
C-Helper: C Latent-error Static/Heuristic Checker for Novice
Programmers

Kota Uchida1 and Katsuhiko Gondow2

1Cyboze, Inc., Tokyo, Japan
2Department of Computing Science, Tokyo Institute of Technology, Tokyo, Japan

Keywords: Programming Education, C Static Checker, Compiler Warning Messages, Latent Errors, Heuristics, Novice
Programmer.

Abstract: For better programming language education, it is crucial to make compiler warning messages more under-
standable for novice programmers. Unfortunately, however, Kojima’s research showed warning messages in
commercial-level compilers like GCC are still difficult to understand, and the commercial-level compilers tend
not to emit how to modify programs to correct the problems. Furthermore, we found that they also tend not
to handle latent errors. To solve this problem, by using a heuristic approach, we propose a novel C static
checker called C-Helper, that aims to emit more direct error messages understandable for novices to correct
wrong programs, and also aims to handle latent errors. Our preliminary evaluation shows that C-Helper was
positively evaluated, although our heuristic approach increased false-positives.

1 INTRODUCTION

As Kojima et al. indicated (Yoshitaka Kojima, 2015),
warning messages in commercial-level compilers like
GCC are difficult for novice programmers; the com-
pilers and static checkers, except Splint (Inexpensive
Program Analysis Group, 2015), emit little guidance
to correct wrong programs; technical terms used by
Splint are difficult for novices. Thus this also indi-
cates it is very challenging to provide novices with er-
ror messages understandable for them in plain terms.

For a motivating example, the line 5 in Listing 1 is
a typical mistake by novices where a string is illegally
assigned to a variable of type char. The reason why
this mistake occurs is because the assignment state-
ment at line 5 is very similar to the array initialization
at line 3 in Listing 1, which is perfectly legal. Even
worse, for Listing 1, GCC-4.7.2 emits the message
“test.c:5:13: warning: assignment makes integer from
pointer without a cast”, which is very confusing for
novices. Instead, we would like to provide a more di-
rect message “String cannot be stored in an element
of char array variable. Consider to use strcpy”. This
paper proposes a novel static checker called C-Helper,
which does emit this message.

Another important issue is to cope with latent er-
rors. Here we use the term “latent error” as a program
for which commercial-compilers emit no error mes-

Listing 1: Example of assigning string to char array vari-
able.

1 int main (void)
2 {
3 char arr1 [20]=”This i s legal ” ;
4 char arr2 [20];
5 arr2 [20]=”This i s i l l e ga l ” ;
6 }

sages, but the intentions of (novice) programmers are
contrary to the program. For another motivating ex-
ample, at line 6 in Listing 2, sizeof operator is ap-
plied to a pointer variable a that points a dynamically
allocated array. The intention of novice program-
mers is often likely to obtain the size of the dynami-
cally allocated array (i.e., 20), not the size of pointer
(i.e., 4 in ILP32 platforms), while the actual value of
sizeof(a) is 4. The reason why this mistake occurs
is because sizeof operator applied to statically allo-
cated memory like the line 5 in Listing 3 produces the
same result (i.e., 20) as the programmer’s intention.

For Listing 2, our C-Helper emits “The result of
sizeof(a) is 4, not 20. Is it really intended?”, Of course,
there are some cases the intention is to obtain 4, but
we use a heuristic or assumption that in most cases
the intention of novices is to obtain 20.

Programs with a latent error are categorized into
the following three groups:

• Bad coding styles: e.g., unbalanced indentation

Uchida, K. and Gondow, K.
C-Helper: C Latent-error Static/Heuristic Checker for Novice Programmers.
In Proceedings of the 8th International Conference on Computer Supported Education (CSEDU 2016) - Volume 1, pages 321-329
ISBN: 978-989-758-179-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

321

Listing 2: Example of applying sizeof to dynamically al-
located arrays.

1 #include <s td l ib . h>
2 int main (void)
3 {
4 int i ;
5 char

::
*a

:
=
::::::

malloc
:::
(20) ;

6 for (i =0; i <
:::::::
sizeof(a) / sizeof (a [0]) ; i++) {

7 a[i]= ’\0’ ;
8 }
9 }

Listing 3: Example of applying sizeof to statically allo-
cated arrays.

1 int main (void)
2 {
3 int i ;
4 char

::::
a[20] ;

5 for (i =0; i <
:::::::
sizeof(a) / sizeof (a [0]) ; i++) {

6 a[i]= ’\0’ ;
7 }
8 }

(E9 in Appendix).

• Dynamic errors: e.g., memory leak and buffer
overflow (E10 and E11 in Appendix).

• Pitfalls in programming languages: e.g., the above
sizeof misuse (E12 through E15 in Appendix).

In this paper, we design and implement a novel C
static checker called C-Helper that aims to emit more
direct error messages understandable for novices to
correct wrong programs, and also aims to handle 15
latent errors including all the above three groups, us-
ing some heuristics and assumptions.

The main contributions of this research are as fol-
lows:

• We have provided the first prototype implementa-
tion as a C static checker using heuristic rules that
can also cope with latent errors (Sec. 3.2). The
full source code of C-Helper is publicly available
at the C-Helper homepage (uchan-nos, 2015).

• Our preliminary evaluation shows that the 8 stu-
dents positively evaluated C-Helper, although
our heuristic approach increased false-positives
(Sec. 4).

• We obtained several important findings: e.g., to
more efficiently implement static analyzers, we
need a more powerful and abstract language; we
experienced that Java and Eclipse/CDT is not
enough for our purpose (Sec. 3.3).

2 RELATED WORK

There are several papers on compiler warning mes-
sages understandable for novices, summarized in this
section. To our knowledge, however, none of them
tried to provide novices with understandable mes-
sages for latent-errors in C.

• Splint (Inexpensive Program Analysis Group,
2015) is a powerful C static checker, especially
for professional programmers, since Splint emits
more informative messages to correct problems
than other commercial-level compilers (Yoshi-
taka Kojima, 2015). Although Splint emits mes-
sages for some latent-errors (e.g., E10, E11, E15,
but not E9, E121, E13, E14 in Appendix), Splint’s
messages are unfortunately less understandable
for novices (Yoshitaka Kojima, 2015),

• Thetis (Freund and Roberts, 1996) is an inte-
grated development environment for C with C in-
terpreter, understandable error reporting, run-time
error detection, debugging/visualization tools. A
special feature of Thetis is strengthened syntactic
restrictions, where common code fragments often
mistakenly used by novices are regarded as errors
by Thetis, even though they are perfectly legal in
the C standard. The most common example is
if(i=0)· · ·, where the assignment operator = is of-
ten misused instead of the relational operator = =
by novices. The concept of this Thetis’s feature is
very similar to C-Helper’s latent-error detection,
but the details are unknown since Thetis imple-
mentation is not available now.

• C-Tutor (Song et al., 1997) is a C program analy-
sis tool, which provides novices with understand-
able messages to correct their wrong programs.
C-Tutor combines static and dynamic analysis
techniques, and extracts novice’s intentions us-
ing sample programs. Thus, C-Tutor needs sam-
ple programs given by teachers, while C-Helper
doesn’t.

• CX-checker (Osuka et al., 2012) is a C cod-
ing style checker. While the current C-Helper
only checks unbalanced indentation as a com-
mon coding style, CX-checker copes with vari-
ous styles, which are highly customizable using
XPath, DOM and wrapper API. CX-checker does
not cover syntax/semantic/latent errors.

• Kummerfeld’s method (Kummerfeld and Kay,
2003) catalogs some common C/C++ compiler er-
ror messages, typical code examples for them, and

1Splint emits unrelated messages, but nothing for
sizeof(array).

CSEDU 2016 - 8th International Conference on Computer Supported Education

322

their possible corrections as a Web-based refer-
ence guide. This method might be effective, but
its maintenance cost is very high since the cata-
log must be updated whenever new compilers are
released. This method covers syntax errors, bot
doesn’t cover latent-errors.

• There are programming environments proposed
to support novices in other languages like Dr-
Racket (Marceau et al., 2011b; Marceau et al.,
2011a) for Scheme, and BlueJ (Kölling et al.,
2003) Expresso (Hristova et al., 2003) Gaunt-
let (Flowers et al., 2004) for Java. Although the
concept of more understandable messages is al-
most the same as C-Helper, the language differs.
Due to the language differences, in C-Helper, we
needed to implement alias analysis, for example,
to detect memory leak and buffer overflow, which
is not necessary in Scheme and Java.

3 DESIGN AND
IMPLEMENTATION

3.1 Design

3.1.1 Target Errors and Heuristics

Although there are various programs that novices of-
ten mistake, we decided to focus on 15 typical er-
rors (E1 through E15 in Appendix) in the first im-
plementation. The 15 errors were collected from a C
programming forum (RemicalSoft, 2015), including
2 syntax errors, 6 semantic errors and 7 latent errors.

To analyze the 15 errors, we use heuristics in the
following sense.

• We assume some novice’s programming tenden-
cies. For example, as mentioned in Sec. 1, we as-
sume that novices tend to use sizeof(a) in List-
ing 2 to obtain the size of dynamically allocated
array.

• We also assume that novices tend
not to use complex expressions like
if((p=malloc(512))!=NULL)· · ·. This assump-
tion supports the statement-level granularity in
C-Helper (Sec. 3.1.2).

3.1.2 The Granularity is a Statement, Not
Expression

We decided to use a statement as the analysis granu-
larity in C-Helper, not an expression, since

• The order of evaluation of the subexpressions
within an expression is unspecified in the C
standard (i.e., unspecified behavior in C), which
means different compilers evaluate the expres-
sions in different orders. Thus, it is impossible
to analyze C expressions in a portable way.

• The granularity of expression makes it much
harder to implement C-Helper, since the syntax
of C expressions is far more complex than simple
WHILE language in the textbook of static analy-
sis (Nielson et al., 2004).

3.1.3 Static Analyzers to Implement

As discussed in Sec. 3.2, we utilize the abstract syn-
tax trees (AST) generated by Eclipse/CDT, but we
need to implement our own static analyzers, since
Eclipse/CDT does not generate static analysis infor-
mation enough to our need. In C-Helper, we decided
to implement the following:

• Control flow graph generator.

• Reaching definition analyzer.

• Alias analyzer.

Reaching definition analysis is required to detect
sizeof(a) in Listing 2 for example, while alias anal-
ysis is required to detect memory leak like Listing 13.

We implement them by originally extending, to fit
the C language, the iterative algorithms in the text-
book of static analysis (Nielson et al., 2004), in a
flow-sensitive and context-insensitive way.

Also we implement them to analyze only sim-
ple variable definitions and assignment statements2 as
nodes in control flow graphs, since we assume that
novices tend not to use complex expressions, as dis-
cussed in Sec. 3.1.1 and Sec. 3.1.2 to simplify the im-
plementation of C-Helper.

3.2 Implementation

3.2.1 Overview of C-Helper

We implemented C-Helper in Java as a plugin of
Eclipse/CDT3 (Fig. 2). The code size of C-Helper
is about 10,000 lines in Java. Fig. 1 shows a screen-
shot of C-Helper; the error messages emitted by C-

2To be more precise, expression statement whose outer-
most operator is =.

3CDT (abbr. of C/C++ Development Tooling) is an
Eclipse plugin including C/C++ parser, type analysis, syn-
tax highlighting, etc.

C-Helper: C Latent-error Static/Heuristic Checker for Novice Programmers

323

Figure 1: Screenshot of C-Helper.

Figure 2: System overview of C-Helper.

Helper appear on Problems View45, and the positions
that caused the errors are underlined in Source Code
Editor. The users can come and go between the error
message and its error position by clicking them.

3.2.2 Processing Flow of C-Helper

The processing flow of C-Helper is as follows (Fig. 3).

1. From Eclipse, C-Helper obtains the source code
that the user is editing.

2. C-Helper sends the source code and the standard
headers6, included in the source code to CDT.
Note that the standard headers used here are not
native system headers. Instead, C-Helper pro-
vides the minimal plain headers conformed to the
C89 standard, to avoid the problems of compiler-
specific extensions.

3. C-Helper receives from CDT, an abstract syntax
tree (AST) including the type information and
symbol table, and sends the AST to various an-
alyzers in C-Helper.

4. C-Helper receives the result of analysis.

4C-Helper is developed for the Japanese novice students,
so the error messages are written in Japanese, because they
almost always skip over and ignore messages in English.

5In current implementation of C-Helper, this needs ex-
plicit start by the user; i.e., the messages appear when the
user clicks the analysis icon.

6The current C-Helper supports stdlib.h and
stdio.h. There is no difficulty to add other headers.

Figure 3: Processing flow of C-Helper.

5. C-Helper applies heuristic rules to the analysis re-
sult.

6. C-Helper asks Eclipse to display the detected er-
rors.

3.3 Discussion

Even though we restricted the analysis granularity to
a statement, not an expression (Sec. 3.1.2), we found
that the implementation of C-Helper is still difficult.
One of the reasons is that the syntax of the C language
is complex to implement static analyzers. For exam-
ple, to analyze loops, we have to handle all possible
combinations of syntax elements like the statements
of while, do-while, for, if with goto, that behave
as loops. Just to implement an AST matching code for
the loops, we experienced that the code becomes very
large and complex. One idea to alleviate this problem
is to use an intermediate form like GIMPLE/RTL in
GCC, or to develop yet another more abstract form
to simplify static analyzers. This is one of our future
work.

Another issue is a problem of redundant down-
cast code. Listing 4 shows an example of this prob-
lem, which is a Java code fragment in C-Helper. List-
ing 4 traverses an AST to check if the value assigned
to a variable is a pointer returned by malloc. Even
though instanceof is used before downcast (e.g., at
the line 3 in Listing 4) to check if the downcast is
safe or not, the corresponding downcast is also re-
quired (e.g., (IASTCastExpression)rhs at the line
4 in Listing 4). This code pattern appears so often
(e.g., the line 6/7 and 8/9 in Listing 4), so the code
becomes very redundant.

3.4 Limitations

In the current C-Helper, there are several limitations,
which cause false-positives and false-negatives (see
also Sec. 4). For example, the current C-Helper only

CSEDU 2016 - 8th International Conference on Computer Supported Education

324

Listing 4: Java code fragment in C-Helper to check if the value assigned to a variable is a pointer returned by malloc.

1 for (AssignExpression assign : assigns) {
2 IASTNode rhs = assign .getRHS() ;
3 while (rhs instanceof IASTCastExpression) {
4 rhs = ((IASTCastExpression) rhs) . getOperand () ;
5 }
6 i f (rhs instanceof IASTFunctionCallExpression) {
7 IASTFunctionCallExpression fce = (IASTFunctionCallExpression) rhs ;
8 i f (fce . getFunctionNameExpression () instanceof IASTIdExpression) {
9 String funcname=((IASTIdExpression) fce . getFunctionNameExpression ()) . getName () . toString () ;

10 i f (funcname . equals (”malloc”)) {
11 beginnerExpectingValues . add(fce . getArguments () [0] . getRawSignature ()) ;
12 }}}}

Table 1: Evaluation by 8 novice students.

C-Helper feature # good # unnecessary # bad
Detecting unbalanced indentation 2 1 0
Suggesting headers of the standard library not included 1 0 0
Detecting the lack of return statement in non-void function 3 0 0
Messages in Japanese 3 0 0

Table 2: Result of applying C-Helper to Kojima’s benchmark.

error category # programs # false-positives # true-positives
pointer/array 31 16 0
conditional 16 0 0

function 16 15 5
variable 14 3 0

expression/statement 13 5 1
total 90 39 6

handles simple malloc and realloc calls7 (as dis-
cussed in Sec. 3.1.1), so it cannot handle calls like
if((p=malloc(512))!=NULL)· · ·.

Another limitation comes from the difficulty of
handling C pointers. As is the case with other static
analyzers and garbage collectors for C, the alias anal-
ysis in C-Helper is incomplete due to this problem. It
is difficult to cope with C pointers, since pointer arith-
metic and casting in C makes it possible for a variable
to point to any location in memory.

4 PRELIMINARY EVALUATION

4.1 Questionnaire in C Language
Tutorial

The first author conducted a tutorial on the program-
ming language C for 18 students8 who learn the pro-
gramming language for the first time. The tutorial

7realloc is not supported in the current C-Helper.
8Japanese undergraduates in Tokyo Institute of Technol-

ogy, whose majors are not limited to computer science.

consisted of 5 lectures covering “hello, world”, vari-
ables, control statements and simple function defini-
tion. The first author asked them to use C-Helper in
the tutorial, and also asked them to tell us which fea-
tures in C-Helper are good/unnecessary/bad in free
format. Out of 18, 8 students replied their answers
(Table. 1). The result indicates that the students posi-
tively evaluated C-Helper, since there is only one “un-
necessary” and no “bad” answers, while there are the
total 9 “good” answers. It is not surprising that they
answered only 3 errors out of 15 that C-Helper can
detect, since the tutorial did not cover a little bit ad-
vanced topics like structures and malloc. It is inter-
esting that 3 students answered “good” for messages
in Japanese; as we expected, Japanese students tend
to prefer messages in Japanese to ones in English.

4.2 Applying C-Helper to Kojima’s
Benchmark

Before we implemented C-Helper, we expected our
heuristic approach increases false-positives (that is,
the case where some error message is emitted, but it
is wrong). To measure this objectively, we applied
C-Helper to Kojima’s benchmark (Yoshitaka Kojima,

C-Helper: C Latent-error Static/Heuristic Checker for Novice Programmers

325

2015), which is a set of 90 small programs in C lan-
guage that novice programmers often mistake.

The result is shown in Table. 2; out of 90, there
are 39 false-positives and 6 true-positives. This result
shows that as we expected, our heuristic approach in-
creases false-positives. The main reasons are because
the current C-Helper supports only 15 errors (see Ap-
pendix), and also because the benchmark includes
many complex expressions that the current C-Helper
cannot handle like if((p=malloc(512))!=NULL)· · ·.
We have a plan to extend and refine our heuristic rules
to decrease false-positives while preserving the merits
of C-Helper.

5 CONCLUSIONS

In this paper, we proposed a novel C static checker
called C-Helper, that aims to emit more direct error
messages understandable for novices to correct wrong
programs, and also aims to handle latent errors. Our
preliminary evaluation shows that C-Helper was pos-
itively evaluated, although our heuristic approach in-
creased false-positives.

As future work, we have a plan to extend and
refine our heuristic rules to decrease false-positives
while preserving the merits of C-Helper.

REFERENCES

Flowers, T., Carver, C., and Jackson, J. (2004). Empow-
ering students and building confidence in novice pro-
grammers through gauntlet. In Frontiers in Education,
2004. FIE 2004. 34th Annual, pages T3H/10–T3H/13
Vol. 1.

Freund, S. N. and Roberts, E. S. (1996). Thetis: An ansi c
programming environment designed for introductory
use. In Proceedings of the Twenty-seventh SIGCSE
Technical Symposium on Computer Science Educa-
tion, SIGCSE ’96, pages 300–304, New York, NY,
USA. ACM.

Hristova, M., Misra, A., Rutter, M., and Mercuri, R. (2003).
Identifying and correcting java programming errors
for introductory computer science students. SIGCSE
Bull., 35(1):153–156.

Inexpensive Program Analysis Group, University of Vir-
ginia, D. o. C. S. (2015). Splint annotation-assisted
lightweight static checking. http://www.splint.org/,
[Online; accessed 14-Oct-2015].

Kölling, M., Quig, B., Patterson, A., and Rosenberg, J.
(2003). The bluej system and its pedagogy. Computer
Science Education, 13(4):249–268.

Kummerfeld, S. K. and Kay, J. (2003). The neglected battle
fields of syntax errors. In Proceedings of the Fifth Aus-
tralasian Conference on Computing Education - Vol-

ume 20, ACE ’03, pages 105–111, Darlinghurst, Aus-
tralia, Australia. Australian Computer Society, Inc.

Marceau, G., Fisler, K., and Krishnamurthi, S. (2011a).
Measuring the effectiveness of error messages de-
signed for novice programmers. In Proceedings of the
42Nd ACM Technical Symposium on Computer Sci-
ence Education, SIGCSE ’11, pages 499–504, New
York, NY, USA. ACM.

Marceau, G., Fisler, K., and Krishnamurthi, S. (2011b).
Mind your language: On novices’ interactions with
error messages. In Proceedings of the 10th SIG-
PLAN Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward!
2011, pages 3–18, New York, NY, USA. ACM.

Nielson, F., Nielson, H. R., and Hankin, C. (2004). Princi-
ples of Program Analysis. Springer; Corrected edition.

Osuka, T., Kobayashi, T., Atsumi, N., Mase, J., Ya-
mamoto, S., Suzumura, N., and Agusa, K. (2012).
CX-checker: A flexibly customizable coding checker
for C. Journal of Information Processing Society of
Japan, 53(2):590–600.

RemicalSoft (2015). Forum of any ques-
tions in the programming language C.
http://dixq.net/forum/viewforum.php?f=3, [Online;
accessed 14-Oct-2015].

Song, J. S., Hahn, S. H., Tak, K. Y., and Kim, J. H. (1997).
An intelligent tutoring system for introductory c lan-
guage course. Comput. Educ., 28(2):93–102.

uchan-nos (2015). C-helper: A programming environ-
ment for beginners of C programming language.
https://github.com/uchan-nos/c-helper, [Online; ac-
cessed 14-Oct-2015].

Yoshitaka Kojima, Yoshitaka Arahori, K. G. (2015). Inves-
tigating the difficulty of commercial-level compiler
warning messages for novice programmers. In Pro-
ceedings of the 8th International Conference on Com-
puter Supported Education, CSEDU! 2015, pages
483–490.

APPENDIX

The following is the list of 15 errors checked by the
current C-Helper, categorized into three groups: (1) 2
syntax errors, (2) 6 semantic errors, (3) 7 latent errors.

Listing 5: Example of extra semicolon in function defini-
tion.

1 #include <stdio .h>
2 int main (void) ;
3 {
4 }

Syntax Errors

E1: Extra semicolon in function definition

CSEDU 2016 - 8th International Conference on Computer Supported Education

326

For Listing 5, C-Helper emits “test.c:2:16: Don’t
place semicolon ’;’ for function definition”9, while
GCC-4.7.2 emits “test.c:3:1: error: expected iden-
tifier or ’(’ before { token”.

E2: The lack of semicolon in structure definition
For Listing 6, C-Helper emits “test.c:5:1: Place
semicolon for structure definition”, while GCC-
4.7.2 emits “test.c:6:1: error: expected ’;’, iden-
tifier or ’(’ before ’int’”10.

Semantic Errors

E3: Assigning string to char array variable
For Listing 1, C-Helper emits “String cannot be
stored in an element of char array variable. Con-
sider to use strcpy”, while GCC-4.7.2 emits
“test.c:5:13: warning: assignment makes integer
from pointer without a cast”.

E4: Parameter mismatch in printf

For Listing 7, C-Helper emits “ argument is of
type ’signed int’, but format ‘%s’ expects argu-
ment of type char pointer (format ’%d’ can be
used for ’signed int’). ”11, while GCC-4.7.2 emits
“test.c:5:5: warning: format ‘%s’ expects argu-
ment of type char *, but argument 2 has type int”.

E5: The lack of return statement in non-void func-
tion
For Listing 8, C-Helper emits “No return state-
ment”, while GCC-4.7.2 emits “foo.c:5:1: warn-
ing: control reaches end of non-void function”,

E6: Comparing char and string
For Listing 9, C-Helper emits “character and
string cannot be compared (enclose with ’,
not " for a character)”, while GCC-4.7.2 emits
“foo.c:7:17: warning: comparison between pointer
and integer”.

E7: Calling scanf with non-pointer parameters
For Listing 10, C-Helper emits “Specify pointer
(Obtain the pointer to variable by adding &
(&data))”, while GCC-4.7.2 emits, with -Wall op-
tion, “foo.c:5:5: warning: format %d expects argu-
ment of type int *, but argument 2 has type int”.

E8: Headers of the standard library not included

9In the current C-Helper, all messages are written in
Japanese, which are translated in English here.

10Note that the position test.c:5:1 that C-Helper emits
is the end of the structure, while the position test.c:6:1
that GCC emits is the beginning of int main(void). Thus,
C-Helper is better than GCC also in this respect.

11The integer promotion rule in C implicitly converts
’signed char’ to ’signed int’ in an expression.

Listing 6: Example of the lack of semicolon in structure
definition.

1 #include <stdio .h>
2 struct mystruct
3 {
4 char name[64];
5 }
6 int main (void)
7 {
8 }

Listing 7: Example of parameter mismatch in printf.

1 #include <stdio .h>
2 int main (void)
3 {
4 char c = ’A’ ;
5 pr in t f (”%s\n” , c) ;
6 }

Listing 8: Example of the lack of return statement in non-
void function.

1 #include <stdio .h>
2 int func (FILE ∗fp , int i)
3 {
4 fp r in t f (fp , ”%d\n” , i) ;
5 }

Listing 9: Example of comparing char and string.

1 #include <stdio .h>
2 int main ()
3 {
4 int num = 0 , word;
5 FILE ∗fp = fopen (”foo” , ” r”) ;
6 while ((word = fgetc (fp)) != EOF) {
7 i f (”+” == word) num++;
8 }
9 }

Listing 10: Example of calling scanf with non-pointer pa-
rameters.

1 #include <stdio .h>
2 int main (void)
3 {
4 int data ;
5 scanf (”%d\n” , data) ;
6 data = (int) (data ∗ 1.05);
7 pr in t f (”%d\n” , data) ;
8 }

The C90 standard is still the default mode in many
C compilers. In C90, when an undeclared func-
tion foo is called, the compiler regards its type
as int foo();. Therefore, when a header of the
standard library is not included, all library func-
tions in the header are regarded as of type int
foo();, which often confuses novices.

C-Helper: C Latent-error Static/Heuristic Checker for Novice Programmers

327

For Listing 11, C-Helper emits “strlen is an un-
declared function (Specify #include <string.h>)”,
while GCC-4.7.2 emits “test.c:4:26: warning: in-
compatible implicit declaration of built-in function
strlen”. Clang (LLVM-7.0.0) emits “test.c:4:20:
note: include the header <string.h> or explicitly
provide a declaration for ’strlen’”.

Latent Errors

E9: Unbalanced indentation
For Listing 12, C-Helper emits “Unbalanced in-
dentation. Place indentation equivalent to 4 space
characters.” for the 4th line, while GCC-4.7.2
emits nothing.

E10: Memory leak
For Listing 13, C-Helper emits “Possible mem-
ory leak”, while GCC-4.7.2 emits nothing. In cur-
rent implementation of C-Helper, there are several
limitations to detect memory leak and buffer over-
flow, which results in false-positives/negatives
(See Sec. 3.4).

E11: Buffer overrun in fread

For Listing 14, C-Helper emits “Possible buffer
overflow (Specify sizeof(unsigned char) as sec-
ond argument, and 100 as third argument)”, while
GCC-4.7.2 emits nothing in compile-time.

E12: Using sizeof to dynamically allocated arrays
Novices sometimes mistakenly apply sizeof to
a pointer variable (array in Listing 2) yielding
the size of the pointer, where the intention is to
obtain the size of dynamically allocated array by
malloc.
For Listing 2, C-Helper emits, assuming the above
novice’s intention, “The result of sizeof(array) is
4, not sizeof(int)*128. Is it really intended?”, while
GCC-4.7.2 emits nothing.

E13: Cast suppressing compiler warnings
Novices sometimes mistakenly use cast to sup-
press type mismatch warning ((char *) in List-
ing 15, where the format string %c should be
used).
For Listing 15, C-Helper emits, assuming the
above novice’s mistake, “You can use %c if the ex-
pression getchar() represents a character”, while
GCC-4.7.2 emits nothing under 32-bit integer en-
vironments.

E14: Variable definition in header files
For Listing 16, C-Helper emits “It is better not
to define a variable in header files (Instead, use
extern declaration (extern int g x;))”, while GCC-
4.7.2 emits nothing.

Listing 11: Example of using undeclared function.

1 #include <stdio .h>
2 int main (void)
3 {
4 pr in t f (”%d\n” , (int) s t r len (”hoge”)) ;
5 }

Listing 12: Example of Unbalanced indentation.

1 void func (char (∗name)[M] , int n)
2 {
3 int i = 0 , j ;
4 for (j = 0; name[i] [j] != ’\0’ ; ++j) {
5 / / the reset omitted

Listing 13: Example of memory leak.

1 #include <s td l ib . h>
2 void func (int cond)
3 {
4 int ∗p = malloc (128);
5 i f (cond) {
6 free (p) ;
7 }
8 }

Listing 14: Example of buffer overrun in fread.

1 #include <stdio .h>
2 int main (void)
3 {
4 FILE ∗fpread , ∗fpwrite ;
5 unsigned char buf [100];
6 int size ;
7 fpread = fopen (”foo” , ”rb”) ;
8 fpwrite = fopen (”bar” , ”wb”) ;
9 size = fread (buf , sizeof (unsigned char) ,

10 10000, fpread) ;
11 fwrite (buf , sizeof (unsigned char) ,
12 size , fpwrite) ;
13 fclose (fpread) ; fclose (fpwrite) ;
14 }

Listing 15: Example of cast suppressing compiler warnings.

1 #include <stdio .h>
2 int main (void)
3 {
4 pr in t f (”%s\n” , (char ∗) getchar ()) ;
5 }

Listing 16: Example of variable definition in header files.

1 / / t e s t . h
2 int g x ;

1 / / t e s t . c
2 #include ” t e s t . h”
3 void func (void)
4 {
5 }

CSEDU 2016 - 8th International Conference on Computer Supported Education

328

Listing 17: Example of shadowed identifiers.

1 #include <stdio . h>
2 int val ;
3 void func (void)
4 {
5 int val = 41;
6 }
7 int main (void)
8 {
9 pr in t f (”%d\n” , val) ;

10 }

E15: Shadowed identifiers
For Listing 17, C-Helper emits “Identifier val
is shadowed”, while GCC-4.7.2 emits, with the
option -Wall, nothing; GCC-4.7.2 emits, with
the option -Wshadow, “test.c:5:9: warning: dec-
laration of val shadows a global declaration..
test.c:2:5: warning: shadowed declaration is
here.”.

C-Helper: C Latent-error Static/Heuristic Checker for Novice Programmers

329

