computation power of the GPUs. Our research goal is to create a general model 
matching and later a model transformation solution, which can take the advantages of the computation power 
of the GPUs. We are now focusing on pattern matching of the transformations. We would like to create a 
general solution which is independent of the hardware vendor; therefore, our method is based on the OpenCL 
framework. The novelty of this paper is a GPGPU-based pattern matching tool and some accelerating 
techniques to achieve faster computation. In this paper we present an overview of the solution and test results 
based on one of the biggest freely available movie database (IMDb). The main properties such as the 
performance and the scalability are discussed. The applied architecture and the steps towards the final solution 
are also included in the paper. 

1 INTRODUCTION 

Nowadays, software applications process and handle 
a huge amount of data. Therefore, the execution of 
complex algorithms on this data often becomes a 
heavily time consuming operation. Using parallelized 
algorithms is a promising way to improve the 
performance of the applications. We need a hardware 
device for this to supports massive parallelism. GPUs 
seem a perfect candidate for this, since nowadays they 
tend to have thousands of computations units for 
parallel evaluation. The CPU+GPU heterogeneous 
architecture have enough power source to develop 
extremely fast algorithms. The processing power of 
GPUs is already widely applied in several fields like 
image or audio processing. This trend can be 
extended to new domains as well.  

On the market, numerous kinds of GPUs can be 
found. Using a vendor, or model specific language 
and framework would need a tremendous effort. To 
avoid this, the OpenCL framework has been created 

in 2009. OpenCL is a platform independent 
framework which can be used to handle the most 
widely used GPUs uniformly. OpenCL is an interface 
defined by Khronos Group (Khronos Group’s 
website, 2015) and each product vendor has its own 
implementation. Although these implementations 
differ from each other, the interface grants the 
compatibility between the vendors. 

Model-driven engineering (MDE) is a widely 
applied software development methodology in the 
software industry. Models are not only created for 
presentation purposes, but they are transformed, 
processed and often used directly or indirectly as the 
basis of the code generation. Therefore, to find 
efficient model transformation techniques is 
important and challenging part of the MDE. Several 
techniques exist, one of the most popular is the graph 
rewriting-based transformation which is also referred 
to as graph transformation. Graph transformation is 
based on an NP complete problem (subgraph 
isomorphism) and may need serious amount of time 
depending on the size of the input model. A solution 
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for the performance issue can be to use the 
aforementioned CPU+GPU architecture. 

Our overall goal is to create a general model-
transformation tool using the computing power of 
GPUs. The tool is referred to as the GPGPU-based 
Engine for Model Processing (GEMP). We have done 
several steps in creating GEMP (Fekete and Mezei, 
2015). In that paper, we concluded that the usage of 
the GPUs in graph transformation tools is a promising 
direction. In this paper, we follow this path by 
introducing a general, GPU-based solution for 
pattern-matching. 

The rest of the paper is organized as follows: In 
Section 2, the features of the OpenCL framework are 
collected and compared against other solutions. 
Moreover, a short overview of model transformation 
tools can also be found. In Section 3, the input domain 
model is described which is used for illustrating the 
non-functional properties of the GEMP. In Section 4, 
an architectural overview is given. The following two 
Sections pay attention to the data mapping to the 
OpenCL framework and introduce the core 
algorithms. In Section 7, the main properties of the 
tool are discussed, namely the performance and the 
scalability. Finally, in Section 8, we conclude and 
give an outlook for the possible researching 
directions. 

2 RELATED WORK 

There are several possibilities to realize 
heterogeneous computation tasks, especially for 
CPU+GPU based platforms. One of them is the usage 
of the popular OpenCL framework. Another widely 
applied way of accessing the GPUs is the usage of the 
CUDA (CUDA’s website, 2015). It is necessary to 
question which of them is better considering several 
viewpoints such as performance, scalability, or the 
difficulty of the integration. In a paper, (Veerasamy 
et al., 2014), they introduced the usage of both the 
CUDA and the OpenCL in deeper details, but they do 
not give suggestion which is the better to integrate. 
Both of them have their own advantages which 
heavily depend on the actual problem that must be 
solved. The main reason of using the OpenCL 
framework over CUDA is that OpenCL can be used 
by many hardware manufacturers realizing the 
interfaces. 

In a paper, (Yan et al., 2014), there are 
benchmarks showing how the OpenCL framework 
can be effectively used on different hardware 
components. They compared several hardware 
components like multi-core CPUs, AMD and 

NVIDIA GPUs. They also considered the differences 
between their and other existing results. They 
measured the GFLOPS both on GPUs and CPUs and 
collected their experiments in case of different kinds 
of tasks. 

The usage of the OpenCL framework is 
challenging to those, who do not have experience in 
hardware close programming. Probably this is the 
main reason why there are so many libraries for 
OpenCL and for other multi-platform environments. 
In a paper, (Viñas et al., 2015), there is a discussion 
about the extension of a Heterogeneous Library with 
OpenCL; this modification provides easier access to 
OpenCL framework. Significantly decreasing the 
number of lines in the source code is achieved and 
introduced in the paper. 

There are many OpenCL-based graph libraries 
and wrappers which can be used in realizing an 
OpenCL-based model-transformation tool. Using 
GPUs in a graph library is introduced by (Che et al., 
2014). In this paper, solutions of several popular 
graph problems are modified to achieve the GPU-
based version of them. They also realized that 
programming of the GPU can be difficult for a regular 
programmer and the implementation of the graph 
application can take a big effort. Therefore, they 
created a library which is called BelRed. The software 
building blocks are implemented on the top of the 
OpenCL framework. The performance of the library 
is represented on a case study. The main advantages 
of the BelRed library are its portability and the fact 
that the programmer does not need care of the kernel 
code writing and hardware close working. 

In a paper, (Xu et al., 2014), they introduce how 
important and critic the graph processing components 
nowadays are. The paper also focuses on the 
algorithm mapping between the host and the GPU 
which is the biggest challenge in the effective usage 
of GPUs. They compiled 12 graph applications into 
the GPU device, studied the performance and 
suggested several approaches to accelerate the 
performance of the GPU-based algorithms. 

There are several papers and studies which collect 
and classify the model transformation tools. In a 
paper, (Jakumeit et al., 2014), there are tools which 
are described, for example GREAT, IncQuery, 
Fujaba, Groove, Henshin, MOLA and Viatra2. None 
of these tools can use the power of the GPUs in model 
processing. Our current research focuses on the 
challenges to create a general purpose pattern 
matching tool, namely the first step towards creating 
a GPU-based model transformation engine. The 
verification and validation of GEMP is applied on 
two levels: (1) Low level functional properties are 
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tested using unit tests. (2) For testing and illustrating 
the high level non-functional properties, a domain 
model with a huge size of source is introduced. 

3 INPUT DOMAIN MODEL 

In this section, we introduce an input domain model 
which is used to illustrate the non-functional 
properties of GEMP, especially the performance and 
the scalability. The internet movie database (IMDb’s 
website, 2015) (IMDb) is used as the input data. 
IMDb is the largest film and TV show related 
database. It has approximately 3.3 million titles, 6.5 
million personalities (actors, directors, etc.). From the 
IMDb, a huge input model can be created. Several 
interesting and complex patterns can be searched in 
this database for testing purposes. In the current 
research, a text file-based database is used which 
contains information on several domain concepts, like 
movies (subtitle, creation time, and rate), actors (with 
played film), and producers (with film). Figure 1 
shows an example for a pattern to be searched. 

 

Figure 1: Example for a pattern to be searched. 

4 ARCHITECTURE 

The OpenCL kernel source code must be written in 
the C99 language (with some restrictions). The 
language of GEMP is C++11. OpenCL versions are 
backwards compatible. Since NVIDIA GPUs support 
only OpenCL 1.2 version, we decided to use this 
version in order to maximize hardware independency. 

4.1 Component Model 

Each component has a well separated functionality. 
We used the interface oriented programming 
paradigm to easily access the services of GEMP. 
Most frequently used design patterns are the adapter 
and the façade. For example, between the OpenCL 
API and the base libraries of the tool, the 

CGPUAccess component provides the connection 
and it is implemented as an adapter, while 
CTaskRunner is a façade. The domain model is 
created in the CModelManagement component which 
can be used for other domains. The most important 
components of the framework are shown in Figure 2 
and in the list below of it (with their key roles). 

(1) CGPUAccess: It creates the main OpenCL 
context and the command queue. Some objects are 
delegated to other components which need access 
to the GPU device. Inside of the component (2) 
initializes the connection between the host and the 
GPU device using the OpenCL API. At the same 
time, this context stores each run-time object 
provided by the OpenCL API. 

(2) Business Logic (CPrephase1, CPrephase2, 
CPhase1, CPhase2): This component realizes the 
business logic (BL) of the tool. Each contained 
inner components are easily exchangeable and 
extendable. The BL uses the kernel source code 
and responsible for the compiling process using 
other components. 

(3) CTaskRunner: The tasks are scheduled here. All 
kinds of time scheduling tasks must happen in this 
component. 

(4) CLogging: It is responsible, not only for logging, 
but provides the output models as well. 

(5) IMDbAccess: It manages reading of the domain 
model and provides the graph data to (6). 

(6) CModelManagement: It is responsible for the 
domain model creation. It can also create the input 
graph and process the results. 

 

Figure 2: The base component model with the most 
important blocks. 

4.2 Dynamic Behaviour and Testing 

In the first place, GEMP provides interfaces to the 
task evaluation and to the configuration. As soon as 
the task is chosen, it is queued for execution. The 
CModelManagement prepares the domain model for 
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the tasks. In the current case, the IMDb source is the 
only one that can be processed. The CTaskRunner 
manages the configuration according to the user 
settings. Pattern matching is executed in two main 
steps. In the first step, we search for topological 
matches with the pattern. Nodes are represented by 
their ID. At the second step, we use the topological 
matching parts of the host model (the results of the 
first step) and evaluate attribute constraints on them. 
The reason for dividing the matching algorithm into 
two steps is that copying all nodes of the host model 
with all of their attributes to the GPU memory would 
be inefficient. To use two steps, we can reduce the 
amount of data to copy. Namely, we need to copy 
attributes only for those nodes, which are part of a 
topological matching structure. 

During the implementation, according to the test-
driven development methodology (TDD) (Canfora et 
al., 2006), a unit test is created right at the beginning 
of the implementation. Test cases are created and the 
expected results are calculated by hand. At every run 
of the unit test, the framework compares the received 
and the expected results in an automated way. A few 
examples on the unit tests: (1) There are cases when 
there is no result. Handling an empty result buffer 
must not cause failure. (2) There are possible 
scenarios when the results overlap. We must find each 
of them at this time. (3) There are test cases for error 
handling. We must be able to log information about 
all unwanted events from inside and outside of the 
kernel source. 

5 DATA MAPPING 

The model graph is represented as a hash table, where 
the ID of the vertex and the list of their neighbours 
are stored. The advantage of using a hash table is that 
finding an element based on its ID requires O(1) time. 
Although, by using hash table, a little bit more 
memory is needed, the time is more important in the 
current case. The result is stored in a different kind of 
structure. There are two kinds of data which must be 
mapped: At the first step of matching, (topological 
check), graphs consist of numerical elements (IDs). 
At the second step (attribute check), attributes are 
represented by strings (they are serialized to strings).  

In case of graph mapping, the graph is converted 
as illustrated in Figure 3, in order to achieve the 
required format (the passing of 2D arrays is not 
allowed in case of OpenCL 1.2). The original, two 
dimensional structure of the graph is mapped into two 
one dimensional structures: (1) The first structure 
contains the list of the neighbours one by one from 

the first to the last vertex. (2) The second structure 
contains the starting positions of the neighbour lists. 
The second part is a helper structure to process the 
first structure. Using this two arrays and the size of 
the second array, all kinds of graph can be passed. 
Advantages of this structure are the degree of 
compression and the time of accessing elements in the 
graph. 

 

Figure 3: The input of the OpenCL kernel code must be a 
one dimensional array. 

 

Figure 4: Concatenate string to OpenCL kernel code. 

In the second step, a different data structure is 
needed. At this time, the OpenCL buffer must be big 
enough for each attribute. To store the beginning of 
the attributes, a helper array is used as well. Figure 4 
shows this kind of mapping.  

Considering the result buffer (output data from 
the GPU), there is a common reserved space in the 
GPU device global memory. Each thread can reserve 
a part from it and fill it any time. As soon as the thread 
cannot manage the reserving of memory for a new 
result, buffer overflow is occurred and handled. 

6 KERNEL SOURCE 

There are several important viewpoints for creating 
an effective kernel codes, one of them is the memory 
management. There are four kinds of memory areas 
in the OpenCL programming model: private, local, 
global and the host side memory. Another viewpoint 
is to choose the number of the working threads 
(referred to as the local group number). Choosing the 
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right number depends on the hardware device and 
therefore GEMP must recognize the GPU and 
manage the configuration according to it. Similarly, 
data types are important in case of different GPUs, 
using unsigned positive numbers are not worse than 
using other types and provide lots of values to store 
bigger graphs. We measured several cases. 

In the first kernel code, the size of the result (one 
searched pattern) is known and must be filled. The 
algorithm seeks for candidates for the actual place 
and if it has been found, it tries to find the candidate 
for the next place (Fig. 5). As soon as there is no 
candidate left, the algorithm steps back and tries to 
find another matching vertex for the last place. If the 
algorithm reaches the first element or the element 
after the last one, it ends (with failure, or success 
respectively). The algorithm can be illustrated by a 
state machine, which is studying the current state, and 
makes a decision to accept it and step to the next state. 
Searching does not go deeper in the graph than the 
size of the pattern. 

 

Figure 5: The task is to find matching result to the pattern. 

In the second phase, the attributes (strings) of the 
vertices must be passed to the GPU device. Only the 
attributes of the result of the first phase are passed and 
processed one-by-one. Each thread processes an 
attribute (one vertex has one attribute). Processing 
means to find the requested condition in the given 
attribute. For instance we want to find each pattern 
where 4 actors play in the same movie and the actor 
has the name Jack, the pattern graph has four node in 
the current case and each result find using the first 
kernel. In the second step, only the attributes of the 
results are copied and processed to find pattern where 
the name attribute contains the Jack name. 

7 PERFORMANCE AND 
SCALABILITY 

Both of the time and the memory consumption must 
be monitored for studying the performance and the 
scalability during the execution. The following time 
measurement points are identified: (1) Reading the 
input data. (2) Converting the data to OpenCL input 

format. (3) Preparing the kernel code and copying the 
data to the GPU device, managing the computation 
and reading the result. (4) Processing and reading the 
result. (5) Creating the string and other buffers to the 
second phase. (6) Running the kernel of the second 
phase. (7) Giving the result of the second phase. 
Considering the memory usage, there are also 
predefined points, when the size of the memory is 
limited for testing purposes: (1) Allocating memory 
to the input model. (2) Creating result buffer on the 
GPU device. (3) Creating string input buffer on the 
GPU device in the second phase. 

7.1 Input Model  

Both the first (topological match) and the second 
(attribute checking) phase have to be able to deal with 
large input graphs. GEMP divides the graphs 
(generated from the IMDb database in the current 
case) randomly and processes them in several rounds. 
The missing results are processed on the host side 
parallel to the GPU threads. According to our 
measurements, the heavily divided graph results less 
findings on the GPU device. Dividing of the input 
graph is studied and measurements evaluated in a 
earlier paper (Fekete and Mezei, 2015). 

In this paper, we introduce one additional step in 
the first kernel, namely using a pivot point in pattern 
matching. We select the first vertex to match in the 
pattern and find all candidates in the host model, thus 
creating starting points for matching. Then, possible 
starting points are counted and for each vertex, a 
worker thread is started. This means that we can 
significantly reduce the number of threads (all host 
nodes vs. nodes matching the pivot point of the 
pattern). We tested with several examples using the 
IMDb database. We achieved more than 10% 
performance increase in our test cases. 

7.2 Result Buffer and Processing 

If the optimal number of the worker threads is not 
configured for one round (can be needed if the graph 
cannot be processed in a single round), the 
computation time can slow down. Considering this 
kind of importance of the number of the worker 
threads, there are three formulas developed in earlier 
(Formula 1-3). If the kernel must be started too 
frequently (buffer overflow or barely used buffer), the 
performance is decreased. 
 

C
fSizecurrentBuf

BuffSize
NuminitThreadumnewThreadN *

max
* (1)

CNuminitThreadumnewThreadN *  (2)
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C
zecurrBuffSi

BuffSize
>

max

 
(3)

 

The newThreadNum refers to the number of the 
global worker threads that must be used in the 
subsequent runs of the kernel code. The number of the 
global worker threads used in the test measurement is 
denoted by the initThreadNum. C can be any kind of 
positive number, which increases or decreases the 
speed of the buffer size changing. The maxBufferSize 
and the currentBufferSize denote how many numbers 
can be stored and the size of the buffer used in the 
current round. 
 

 

Figure 6: One attribute list can be appeared in more results. 

One attribute can appear in several results and 
copying all of them would be only the waste of the 
power source. Instead, an attribute is copied only ones 
which is illustrated in Figure 5. In this case an 
additional helper structure is applied. The result of the 
test measurement heavily depends on the input model 
and the pattern to be searched. But in this case, we 
also could achieve at least 10% performance gain.  

8 CONCLUSIONS 

In this paper, a general pattern matching tool (GEMP) 
is presented based on our earlier studies and solutions. 
The tool contains two main steps with optional pre-
processing steps. This two steps ensures that only the 
mandatory attributes are copied to the GPU device 
thus reducing time and memory. According to the 
new architecture, the applied domain model is much 
easier to be exchanged and all kinds of domain 
models can be used. Users can access and configure 
the tool using interface oriented techniques which 
makes GEMP a user friendly and easily testable. 

As the pattern matching part of the tool is now 
complete, we are going to focus on graph-rewriting in 
the future and we also need study how we can 
integrate our tool into existing tools. Obviously, 
managing graph-rewriting effectively on the GPU 
device is not an easy task (consistency, performance, 
memory management issues) and we will face several 
challenges during the work. Some of them are already 
known, e.g. which part of the graph is necessary to 

copy to the GPU device and how is the update 
applied? Studying and solving these points we can 
achieve GPU-based model transformation tool with 
full functionality. This is our new step besides 
creating other case studies and apply more tests. 
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